Misc improvements for fixed size tensors

This commit is contained in:
Benoit Steiner 2015-01-14 12:39:34 -08:00
parent 71676eaddd
commit b12dd1ae3c
2 changed files with 34 additions and 11 deletions

View File

@ -42,7 +42,9 @@ class TensorFixedSize : public TensorBase<TensorFixedSize<Scalar_, Dimensions_,
enum { enum {
IsAligned = bool(EIGEN_ALIGN), IsAligned = bool(EIGEN_ALIGN),
PacketAccess = (internal::packet_traits<Scalar>::size > 1), PacketAccess = (internal::packet_traits<Scalar>::size > 1),
}; Layout = Options_ & RowMajor ? RowMajor : ColMajor,
CoordAccess = true,
};
typedef Dimensions_ Dimensions; typedef Dimensions_ Dimensions;
static const std::size_t NumIndices = Dimensions::count; static const std::size_t NumIndices = Dimensions::count;
@ -51,11 +53,12 @@ class TensorFixedSize : public TensorBase<TensorFixedSize<Scalar_, Dimensions_,
TensorStorage<Scalar, NumIndices, Dimensions::total_size, Options, Dimensions> m_storage; TensorStorage<Scalar, NumIndices, Dimensions::total_size, Options, Dimensions> m_storage;
public: public:
EIGEN_STRONG_INLINE Index dimension(std::size_t n) const { return m_storage.dimensions()[n]; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index rank() const { return NumIndices; }
EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_storage.dimensions(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index dimension(std::size_t n) const { return m_storage.dimensions()[n]; }
EIGEN_STRONG_INLINE Index size() const { return m_storage.size(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_storage.dimensions(); }
EIGEN_STRONG_INLINE Scalar *data() { return m_storage.data(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index size() const { return m_storage.size(); }
EIGEN_STRONG_INLINE const Scalar *data() const { return m_storage.data(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar *data() { return m_storage.data(); }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar *data() const { return m_storage.data(); }
// This makes EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED // This makes EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
// work, because that uses base().coeffRef() - and we don't yet // work, because that uses base().coeffRef() - and we don't yet
@ -187,6 +190,23 @@ class TensorFixedSize : public TensorBase<TensorFixedSize<Scalar_, Dimensions_,
{ {
} }
#ifdef EIGEN_HAVE_RVALUE_REFERENCES
inline TensorFixedSize(Self&& other)
: m_storage(other.m_storage)
{
}
#endif
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE TensorFixedSize& operator=(const TensorFixedSize& other)
{
// FIXME: check that the dimensions of other match the dimensions of *this.
// Unfortunately this isn't possible yet when the rhs is an expression.
typedef TensorAssignOp<Self, const TensorFixedSize> Assign;
Assign assign(*this, other);
internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
return *this;
}
template<typename OtherDerived> template<typename OtherDerived>
EIGEN_DEVICE_FUNC EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE TensorFixedSize& operator=(const OtherDerived& other) EIGEN_STRONG_INLINE TensorFixedSize& operator=(const OtherDerived& other)

View File

@ -32,13 +32,14 @@ static void test_1d()
vec1(5) = 42.0; vec2(5) = 5.0; vec1(5) = 42.0; vec2(5) = 5.0;
float data3[6]; float data3[6];
TensorMap<TensorFixedSize<float, Sizes<6> > > vec3(data3, Sizes<6>()); TensorMap<TensorFixedSize<float, Sizes<6> > > vec3(data3, 6);
vec3 = vec1.sqrt(); vec3 = vec1.sqrt();
float data4[6]; float data4[6];
TensorMap<TensorFixedSize<float, Sizes<6>, RowMajor> > vec4(data4, Sizes<6>()); TensorMap<TensorFixedSize<float, Sizes<6>, RowMajor> > vec4(data4, 6);
vec4 = vec2.sqrt(); vec4 = vec2.sqrt();
VERIFY_IS_EQUAL((vec3.size()), 6); VERIFY_IS_EQUAL((vec3.size()), 6);
VERIFY_IS_EQUAL(vec3.rank(), 1);
// VERIFY_IS_EQUAL((vec3.dimensions()[0]), 6); // VERIFY_IS_EQUAL((vec3.dimensions()[0]), 6);
// VERIFY_IS_EQUAL((vec3.dimension(0)), 6); // VERIFY_IS_EQUAL((vec3.dimension(0)), 6);
@ -68,11 +69,12 @@ static void test_1d()
static void test_2d() static void test_2d()
{ {
float data1[6]; float data1[6];
TensorMap<TensorFixedSize<float, Sizes<2, 3> >> mat1(data1, Sizes<2, 3>()); TensorMap<TensorFixedSize<float, Sizes<2, 3> >> mat1(data1,2,3);
float data2[6]; float data2[6];
TensorMap<TensorFixedSize<float, Sizes<2, 3>, RowMajor>> mat2(data2, Sizes<2, 3>()); TensorMap<TensorFixedSize<float, Sizes<2, 3>, RowMajor>> mat2(data2,2,3);
VERIFY_IS_EQUAL((mat1.size()), 2*3); VERIFY_IS_EQUAL((mat1.size()), 2*3);
VERIFY_IS_EQUAL(mat1.rank(), 2);
// VERIFY_IS_EQUAL((mat1.dimension(0)), 2); // VERIFY_IS_EQUAL((mat1.dimension(0)), 2);
// VERIFY_IS_EQUAL((mat1.dimension(1)), 3); // VERIFY_IS_EQUAL((mat1.dimension(1)), 3);
@ -120,6 +122,7 @@ static void test_3d()
TensorFixedSize<float, Sizes<2, 3, 7>, RowMajor> mat2; TensorFixedSize<float, Sizes<2, 3, 7>, RowMajor> mat2;
VERIFY_IS_EQUAL((mat1.size()), 2*3*7); VERIFY_IS_EQUAL((mat1.size()), 2*3*7);
VERIFY_IS_EQUAL(mat1.rank(), 3);
// VERIFY_IS_EQUAL((mat1.dimension(0)), 2); // VERIFY_IS_EQUAL((mat1.dimension(0)), 2);
// VERIFY_IS_EQUAL((mat1.dimension(1)), 3); // VERIFY_IS_EQUAL((mat1.dimension(1)), 3);
// VERIFY_IS_EQUAL((mat1.dimension(2)), 7); // VERIFY_IS_EQUAL((mat1.dimension(2)), 7);
@ -166,7 +169,7 @@ static void test_array()
for (int i = 0; i < 2; ++i) { for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) { for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 7; ++k) { for (int k = 0; k < 7; ++k) {
mat1(array<ptrdiff_t, 3>{{i,j,k}}) = val; mat1(i,j,k) = val;
val += 1.0; val += 1.0;
} }
} }