mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-08-10 18:59:01 +08:00
small dox fixes
This commit is contained in:
parent
247f2b0ffa
commit
af991a6bdb
@ -27,7 +27,11 @@
|
|||||||
#define EIGEN_ORTHOMETHODS_H
|
#define EIGEN_ORTHOMETHODS_H
|
||||||
|
|
||||||
/** \geometry_module
|
/** \geometry_module
|
||||||
* \returns the cross product of \c *this and \a other */
|
*
|
||||||
|
* \returns the cross product of \c *this and \a other
|
||||||
|
*
|
||||||
|
* Here is a very good explanation of cross-product: http://xkcd.com/199/
|
||||||
|
*/
|
||||||
template<typename Derived>
|
template<typename Derived>
|
||||||
template<typename OtherDerived>
|
template<typename OtherDerived>
|
||||||
inline typename MatrixBase<Derived>::EvalType
|
inline typename MatrixBase<Derived>::EvalType
|
||||||
|
@ -17,7 +17,7 @@ namespace Eigen {
|
|||||||
- \ref TutorialCoreMatrixInitialization
|
- \ref TutorialCoreMatrixInitialization
|
||||||
- \ref TutorialCoreArithmeticOperators
|
- \ref TutorialCoreArithmeticOperators
|
||||||
- \ref TutorialCoreReductions
|
- \ref TutorialCoreReductions
|
||||||
- \ref TutorialCoreSubMatrix
|
- \ref TutorialCoreMatrixBlocks
|
||||||
- \ref TutorialCoreDiagonalMatrices
|
- \ref TutorialCoreDiagonalMatrices
|
||||||
- \ref TutorialCoreTransposeAdjoint
|
- \ref TutorialCoreTransposeAdjoint
|
||||||
- \ref TutorialCoreDotNorm
|
- \ref TutorialCoreDotNorm
|
||||||
@ -379,7 +379,7 @@ Also note that maxCoeff and minCoeff can takes optional arguments returning the
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
<a href="#" class="top">top</a>\section TutorialCoreSubMatrix Sub matrices
|
<a href="#" class="top">top</a>\section TutorialCoreMatrixBlocks Matrix blocks
|
||||||
|
|
||||||
Read-write access to a \link MatrixBase::col(int) column \endlink
|
Read-write access to a \link MatrixBase::col(int) column \endlink
|
||||||
or a \link MatrixBase::row(int) row \endlink of a matrix:
|
or a \link MatrixBase::row(int) row \endlink of a matrix:
|
||||||
@ -472,7 +472,7 @@ mat3 = mat1.adjoint() * mat2;
|
|||||||
<tr><td>
|
<tr><td>
|
||||||
\link MatrixBase::norm() norm \endlink of a vector \n
|
\link MatrixBase::norm() norm \endlink of a vector \n
|
||||||
\link MatrixBase::norm2() squared norm \endlink of a vector
|
\link MatrixBase::norm2() squared norm \endlink of a vector
|
||||||
</td><td>\code vec.norm(); \n vec.norm2() \endcode
|
</td><td>\code vec.norm(); \endcode \n \code vec.norm2() \endcode
|
||||||
</td></tr>
|
</td></tr>
|
||||||
<tr><td>
|
<tr><td>
|
||||||
returns a \link MatrixBase::normalized() normalized \endlink vector \n
|
returns a \link MatrixBase::normalized() normalized \endlink vector \n
|
||||||
@ -493,7 +493,7 @@ When you write a line of code involving a complex expression such as
|
|||||||
|
|
||||||
\code mat1 = mat2 + mat3 * (mat4 + mat5); \endcode
|
\code mat1 = mat2 + mat3 * (mat4 + mat5); \endcode
|
||||||
|
|
||||||
Eigen tries to determine automatically whether to evaluate each sub-expression into temporary variables. Indeed, in certain cases it is better to evaluate immediately a sub-expression into a temporary variable, while in other cases it is better to avoid that.
|
Eigen determines automatically, for each sub-expression, whether to evaluate it into a temporary variable. Indeed, in certain cases it is better to evaluate immediately a sub-expression into a temporary variable, while in other cases it is better to avoid that.
|
||||||
|
|
||||||
A traditional math library without expression templates always evaluates all sub-expressions into temporaries. So with this code,
|
A traditional math library without expression templates always evaluates all sub-expressions into temporaries. So with this code,
|
||||||
|
|
||||||
@ -543,7 +543,7 @@ Again, \link MatrixBase::lazy() .lazy() \endlink can be used to force lazy evalu
|
|||||||
|
|
||||||
\code matrix1 = matrix2 * (matrix3 + matrix4); \endcode
|
\code matrix1 = matrix2 * (matrix3 + matrix4); \endcode
|
||||||
|
|
||||||
Here, each coefficienct of the expression <tt>matrix3 + matrix4</tt> is going to be used several times in the matrix product. Instead of computing the sum everytime, it is much better to compute it once and store it in a temporary variable. Eigen understands this and evaluates <tt>matrix3 + matrix4</tt> into a temporary variable before evaluating the product.
|
Here, provided the matrices have at least 2 rows and 2 columns, each coefficienct of the expression <tt>matrix3 + matrix4</tt> is going to be used several times in the matrix product. Instead of computing the sum everytime, it is much better to compute it once and store it in a temporary variable. Eigen understands this and evaluates <tt>matrix3 + matrix4</tt> into a temporary variable before evaluating the product.
|
||||||
|
|
||||||
*/
|
*/
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user