removed Eigen::Complex class since it offered insufficient advantage over std::complex when sane real,imag structure packing is assumed.

for more info see:
http://www.cpptalk.net/portable-complex-numbers-between-c-c--vt46432.html
This commit is contained in:
Mark Borgerding 2010-01-18 19:39:22 -05:00
parent 9f899808d7
commit adb2170eb8
3 changed files with 0 additions and 319 deletions

View File

@ -1,240 +0,0 @@
#ifndef EIGEN_COMPLEX_H
#define EIGEN_COMPLEX_H
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Mark Borgerding mark a borgerding net
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
// Eigen::Complex reuses as much as possible from std::complex
// and allows easy conversion to and from, even at the pointer level.
/** \ingroup Unsupported_modules
* \defgroup Complex_Module Complex module
*
* \code
* #include <unsupported/Eigen/Complex>
* \endcode
*
* The C++ complex type has some severe limitations that prevent an
* optimal use within Eigen. This (still unsupported) module is an attempt
* to fix this.
*/
#include <complex>
namespace Eigen {
template <typename _NativeData,typename _PunnedData>
struct castable_pointer
{
castable_pointer(_NativeData * ptr) : _ptr(ptr) { }
operator _NativeData * () {return _ptr;}
operator _PunnedData * () {return reinterpret_cast<_PunnedData*>(_ptr);}
operator const _NativeData * () const {return _ptr;}
operator const _PunnedData * () const {return reinterpret_cast<_PunnedData*>(_ptr);}
private:
_NativeData * _ptr;
};
template <typename _NativeData,typename _PunnedData>
struct const_castable_pointer
{
const_castable_pointer(_NativeData * ptr) : _ptr(ptr) { }
operator const _NativeData * () const {return _ptr;}
operator const _PunnedData * () const {return reinterpret_cast<_PunnedData*>(_ptr);}
private:
_NativeData * _ptr;
};
template <typename T>
struct Complex
{
typedef typename std::complex<T> StandardComplex;
typedef T value_type;
// constructors
Complex() {}
Complex(const T& re, const T& im = T()) : _re(re),_im(im) { }
Complex(const Complex&other ): _re(other.real()) ,_im(other.imag()) {}
template<class X>
Complex(const Complex<X>&other): _re(other.real()) ,_im(other.imag()) {}
template<class X>
Complex(const std::complex<X>&other): _re(other.real()) ,_im(other.imag()) {}
// allow binary access to the object as a std::complex
typedef castable_pointer< Complex<T>, StandardComplex > pointer_type;
typedef const_castable_pointer< Complex<T>, StandardComplex > const_pointer_type;
inline
pointer_type operator & () {return pointer_type(this);}
inline
const_pointer_type operator & () const {return const_pointer_type(this);}
inline
operator StandardComplex () const {return std_type();}
inline
operator StandardComplex & () {return std_type();}
inline
const StandardComplex & std_type() const {return *reinterpret_cast<const StandardComplex*>(this);}
inline
StandardComplex & std_type() {return *reinterpret_cast<StandardComplex*>(this);}
// every sort of accessor and mutator that has ever been in fashion.
// For a brief history, search for "std::complex over-encapsulated"
// http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#387
inline
const T & real() const {return _re;}
inline
const T & imag() const {return _im;}
inline
T & real() {return _re;}
inline
T & imag() {return _im;}
inline
T & real(const T & x) {return _re=x;}
inline
T & imag(const T & x) {return _im=x;}
inline
void set_real(const T & x) {_re = x;}
inline
void set_imag(const T & x) {_im = x;}
// *** complex member functions: ***
inline
Complex<T>& operator= (const T& val) { _re=val;_im=0;return *this; }
inline
Complex<T>& operator+= (const T& val) {_re+=val;return *this;}
inline
Complex<T>& operator-= (const T& val) {_re-=val;return *this;}
inline
Complex<T>& operator*= (const T& val) {_re*=val;_im*=val;return *this; }
inline
Complex<T>& operator/= (const T& val) {_re/=val;_im/=val;return *this; }
inline
Complex& operator= (const Complex& rhs) {_re=rhs._re;_im=rhs._im;return *this;}
inline
Complex& operator= (const StandardComplex& rhs) {_re=rhs.real();_im=rhs.imag();return *this;}
template<class X> Complex<T>& operator= (const Complex<X>& rhs) { _re=rhs._re;_im=rhs._im;return *this;}
template<class X> Complex<T>& operator+= (const Complex<X>& rhs) { _re+=rhs._re;_im+=rhs._im;return *this;}
template<class X> Complex<T>& operator-= (const Complex<X>& rhs) { _re-=rhs._re;_im-=rhs._im;return *this;}
template<class X> Complex<T>& operator*= (const Complex<X>& rhs) { this->std_type() *= rhs.std_type(); return *this; }
template<class X> Complex<T>& operator/= (const Complex<X>& rhs) { this->std_type() /= rhs.std_type(); return *this; }
private:
T _re;
T _im;
};
//template <typename T> T ei_to_std( const T & x) {return x;}
template <typename T>
std::complex<T> ei_to_std( const Complex<T> & x) {return x.std_type();}
// 26.2.6 operators
template<class T> Complex<T> operator+(const Complex<T>& rhs) {return rhs;}
template<class T> Complex<T> operator-(const Complex<T>& rhs) {return -ei_to_std(rhs);}
template<class T> Complex<T> operator+(const Complex<T>& lhs, const Complex<T>& rhs) { return ei_to_std(lhs) + ei_to_std(rhs);}
template<class T> Complex<T> operator-(const Complex<T>& lhs, const Complex<T>& rhs) { return ei_to_std(lhs) - ei_to_std(rhs);}
template<class T> Complex<T> operator*(const Complex<T>& lhs, const Complex<T>& rhs) { return ei_to_std(lhs) * ei_to_std(rhs);}
template<class T> Complex<T> operator/(const Complex<T>& lhs, const Complex<T>& rhs) { return ei_to_std(lhs) / ei_to_std(rhs);}
template<class T> bool operator==(const Complex<T>& lhs, const Complex<T>& rhs) { return ei_to_std(lhs) == ei_to_std(rhs);}
template<class T> bool operator!=(const Complex<T>& lhs, const Complex<T>& rhs) { return ei_to_std(lhs) != ei_to_std(rhs);}
template<class T> Complex<T> operator+(const Complex<T>& lhs, const T& rhs) {return ei_to_std(lhs) + ei_to_std(rhs); }
template<class T> Complex<T> operator-(const Complex<T>& lhs, const T& rhs) {return ei_to_std(lhs) - ei_to_std(rhs); }
template<class T> Complex<T> operator*(const Complex<T>& lhs, const T& rhs) {return ei_to_std(lhs) * ei_to_std(rhs); }
template<class T> Complex<T> operator/(const Complex<T>& lhs, const T& rhs) {return ei_to_std(lhs) / ei_to_std(rhs); }
template<class T> bool operator==(const Complex<T>& lhs, const T& rhs) {return ei_to_std(lhs) == ei_to_std(rhs); }
template<class T> bool operator!=(const Complex<T>& lhs, const T& rhs) {return ei_to_std(lhs) != ei_to_std(rhs); }
template<class T> Complex<T> operator+(const T& lhs, const Complex<T>& rhs) {return ei_to_std(lhs) + ei_to_std(rhs); }
template<class T> Complex<T> operator-(const T& lhs, const Complex<T>& rhs) {return ei_to_std(lhs) - ei_to_std(rhs); }
template<class T> Complex<T> operator*(const T& lhs, const Complex<T>& rhs) {return ei_to_std(lhs) * ei_to_std(rhs); }
template<class T> Complex<T> operator/(const T& lhs, const Complex<T>& rhs) {return ei_to_std(lhs) / ei_to_std(rhs); }
template<class T> bool operator==(const T& lhs, const Complex<T>& rhs) {return ei_to_std(lhs) == ei_to_std(rhs); }
template<class T> bool operator!=(const T& lhs, const Complex<T>& rhs) {return ei_to_std(lhs) != ei_to_std(rhs); }
template<class T, class charT, class traits>
std::basic_istream<charT,traits>&
operator>> (std::basic_istream<charT,traits>& istr, Complex<T>& rhs)
{
return istr >> rhs.std_type();
}
template<class T, class charT, class traits>
std::basic_ostream<charT,traits>&
operator<< (std::basic_ostream<charT,traits>& ostr, const Complex<T>& rhs)
{
return ostr << rhs.std_type();
}
// 26.2.7 values:
template<class T> T real(const Complex<T>&x) {return real(ei_to_std(x));}
template<class T> T abs(const Complex<T>&x) {return abs(ei_to_std(x));}
template<class T> T arg(const Complex<T>&x) {return arg(ei_to_std(x));}
template<class T> T norm(const Complex<T>&x) {return norm(ei_to_std(x));}
template<class T> Complex<T> conj(const Complex<T>&x) { return conj(ei_to_std(x));}
template<class T> Complex<T> polar(const T& x, const T&y) {return polar(ei_to_std(x),ei_to_std(y));}
// 26.2.8 transcendentals:
template<class T> Complex<T> cos (const Complex<T>&x){return cos(ei_to_std(x));}
template<class T> Complex<T> cosh (const Complex<T>&x){return cosh(ei_to_std(x));}
template<class T> Complex<T> exp (const Complex<T>&x){return exp(ei_to_std(x));}
template<class T> Complex<T> log (const Complex<T>&x){return log(ei_to_std(x));}
template<class T> Complex<T> log10 (const Complex<T>&x){return log10(ei_to_std(x));}
template<class T> Complex<T> pow(const Complex<T>&x, int p) {return pow(ei_to_std(x),p);}
template<class T> Complex<T> pow(const Complex<T>&x, const T&p) {return pow(ei_to_std(x),ei_to_std(p));}
template<class T> Complex<T> pow(const Complex<T>&x, const Complex<T>&p) {return pow(ei_to_std(x),ei_to_std(p));}
template<class T> Complex<T> pow(const T&x, const Complex<T>&p) {return pow(ei_to_std(x),ei_to_std(p));}
template<class T> Complex<T> sin (const Complex<T>&x){return sin(ei_to_std(x));}
template<class T> Complex<T> sinh (const Complex<T>&x){return sinh(ei_to_std(x));}
template<class T> Complex<T> sqrt (const Complex<T>&x){return sqrt(ei_to_std(x));}
template<class T> Complex<T> tan (const Complex<T>&x){return tan(ei_to_std(x));}
template<class T> Complex<T> tanh (const Complex<T>&x){return tanh(ei_to_std(x));}
template<typename _Real> struct NumTraits<Complex<_Real> >
{
typedef _Real Real;
typedef Complex<_Real> FloatingPoint;
enum {
IsComplex = 1,
HasFloatingPoint = NumTraits<Real>::HasFloatingPoint,
ReadCost = 2,
AddCost = 2 * NumTraits<Real>::AddCost,
MulCost = 4 * NumTraits<Real>::MulCost + 2 * NumTraits<Real>::AddCost
};
};
}
#endif
/* vim: set filetype=cpp et sw=2 ts=2 ai: */

View File

@ -24,4 +24,3 @@ if(FFTW_FOUND)
ei_add_test(FFTW "-DEIGEN_FFTW_DEFAULT " "-lfftw3 -lfftw3f -lfftw3l" ) ei_add_test(FFTW "-DEIGEN_FFTW_DEFAULT " "-lfftw3 -lfftw3f -lfftw3l" )
endif(FFTW_FOUND) endif(FFTW_FOUND)
ei_add_test(Complex)

View File

@ -1,78 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2009 Mark Borgerding mark a borgerding net
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifdef EIGEN_TEST_FUNC
# include "main.h"
#else
# include <iostream>
# define CALL_SUBTEST(x) x
# define VERIFY(x) x
# define test_Complex main
#endif
#include <unsupported/Eigen/Complex>
#include <vector>
using namespace std;
using namespace Eigen;
template <typename T>
void take_std( std::complex<T> * dst, int n )
{
for (int i=0;i<n;++i)
dst[i] = std::complex<T>(static_cast<float>(i),static_cast<float>(i));
cout << dst[n-1] << endl;
}
template <typename T>
void syntax()
{
// this works fine
Matrix< Complex<T>, 9, 1> a;
std::complex<T> * pa = &a[0];
//Complex<T> * pa2 = &a[0];
take_std( pa,9);
// this does not work, but I wish it would
// take_std(&a[0];)
// this does
take_std( (std::complex<T> *)&a[0],9);
// this does not work, but it would be really nice
//vector< Complex<T> > a;
// (on my gcc 4.4.1 )
// std::vector assumes operator& returns a POD pointer
// this works fine
Complex<T> b[9];
std::complex<T> * pb = &b[0]; // this works fine
take_std( pb,9);
}
void test_Complex()
{
CALL_SUBTEST( syntax<float>() );
CALL_SUBTEST( syntax<double>() );
CALL_SUBTEST( syntax<long double>() );
}