mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-22 01:29:35 +08:00
Add a draft (not clean ) version of the COLAMD ordering implementation
This commit is contained in:
parent
773804691a
commit
b0cba2d988
File diff suppressed because it is too large
Load Diff
@ -27,6 +27,7 @@
|
|||||||
#define EIGEN_ORDERING_H
|
#define EIGEN_ORDERING_H
|
||||||
|
|
||||||
#include "Amd.h"
|
#include "Amd.h"
|
||||||
|
#include "Eigen_Colamd.h"
|
||||||
namespace Eigen {
|
namespace Eigen {
|
||||||
namespace internal {
|
namespace internal {
|
||||||
|
|
||||||
@ -112,54 +113,50 @@ class NaturalOrdering
|
|||||||
* Get the column approximate minimum degree ordering
|
* Get the column approximate minimum degree ordering
|
||||||
* The matrix should be in column-major format
|
* The matrix should be in column-major format
|
||||||
*/
|
*/
|
||||||
// template<typename Scalar, typename Index>
|
template<typename Index>
|
||||||
// class COLAMDOrdering: public OrderingBase< ColamdOrdering<Scalar, Index> >
|
class COLAMDOrdering;
|
||||||
// {
|
#include "Eigen_Colamd.h"
|
||||||
// public:
|
|
||||||
// typedef OrderingBase< ColamdOrdering<Scalar, Index> > Base;
|
template<typename Index>
|
||||||
// typedef SparseMatrix<Scalar,ColMajor,Index> MatrixType;
|
class COLAMDOrdering
|
||||||
//
|
{
|
||||||
// public:
|
public:
|
||||||
// COLAMDOrdering():Base() {}
|
typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType;
|
||||||
//
|
typedef Matrix<Index, Dynamic, 1> IndexVector;
|
||||||
// COLAMDOrdering(const MatrixType& matrix):Base()
|
/** Compute the permutation vector form a sparse matrix */
|
||||||
// {
|
|
||||||
// compute(matrix);
|
|
||||||
// }
|
|
||||||
// COLAMDOrdering(const MatrixType& mat, PermutationType& perm_c):Base()
|
template <typename MatrixType>
|
||||||
// {
|
void operator() (const MatrixType& mat, PermutationType& perm)
|
||||||
// compute(matrix);
|
{
|
||||||
// perm_c = this.get_perm();
|
int m = mat.rows();
|
||||||
// }
|
int n = mat.cols();
|
||||||
// void compute(const MatrixType& mat)
|
int nnz = mat.nonZeros();
|
||||||
// {
|
// Get the recommended value of Alen to be used by colamd
|
||||||
// // Test if the matrix is column major...
|
int Alen = eigen_colamd_recommended(nnz, m, n);
|
||||||
//
|
// Set the default parameters
|
||||||
// int m = mat.rows();
|
double knobs [EIGEN_COLAMD_KNOBS];
|
||||||
// int n = mat.cols();
|
int stats [EIGEN_COLAMD_STATS];
|
||||||
// int nnz = mat.nonZeros();
|
eigen_colamd_set_defaults(knobs);
|
||||||
// // Get the recommended value of Alen to be used by colamd
|
|
||||||
// int Alen = colamd_recommended(nnz, m, n);
|
int info;
|
||||||
// // Set the default parameters
|
IndexVector p(n+1), A(Alen);
|
||||||
// double knobs[COLAMD_KNOBS];
|
for(int i=0; i <= n; i++) p(i) = mat.outerIndexPtr()[i];
|
||||||
// colamd_set_defaults(knobs);
|
for(int i=0; i < nnz; i++) A(i) = mat.innerIndexPtr()[i];
|
||||||
//
|
// Call Colamd routine to compute the ordering
|
||||||
// int info;
|
info = eigen_colamd(m, n, Alen, A.data(), p.data(), knobs, stats);
|
||||||
// VectorXi p(n), A(nnz);
|
eigen_assert( info && "COLAMD failed " );
|
||||||
// for(int i=0; i < n; i++) p(i) = mat.outerIndexPtr()(i);
|
|
||||||
// for(int i=0; i < nnz; i++) A(i) = mat.innerIndexPtr()(i);
|
perm.resize(n);
|
||||||
// // Call Colamd routine to compute the ordering
|
for (int i = 0; i < n; i++) perm.indices()(p(i)) = i;
|
||||||
// info = colamd(m, n, Alen, A,p , knobs, stats)
|
|
||||||
// eigen_assert( (info != FALSE)&& "COLAMD failed " );
|
}
|
||||||
//
|
|
||||||
// m_P.resize(n);
|
private:
|
||||||
// for (int i = 0; i < n; i++) m_P(p(i)) = i;
|
|
||||||
// m_isInitialized = true;
|
|
||||||
// }
|
};
|
||||||
// protected:
|
|
||||||
// using Base::m_isInitialized;
|
|
||||||
// using Base m_P;
|
|
||||||
// };
|
|
||||||
|
|
||||||
} // end namespace Eigen
|
} // end namespace Eigen
|
||||||
#endif
|
#endif
|
@ -99,8 +99,29 @@ class SparseLU
|
|||||||
{
|
{
|
||||||
m_diagpivotthresh = thresh;
|
m_diagpivotthresh = thresh;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/** Return the number of nonzero elements in the L factor */
|
||||||
|
int nnzL()
|
||||||
|
{
|
||||||
|
if (m_factorizationIsOk)
|
||||||
|
return m_nnzL;
|
||||||
|
else
|
||||||
|
{
|
||||||
|
std::cerr<<"Numerical factorization should be done before\n";
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
/** Return the number of nonzero elements in the U factor */
|
||||||
|
int nnzU()
|
||||||
|
{
|
||||||
|
if (m_factorizationIsOk)
|
||||||
|
return m_nnzU;
|
||||||
|
else
|
||||||
|
{
|
||||||
|
std::cerr<<"Numerical factorization should be done before\n";
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
}
|
||||||
/** \returns the solution X of \f$ A X = B \f$ using the current decomposition of A.
|
/** \returns the solution X of \f$ A X = B \f$ using the current decomposition of A.
|
||||||
*
|
*
|
||||||
* \sa compute()
|
* \sa compute()
|
||||||
@ -325,7 +346,8 @@ void SparseLU<MatrixType, OrderingType>::analyzePattern(const MatrixType& mat)
|
|||||||
ord(mat,m_perm_c);
|
ord(mat,m_perm_c);
|
||||||
//FIXME Check the right semantic behind m_perm_c
|
//FIXME Check the right semantic behind m_perm_c
|
||||||
// that is, column j of mat goes to column m_perm_c(j) of mat * m_perm_c;
|
// that is, column j of mat goes to column m_perm_c(j) of mat * m_perm_c;
|
||||||
|
|
||||||
|
|
||||||
// Apply the permutation to the column of the input matrix
|
// Apply the permutation to the column of the input matrix
|
||||||
m_mat = mat * m_perm_c.inverse(); //FIXME It should be less expensive here to permute only the structural pattern of the matrix
|
m_mat = mat * m_perm_c.inverse(); //FIXME It should be less expensive here to permute only the structural pattern of the matrix
|
||||||
|
|
||||||
|
@ -628,7 +628,7 @@ void SuperLU<MatrixType>::factorize(const MatrixType& a)
|
|||||||
this->initFactorization(a);
|
this->initFactorization(a);
|
||||||
|
|
||||||
//DEBUG
|
//DEBUG
|
||||||
m_sluOptions.ColPerm = NATURAL;
|
// m_sluOptions.ColPerm = COLAMD;
|
||||||
m_sluOptions.Equil = NO;
|
m_sluOptions.Equil = NO;
|
||||||
int info = 0;
|
int info = 0;
|
||||||
RealScalar recip_pivot_growth, rcond;
|
RealScalar recip_pivot_growth, rcond;
|
||||||
|
@ -6,6 +6,7 @@
|
|||||||
#include <iomanip>
|
#include <iomanip>
|
||||||
#include <unsupported/Eigen/SparseExtra>
|
#include <unsupported/Eigen/SparseExtra>
|
||||||
#include <Eigen/SparseLU>
|
#include <Eigen/SparseLU>
|
||||||
|
#include <bench/BenchTimer.h>
|
||||||
|
|
||||||
using namespace std;
|
using namespace std;
|
||||||
using namespace Eigen;
|
using namespace Eigen;
|
||||||
@ -17,10 +18,12 @@ int main(int argc, char **args)
|
|||||||
typedef Matrix<double, Dynamic, Dynamic> DenseMatrix;
|
typedef Matrix<double, Dynamic, Dynamic> DenseMatrix;
|
||||||
typedef Matrix<double, Dynamic, 1> DenseRhs;
|
typedef Matrix<double, Dynamic, 1> DenseRhs;
|
||||||
VectorXd b, x, tmp;
|
VectorXd b, x, tmp;
|
||||||
SparseLU<SparseMatrix<double, ColMajor>, AMDOrdering<int> > solver;
|
// SparseLU<SparseMatrix<double, ColMajor>, AMDOrdering<int> > solver;
|
||||||
|
SparseLU<SparseMatrix<double, ColMajor>, COLAMDOrdering<int> > solver;
|
||||||
ifstream matrix_file;
|
ifstream matrix_file;
|
||||||
string line;
|
string line;
|
||||||
int n;
|
int n;
|
||||||
|
BenchTimer timer;
|
||||||
|
|
||||||
// Set parameters
|
// Set parameters
|
||||||
/* Fill the matrix with sparse matrix stored in Matrix-Market coordinate column-oriented format */
|
/* Fill the matrix with sparse matrix stored in Matrix-Market coordinate column-oriented format */
|
||||||
@ -53,13 +56,26 @@ int main(int argc, char **args)
|
|||||||
|
|
||||||
/* Compute the factorization */
|
/* Compute the factorization */
|
||||||
// solver.isSymmetric(true);
|
// solver.isSymmetric(true);
|
||||||
solver.compute(A);
|
timer.start();
|
||||||
|
// solver.compute(A);
|
||||||
|
solver.analyzePattern(A);
|
||||||
|
timer.stop();
|
||||||
|
cout << "Time to analyze " << timer.value() << std::endl;
|
||||||
|
timer.reset();
|
||||||
|
timer.start();
|
||||||
|
solver.factorize(A);
|
||||||
|
timer.stop();
|
||||||
|
cout << "Factorize Time " << timer.value() << std::endl;
|
||||||
|
timer.reset();
|
||||||
|
timer.start();
|
||||||
solver._solve(b, x);
|
solver._solve(b, x);
|
||||||
|
timer.stop();
|
||||||
|
cout << "solve time " << timer.value() << std::endl;
|
||||||
/* Check the accuracy */
|
/* Check the accuracy */
|
||||||
VectorXd tmp2 = b - A*x;
|
VectorXd tmp2 = b - A*x;
|
||||||
double tempNorm = tmp2.norm()/b.norm();
|
double tempNorm = tmp2.norm()/b.norm();
|
||||||
cout << "Relative norm of the computed solution : " << tempNorm <<"\n";
|
cout << "Relative norm of the computed solution : " << tempNorm <<"\n";
|
||||||
|
cout << "Number of nonzeros in the factor : " << solver.nnzL() + solver.nnzU() << std::endl;
|
||||||
|
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
Loading…
x
Reference in New Issue
Block a user