small dox fixes

This commit is contained in:
Benoit Jacob 2008-09-15 16:19:48 +00:00
parent 247f2b0ffa
commit af991a6bdb
2 changed files with 10 additions and 6 deletions

View File

@ -27,7 +27,11 @@
#define EIGEN_ORTHOMETHODS_H #define EIGEN_ORTHOMETHODS_H
/** \geometry_module /** \geometry_module
* \returns the cross product of \c *this and \a other */ *
* \returns the cross product of \c *this and \a other
*
* Here is a very good explanation of cross-product: http://xkcd.com/199/
*/
template<typename Derived> template<typename Derived>
template<typename OtherDerived> template<typename OtherDerived>
inline typename MatrixBase<Derived>::EvalType inline typename MatrixBase<Derived>::EvalType

View File

@ -17,7 +17,7 @@ namespace Eigen {
- \ref TutorialCoreMatrixInitialization - \ref TutorialCoreMatrixInitialization
- \ref TutorialCoreArithmeticOperators - \ref TutorialCoreArithmeticOperators
- \ref TutorialCoreReductions - \ref TutorialCoreReductions
- \ref TutorialCoreSubMatrix - \ref TutorialCoreMatrixBlocks
- \ref TutorialCoreDiagonalMatrices - \ref TutorialCoreDiagonalMatrices
- \ref TutorialCoreTransposeAdjoint - \ref TutorialCoreTransposeAdjoint
- \ref TutorialCoreDotNorm - \ref TutorialCoreDotNorm
@ -379,7 +379,7 @@ Also note that maxCoeff and minCoeff can takes optional arguments returning the
<a href="#" class="top">top</a>\section TutorialCoreSubMatrix Sub matrices <a href="#" class="top">top</a>\section TutorialCoreMatrixBlocks Matrix blocks
Read-write access to a \link MatrixBase::col(int) column \endlink Read-write access to a \link MatrixBase::col(int) column \endlink
or a \link MatrixBase::row(int) row \endlink of a matrix: or a \link MatrixBase::row(int) row \endlink of a matrix:
@ -472,7 +472,7 @@ mat3 = mat1.adjoint() * mat2;
<tr><td> <tr><td>
\link MatrixBase::norm() norm \endlink of a vector \n \link MatrixBase::norm() norm \endlink of a vector \n
\link MatrixBase::norm2() squared norm \endlink of a vector \link MatrixBase::norm2() squared norm \endlink of a vector
</td><td>\code vec.norm(); \n vec.norm2() \endcode </td><td>\code vec.norm(); \endcode \n \code vec.norm2() \endcode
</td></tr> </td></tr>
<tr><td> <tr><td>
returns a \link MatrixBase::normalized() normalized \endlink vector \n returns a \link MatrixBase::normalized() normalized \endlink vector \n
@ -493,7 +493,7 @@ When you write a line of code involving a complex expression such as
\code mat1 = mat2 + mat3 * (mat4 + mat5); \endcode \code mat1 = mat2 + mat3 * (mat4 + mat5); \endcode
Eigen tries to determine automatically whether to evaluate each sub-expression into temporary variables. Indeed, in certain cases it is better to evaluate immediately a sub-expression into a temporary variable, while in other cases it is better to avoid that. Eigen determines automatically, for each sub-expression, whether to evaluate it into a temporary variable. Indeed, in certain cases it is better to evaluate immediately a sub-expression into a temporary variable, while in other cases it is better to avoid that.
A traditional math library without expression templates always evaluates all sub-expressions into temporaries. So with this code, A traditional math library without expression templates always evaluates all sub-expressions into temporaries. So with this code,
@ -543,7 +543,7 @@ Again, \link MatrixBase::lazy() .lazy() \endlink can be used to force lazy evalu
\code matrix1 = matrix2 * (matrix3 + matrix4); \endcode \code matrix1 = matrix2 * (matrix3 + matrix4); \endcode
Here, each coefficienct of the expression <tt>matrix3 + matrix4</tt> is going to be used several times in the matrix product. Instead of computing the sum everytime, it is much better to compute it once and store it in a temporary variable. Eigen understands this and evaluates <tt>matrix3 + matrix4</tt> into a temporary variable before evaluating the product. Here, provided the matrices have at least 2 rows and 2 columns, each coefficienct of the expression <tt>matrix3 + matrix4</tt> is going to be used several times in the matrix product. Instead of computing the sum everytime, it is much better to compute it once and store it in a temporary variable. Eigen understands this and evaluates <tt>matrix3 + matrix4</tt> into a temporary variable before evaluating the product.
*/ */