Introduce Numeric Traits, with fuzzy compares, random numbers, etc.

This commit is contained in:
Benoit Jacob 2007-10-07 12:44:42 +00:00
parent c768a44909
commit ae2072406c
4 changed files with 210 additions and 1 deletions

View File

@ -51,4 +51,4 @@ template<int Rows> class EiLoop<0, Rows>
}
};
#endif //EI_LOOP_H
#endif // EI_LOOP_H

View File

@ -27,6 +27,7 @@
#define EI_MATRIX_H
#include "Util.h"
#include "Numeric.h"
#include "Object.h"
#include "MatrixRef.h"
#include "MatrixStorage.h"

177
src/internal/Numeric.h Normal file
View File

@ -0,0 +1,177 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2006-2007 Benoit Jacob <jacob@math.jussieu.fr>
//
// Eigen is free software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the Free Software
// Foundation; either version 2 or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
// details.
//
// You should have received a copy of the GNU General Public License along
// with Eigen; if not, write to the Free Software Foundation, Inc., 51
// Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
//
// As a special exception, if other files instantiate templates or use macros
// or functions from this file, or you compile this file and link it
// with other works to produce a work based on this file, this file does not
// by itself cause the resulting work to be covered by the GNU General Public
// License. This exception does not invalidate any other reasons why a work
// based on this file might be covered by the GNU General Public License.
#ifndef EI_TRAITS_H
#define EI_TRAITS_H
template<typename T> struct EiTraits;
template<> struct EiTraits<int>
{
typedef int Real;
typedef double FloatingPoint;
typedef double RealFloatingPoint;
static const int Epsilon = 0;
static const bool IsComplex = false;
static const bool HasFloatingPoint = false;
static int real(const int& x) { return x; }
static int imag(const int& x) { EI_UNUSED(x); return 0; }
static int conj(const int& x) { return x; }
static double sqrt(const int& x) { return std::sqrt(static_cast<double>(x)); }
static int abs(const int& x) { return std::abs(x); }
static int abs2(const int& x) { return x*x; }
static int random()
{
// "rand()%21" would be bad. always use the high-order bits, not the low-order bits.
// note: here (gcc 4.1) static_cast<int> seems to round the nearest int.
// I don't know if that's part of the standard.
return -10 + static_cast<int>(20.0 * (rand() / (RAND_MAX + 1.0)));
}
};
template<> struct EiTraits<float>
{
typedef float Real;
typedef float FloatingPoint;
typedef float RealFloatingPoint;
static const float Epsilon;
static const bool IsComplex = false;
static const bool HasFloatingPoint = true;
static float real(const float& x) { return x; }
static float imag(const float& x) { EI_UNUSED(x); return 0; }
static float conj(const float& x) { return x; }
static float sqrt(const float& x) { return std::sqrt(x); }
static float abs(const float& x) { return std::abs(x); }
static float abs2(const float& x) { return x*x; }
static float random()
{
return 20.0f * rand() / RAND_MAX - 10.0f;
}
};
const float EiTraits<float>::Epsilon = 1e-5f;
template<> struct EiTraits<double>
{
typedef double Real;
typedef double FloatingPoint;
typedef double RealFloatingPoint;
static const double Epsilon;
static const bool IsComplex = false;
static const bool HasFloatingPoint = true;
static double real(const double& x) { return x; }
static double imag(const double& x) { EI_UNUSED(x); return 0; }
static double conj(const double& x) { return x; }
static double sqrt(const double& x) { return std::sqrt(x); }
static double abs(const double& x) { return std::abs(x); }
static double abs2(const double& x) { return x*x; }
static double random()
{
return 20.0 * rand() / RAND_MAX - 10.0;
}
};
const double EiTraits<double>::Epsilon = 1e-11;
template<typename _Real> struct EiTraits<std::complex<_Real> >
{
typedef _Real Real;
typedef std::complex<Real> Complex;
typedef std::complex<double> FloatingPoint;
typedef typename EiTraits<Real>::FloatingPoint RealFloatingPoint;
static const Real Epsilon;
static const bool IsComplex = true;
static const bool HasFloatingPoint = EiTraits<Real>::HasFloatingPoint;
static Real real(const Complex& x) { return std::real(x); }
static Real imag(const Complex& x) { return std::imag(x); }
static Complex conj(const Complex& x) { return std::conj(x); }
static FloatingPoint sqrt(const Complex& x)
{ return std::sqrt(static_cast<FloatingPoint>(x)); }
static RealFloatingPoint abs(const Complex& x)
{ return std::abs(static_cast<FloatingPoint>(x)); }
static Real abs2(const Complex& x)
{ return std::real(x) * std::real(x) + std::imag(x) * std::imag(x); }
static Complex random()
{
return Complex(EiTraits<Real>::random(), EiTraits<Real>::random());
}
};
template<typename _Real>
const _Real EiTraits<std::complex<_Real> >::Epsilon
= EiTraits<_Real>::Epsilon;
template<typename T> typename EiTraits<T>::Real EiReal(const T& x)
{ return EiTraits<T>::real(x); }
template<typename T> typename EiTraits<T>::Real EiImag(const T& x)
{ return EiTraits<T>::imag(x); }
template<typename T> T EiConj(const T& x)
{ return EiTraits<T>::conj(x); }
template<typename T> typename EiTraits<T>::FloatingPoint EiSqrt(const T& x)
{ return EiTraits<T>::sqrt(x); }
template<typename T> typename EiTraits<T>::RealFloatingPoint EiAbs(const T& x)
{ return EiTraits<T>::abs(x); }
template<typename T> typename EiTraits<T>::Real EiAbs2(const T& x)
{ return EiTraits<T>::abs2(x); }
template<typename T> T EiRandom()
{ return EiTraits<T>::random(); }
template<typename T> bool EiNegligible(const T& a, const T& b)
{
return(EiAbs(a) <= EiAbs(b) * EiTraits<T>::Epsilon);
}
template<typename T> bool EiApprox(const T& a, const T& b)
{
if(EiTraits<T>::IsFloat)
return(EiAbs(a - b) <= std::min(EiAbs(a), EiAbs(b)) * EiTraits<T>::Epsilon);
else
return(a == b);
}
template<typename T> bool EiLessThanOrApprox(const T& a, const T& b)
{
if(EiTraits<T>::IsFloat)
return(a < b || EiApprox(a, b));
else
return(a <= b);
}
#endif // EI_TRAITS_H

View File

@ -47,4 +47,35 @@ class EigenTest : public QObject
void testMatrixManip();
};
template<typename T> T TestEpsilon();
template<> int TestEpsilon<int>() { return 0; }
template<> float TestEpsilon<float>() { return 1e-2f; }
template<> double TestEpsilon<double>() { return 1e-4; }
template<typename T> T TestEpsilon<std::complex<T> >() { return TestEpsilon<T>(); }
template<typename T> bool TestNegligible(const T& a, const T& b)
{
return(EiAbs(a) <= EiAbs(b) * TestEpsilon<T>());
}
template<typename T> bool TestApprox(const T& a, const T& b)
{
if(EiTraits<T>::IsFloat)
return(EiAbs(a - b) <= std::min(EiAbs(a), EiAbs(b)) * TestEpsilon<T>());
else
return(a == b);
}
template<typename T> bool TestLessThanOrApprox(const T& a, const T& b)
{
if(EiTraits<T>::IsFloat)
return(a < b || EiApprox(a, b));
else
return(a <= b);
}
#define QVERIFY_NEGLIGIBLE(a, b) QVERIFY(TestNegligible(a, b))
#define QVERIFY_APPROX(a, b) QVERIFY(TestApprox(a, b))
#define QVERIFY_LESS_THAN_OR_APPROX(a, b) QVERIFY(TestLessThanOrApprox(a, b))
#endif // EI_TEST_MAIN_H