diff --git a/Eigen/src/QR/ColPivHouseholderQR.h b/Eigen/src/QR/ColPivHouseholderQR.h index d8bd4b950..61c6fdf09 100644 --- a/Eigen/src/QR/ColPivHouseholderQR.h +++ b/Eigen/src/QR/ColPivHouseholderQR.h @@ -11,7 +11,7 @@ #ifndef EIGEN_COLPIVOTINGHOUSEHOLDERQR_H #define EIGEN_COLPIVOTINGHOUSEHOLDERQR_H -namespace Eigen { +namespace Eigen { namespace internal { template struct traits > @@ -31,11 +31,11 @@ template struct traits > * \tparam _MatrixType the type of the matrix of which we are computing the QR decomposition * * This class performs a rank-revealing QR decomposition of a matrix \b A into matrices \b P, \b Q and \b R - * such that + * such that * \f[ * \mathbf{A} \, \mathbf{P} = \mathbf{Q} \, \mathbf{R} * \f] - * by using Householder transformations. Here, \b P is a permutation matrix, \b Q a unitary matrix and \b R an + * by using Householder transformations. Here, \b P is a permutation matrix, \b Q a unitary matrix and \b R an * upper triangular matrix. * * This decomposition performs column pivoting in order to be rank-revealing and improve @@ -67,11 +67,11 @@ template class ColPivHouseholderQR typedef typename internal::plain_row_type::type RealRowVectorType; typedef HouseholderSequence::type> HouseholderSequenceType; typedef typename MatrixType::PlainObject PlainObject; - + private: - + typedef typename PermutationType::StorageIndex PermIndexType; - + public: /** @@ -86,7 +86,7 @@ template class ColPivHouseholderQR m_colsPermutation(), m_colsTranspositions(), m_temp(), - m_colSqNorms(), + m_colNorms(), m_isInitialized(false), m_usePrescribedThreshold(false) {} @@ -102,7 +102,7 @@ template class ColPivHouseholderQR m_colsPermutation(PermIndexType(cols)), m_colsTranspositions(cols), m_temp(cols), - m_colSqNorms(cols), + m_colNorms(cols), m_isInitialized(false), m_usePrescribedThreshold(false) {} @@ -110,12 +110,12 @@ template class ColPivHouseholderQR * * This constructor computes the QR factorization of the matrix \a matrix by calling * the method compute(). It is a short cut for: - * + * * \code * ColPivHouseholderQR qr(matrix.rows(), matrix.cols()); * qr.compute(matrix); * \endcode - * + * * \sa compute() */ template @@ -125,7 +125,7 @@ template class ColPivHouseholderQR m_colsPermutation(PermIndexType(matrix.cols())), m_colsTranspositions(matrix.cols()), m_temp(matrix.cols()), - m_colSqNorms(matrix.cols()), + m_colNorms(matrix.cols()), m_isInitialized(false), m_usePrescribedThreshold(false) { @@ -160,7 +160,7 @@ template class ColPivHouseholderQR HouseholderSequenceType householderQ() const; HouseholderSequenceType matrixQ() const { - return householderQ(); + return householderQ(); } /** \returns a reference to the matrix where the Householder QR decomposition is stored @@ -170,14 +170,14 @@ template class ColPivHouseholderQR eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); return m_qr; } - - /** \returns a reference to the matrix where the result Householder QR is stored - * \warning The strict lower part of this matrix contains internal values. + + /** \returns a reference to the matrix where the result Householder QR is stored + * \warning The strict lower part of this matrix contains internal values. * Only the upper triangular part should be referenced. To get it, use * \code matrixR().template triangularView() \endcode - * For rank-deficient matrices, use - * \code - * matrixR().topLeftCorner(rank(), rank()).template triangularView() + * For rank-deficient matrices, use + * \code + * matrixR().topLeftCorner(rank(), rank()).template triangularView() * \endcode */ const MatrixType& matrixR() const @@ -185,7 +185,7 @@ template class ColPivHouseholderQR eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); return m_qr; } - + template ColPivHouseholderQR& compute(const EigenBase& matrix); @@ -305,9 +305,9 @@ template class ColPivHouseholderQR inline Index rows() const { return m_qr.rows(); } inline Index cols() const { return m_qr.cols(); } - + /** \returns a const reference to the vector of Householder coefficients used to represent the factor \c Q. - * + * * For advanced uses only. */ const HCoeffsType& hCoeffs() const { return m_hCoeffs; } @@ -380,19 +380,19 @@ template class ColPivHouseholderQR * diagonal coefficient of R. */ RealScalar maxPivot() const { return m_maxpivot; } - + /** \brief Reports whether the QR factorization was succesful. * - * \note This function always returns \c Success. It is provided for compatibility + * \note This function always returns \c Success. It is provided for compatibility * with other factorization routines. - * \returns \c Success + * \returns \c Success */ ComputationInfo info() const { eigen_assert(m_isInitialized && "Decomposition is not initialized."); return Success; } - + #ifndef EIGEN_PARSED_BY_DOXYGEN template EIGEN_DEVICE_FUNC @@ -400,20 +400,20 @@ template class ColPivHouseholderQR #endif protected: - + static void check_template_parameters() { EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); } - + void computeInPlace(); - + MatrixType m_qr; HCoeffsType m_hCoeffs; PermutationType m_colsPermutation; IntRowVectorType m_colsTranspositions; RowVectorType m_temp; - RealRowVectorType m_colSqNorms; + RealRowVectorType m_colNorms; bool m_isInitialized, m_usePrescribedThreshold; RealScalar m_prescribedThreshold, m_maxpivot; Index m_nonzero_pivots; @@ -448,14 +448,14 @@ template ColPivHouseholderQR& ColPivHouseholderQR::compute(const EigenBase& matrix) { check_template_parameters(); - + // the column permutation is stored as int indices, so just to be sure: eigen_assert(matrix.cols()<=NumTraits::highest()); m_qr = matrix; - + computeInPlace(); - + return *this; } @@ -463,10 +463,11 @@ template void ColPivHouseholderQR::computeInPlace() { using std::abs; + Index rows = m_qr.rows(); Index cols = m_qr.cols(); Index size = m_qr.diagonalSize(); - + m_hCoeffs.resize(size); m_temp.resize(cols); @@ -474,31 +475,24 @@ void ColPivHouseholderQR::computeInPlace() m_colsTranspositions.resize(m_qr.cols()); Index number_of_transpositions = 0; - m_colSqNorms.resize(cols); - for(Index k = 0; k < cols; ++k) - m_colSqNorms.coeffRef(k) = m_qr.col(k).squaredNorm(); + m_colNorms.resize(cols); + for (Index k = 0; k < cols; ++k) + m_colNorms.coeffRef(k) = m_qr.col(k).norm(); + RealRowVectorType colNormsMostRecentDirect(m_colNorms); - RealScalar threshold_helper = m_colSqNorms.maxCoeff() * numext::abs2(NumTraits::epsilon()) / RealScalar(rows); + RealScalar threshold_helper = numext::abs2(m_colNorms.maxCoeff() * NumTraits::epsilon()) / RealScalar(rows); + RealScalar norm_downdate_threshold = numext::sqrt(NumTraits::epsilon()); m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case) m_maxpivot = RealScalar(0); for(Index k = 0; k < size; ++k) { - // first, we look up in our table m_colSqNorms which column has the biggest squared norm + // first, we look up in our table m_colNorms which column has the biggest norm Index biggest_col_index; - RealScalar biggest_col_sq_norm = m_colSqNorms.tail(cols-k).maxCoeff(&biggest_col_index); + RealScalar biggest_col_sq_norm = numext::abs2(m_colNorms.tail(cols-k).maxCoeff(&biggest_col_index)); biggest_col_index += k; - // since our table m_colSqNorms accumulates imprecision at every step, we must now recompute - // the actual squared norm of the selected column. - // Note that not doing so does result in solve() sometimes returning inf/nan values - // when running the unit test with 1000 repetitions. - biggest_col_sq_norm = m_qr.col(biggest_col_index).tail(rows-k).squaredNorm(); - - // we store that back into our table: it can't hurt to correct our table. - m_colSqNorms.coeffRef(biggest_col_index) = biggest_col_sq_norm; - // Track the number of meaningful pivots but do not stop the decomposition to make // sure that the initial matrix is properly reproduced. See bug 941. if(m_nonzero_pivots==size && biggest_col_sq_norm < threshold_helper * RealScalar(rows-k)) @@ -508,7 +502,9 @@ void ColPivHouseholderQR::computeInPlace() m_colsTranspositions.coeffRef(k) = biggest_col_index; if(k != biggest_col_index) { m_qr.col(k).swap(m_qr.col(biggest_col_index)); - std::swap(m_colSqNorms.coeffRef(k), m_colSqNorms.coeffRef(biggest_col_index)); + std::swap(m_colNorms.coeffRef(k), m_colNorms.coeffRef(biggest_col_index)); + std::swap(colNormsMostRecentDirect.coeffRef(k), + colNormsMostRecentDirect.coeffRef(biggest_col_index)); ++number_of_transpositions; } @@ -526,8 +522,29 @@ void ColPivHouseholderQR::computeInPlace() m_qr.bottomRightCorner(rows-k, cols-k-1) .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), m_hCoeffs.coeffRef(k), &m_temp.coeffRef(k+1)); - // update our table of squared norms of the columns - m_colSqNorms.tail(cols-k-1) -= m_qr.row(k).tail(cols-k-1).cwiseAbs2(); + // update our table of norms of the columns + for (Index j = k + 1; j < cols; ++j) { + // The following implements the stable norm downgrade step discussed in + // http://www.netlib.org/lapack/lawnspdf/lawn176.pdf + // and used in LAPACK routines xGEQPF and xGEQP3. + // See lines 278-297 in http://www.netlib.org/lapack/explore-html/dc/df4/sgeqpf_8f_source.html + if (m_colNorms.coeffRef(j) != 0) { + RealScalar temp = abs(m_qr.coeffRef(k, j)) / m_colNorms.coeffRef(j); + temp = (RealScalar(1) + temp) * (RealScalar(1) - temp); + temp = temp < 0 ? 0 : temp; + RealScalar temp2 = + temp * numext::abs2(m_colNorms.coeffRef(j) / + colNormsMostRecentDirect.coeffRef(j)); + if (temp2 <= norm_downdate_threshold) { + // The updated norm has become to inaccurate so re-compute the column + // norm directly. + m_colNorms.coeffRef(j) = m_qr.col(j).tail(rows - k - 1).norm(); + colNormsMostRecentDirect.coeffRef(j) = m_colNorms.coeffRef(j); + } else { + m_colNorms.coeffRef(j) *= numext::sqrt(temp); + } + } + } } m_colsPermutation.setIdentity(PermIndexType(cols)); @@ -578,7 +595,7 @@ struct Assignment >, interna typedef ColPivHouseholderQR QrType; typedef Inverse SrcXprType; static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op &) - { + { dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.cols())); } }; diff --git a/test/qr_colpivoting.cpp b/test/qr_colpivoting.cpp index e7abd3725..7b97292db 100644 --- a/test/qr_colpivoting.cpp +++ b/test/qr_colpivoting.cpp @@ -19,6 +19,7 @@ template void qr() Index rank = internal::random(1, (std::min)(rows, cols)-1); typedef typename MatrixType::Scalar Scalar; + typedef typename MatrixType::RealScalar RealScalar; typedef Matrix MatrixQType; MatrixType m1; createRandomPIMatrixOfRank(rank,rows,cols,m1); @@ -36,6 +37,24 @@ template void qr() MatrixType c = q * r * qr.colsPermutation().inverse(); VERIFY_IS_APPROX(m1, c); + // Verify that the absolute value of the diagonal elements in R are + // non-increasing until they reach the singularity threshold. + RealScalar threshold = + std::sqrt(RealScalar(rows)) * (std::abs)(r(0, 0)) * NumTraits::epsilon(); + for (Index i = 0; i < (std::min)(rows, cols) - 1; ++i) { + RealScalar x = (std::abs)(r(i, i)); + RealScalar y = (std::abs)(r(i + 1, i + 1)); + if (x < threshold && y < threshold) continue; + if (test_isApproxOrLessThan(x, y)) { + for (Index j = 0; j < (std::min)(rows, cols); ++j) { + std::cout << "i = " << j << ", |r_ii| = " << (std::abs)(r(j, j)) << std::endl; + } + std::cout << "Failure at i=" << i << ", rank=" << rank + << ", threshold=" << threshold << std::endl; + } + VERIFY_IS_APPROX_OR_LESS_THAN(y, x); + } + MatrixType m2 = MatrixType::Random(cols,cols2); MatrixType m3 = m1*m2; m2 = MatrixType::Random(cols,cols2); @@ -47,6 +66,7 @@ template void qr_fixedsize() { enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime }; typedef typename MatrixType::Scalar Scalar; + typedef typename MatrixType::RealScalar RealScalar; int rank = internal::random(1, (std::min)(int(Rows), int(Cols))-1); Matrix m1; createRandomPIMatrixOfRank(rank,Rows,Cols,m1); @@ -66,6 +86,67 @@ template void qr_fixedsize() m2 = Matrix::Random(Cols,Cols2); m2 = qr.solve(m3); VERIFY_IS_APPROX(m3, m1*m2); + // Verify that the absolute value of the diagonal elements in R are + // non-increasing until they reache the singularity threshold. + RealScalar threshold = + std::sqrt(RealScalar(Rows)) * (std::abs)(r(0, 0)) * NumTraits::epsilon(); + for (Index i = 0; i < (std::min)(int(Rows), int(Cols)) - 1; ++i) { + RealScalar x = (std::abs)(r(i, i)); + RealScalar y = (std::abs)(r(i + 1, i + 1)); + if (x < threshold && y < threshold) continue; + if (test_isApproxOrLessThan(x, y)) { + for (Index j = 0; j < (std::min)(int(Rows), int(Cols)); ++j) { + std::cout << "i = " << j << ", |r_ii| = " << (std::abs)(r(j, j)) << std::endl; + } + std::cout << "Failure at i=" << i << ", rank=" << rank + << ", threshold=" << threshold << std::endl; + } + VERIFY_IS_APPROX_OR_LESS_THAN(y, x); + } +} + +// This test is meant to verify that pivots are chosen such that +// even for a graded matrix, the diagonal of R falls of roughly +// monotonically until it reaches the threshold for singularity. +// We use the so-called Kahan matrix, which is a famous counter-example +// for rank-revealing QR. See +// http://www.netlib.org/lapack/lawnspdf/lawn176.pdf +// page 3 for more detail. +template void qr_kahan_matrix() +{ + typedef typename MatrixType::Index Index; + typedef typename MatrixType::Scalar Scalar; + typedef typename MatrixType::RealScalar RealScalar; + + Index rows = 300, cols = rows; + + MatrixType m1; + m1.setZero(rows,cols); + RealScalar s = std::pow(NumTraits::epsilon(), 1.0 / rows); + RealScalar c = std::sqrt(1 - s*s); + for (Index i = 0; i < rows; ++i) { + m1(i, i) = pow(s, i); + m1.row(i).tail(rows - i - 1) = -pow(s, i) * c * MatrixType::Ones(1, rows - i - 1); + } + m1 = (m1 + m1.transpose()).eval(); + ColPivHouseholderQR qr(m1); + MatrixType r = qr.matrixQR().template triangularView(); + + RealScalar threshold = + std::sqrt(RealScalar(rows)) * (std::abs)(r(0, 0)) * NumTraits::epsilon(); + for (Index i = 0; i < (std::min)(rows, cols) - 1; ++i) { + RealScalar x = (std::abs)(r(i, i)); + RealScalar y = (std::abs)(r(i + 1, i + 1)); + if (x < threshold && y < threshold) continue; + if (test_isApproxOrLessThan(x, y)) { + for (Index j = 0; j < (std::min)(rows, cols); ++j) { + std::cout << "i = " << j << ", |r_ii| = " << (std::abs)(r(j, j)) << std::endl; + } + std::cout << "Failure at i=" << i << ", rank=" << qr.rank() + << ", threshold=" << threshold << std::endl; + } + VERIFY_IS_APPROX_OR_LESS_THAN(y, x); + } } template void qr_invertible() @@ -131,6 +212,11 @@ void test_qr_colpivoting() CALL_SUBTEST_5(( qr_fixedsize, 1 >() )); } + for(int i = 0; i < g_repeat; i++) { + CALL_SUBTEST_1( qr_kahan_matrix() ); + CALL_SUBTEST_2( qr_kahan_matrix() ); + } + for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( qr_invertible() ); CALL_SUBTEST_2( qr_invertible() );