Add CUDA-specific std::complex<T> specializations for scalar_sum_op, scalar_difference_op, scalar_product_op, and scalar_quotient_op.

This commit is contained in:
RJ Ryan 2016-09-20 07:18:20 -07:00
parent 8a66ca4b10
commit b2c6dc48d9
4 changed files with 179 additions and 0 deletions

View File

@ -359,6 +359,7 @@ using std::ptrdiff_t;
#include "src/Core/arch/ZVector/Complex.h"
#endif
#include "src/Core/arch/CUDA/Complex.h"
// Half float support
#include "src/Core/arch/CUDA/Half.h"
#include "src/Core/arch/CUDA/PacketMathHalf.h"

View File

@ -0,0 +1,80 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_COMPLEX_CUDA_H
#define EIGEN_COMPLEX_CUDA_H
// clang-format off
namespace Eigen {
namespace internal {
#if defined(__CUDACC__) && defined(EIGEN_USE_GPU)
// Many std::complex methods such as operator+, operator-, operator* and
// operator/ are not constexpr. Due to this, clang does not treat them as device
// functions and thus Eigen functors making use of these operators fail to
// compile. Here, we manually specialize these functors for complex types when
// building for CUDA to avoid non-constexpr methods.
template<typename T> struct scalar_sum_op<std::complex<T>> {
EIGEN_EMPTY_STRUCT_CTOR(scalar_sum_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const std::complex<T> operator() (const std::complex<T>& a, const std::complex<T>& b) const {
return std::complex<T>(numext::real(a) + numext::real(b),
numext::imag(a) + numext::imag(b));
}
};
template<typename T> struct scalar_difference_op<std::complex<T>> {
EIGEN_EMPTY_STRUCT_CTOR(scalar_difference_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const std::complex<T> operator() (const std::complex<T>& a, const std::complex<T>& b) const {
return std::complex<T>(numext::real(a) - numext::real(b),
numext::imag(a) - numext::imag(b));
}
};
template<typename T> struct scalar_product_op<std::complex<T>, std::complex<T>> {
enum {
Vectorizable = packet_traits<std::complex<T>>::HasMul
};
EIGEN_EMPTY_STRUCT_CTOR(scalar_product_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const std::complex<T> operator() (const std::complex<T>& a, const std::complex<T>& b) const {
const T a_real = numext::real(a);
const T a_imag = numext::imag(a);
const T b_real = numext::real(b);
const T b_imag = numext::imag(b);
return std::complex<T>(a_real * b_real - a_imag * b_imag,
a_real * b_imag + a_imag * b_real);
}
};
template<typename T> struct scalar_quotient_op<std::complex<T>, std::complex<T>> {
enum {
Vectorizable = packet_traits<std::complex<T>>::HasDiv
};
EIGEN_EMPTY_STRUCT_CTOR(scalar_quotient_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const std::complex<T> operator() (const std::complex<T>& a, const std::complex<T>& b) const {
const T a_real = numext::real(a);
const T a_imag = numext::imag(a);
const T b_real = numext::real(b);
const T b_imag = numext::imag(b);
const T norm = T(1) / (b_real * b_real + b_imag * b_imag);
return std::complex<T>((a_real * b_real + a_imag * b_imag) * norm,
(a_imag * b_real - a_real * b_imag) * norm);
}
};
#endif
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_COMPLEX_CUDA_H

View File

@ -226,6 +226,7 @@ if(CUDA_FOUND AND EIGEN_TEST_CUDA)
set(EIGEN_ADD_TEST_FILENAME_EXTENSION "cu")
ei_add_test(cxx11_tensor_complex_cuda)
ei_add_test(cxx11_tensor_complex_cwise_ops_cuda)
ei_add_test(cxx11_tensor_reduction_cuda)
ei_add_test(cxx11_tensor_argmax_cuda)
ei_add_test(cxx11_tensor_cast_float16_cuda)

View File

@ -0,0 +1,97 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2016 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#define EIGEN_TEST_NO_LONGDOUBLE
#define EIGEN_TEST_FUNC cxx11_tensor_complex_cwise_ops
#define EIGEN_USE_GPU
#if defined __CUDACC_VER__ && __CUDACC_VER__ >= 70500
#include <cuda_fp16.h>
#endif
#include "main.h"
#include <Eigen/CXX11/Tensor>
using Eigen::Tensor;
template<typename T>
void test_cuda_complex_cwise_ops() {
const int kNumItems = 2;
std::size_t complex_bytes = kNumItems * sizeof(std::complex<T>);
std::complex<T>* d_in1;
std::complex<T>* d_in2;
std::complex<T>* d_out;
cudaMalloc((void**)(&d_in1), complex_bytes);
cudaMalloc((void**)(&d_in2), complex_bytes);
cudaMalloc((void**)(&d_out), complex_bytes);
Eigen::CudaStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
Eigen::TensorMap<Eigen::Tensor<std::complex<T>, 1, 0, int>, Eigen::Aligned> gpu_in1(
d_in1, kNumItems);
Eigen::TensorMap<Eigen::Tensor<std::complex<T>, 1, 0, int>, Eigen::Aligned> gpu_in2(
d_in2, kNumItems);
Eigen::TensorMap<Eigen::Tensor<std::complex<T>, 1, 0, int>, Eigen::Aligned> gpu_out(
d_out, kNumItems);
const std::complex<T> a(3.14f, 2.7f);
const std::complex<T> b(-10.6f, 1.4f);
gpu_in1.device(gpu_device) = gpu_in1.constant(a);
gpu_in2.device(gpu_device) = gpu_in2.constant(b);
enum CwiseOp {
Add,
Sub,
Mul,
Div
};
Tensor<std::complex<T>, 1, 0, int> actual(2);
for (CwiseOp op : {Add, Sub, Mul, Div}) {
std::complex<T> expected;
switch (op) {
case Add:
gpu_out.device(gpu_device) = gpu_in1 + gpu_in2;
expected = a + b;
break;
case Sub:
gpu_out.device(gpu_device) = gpu_in1 - gpu_in2;
expected = a - b;
break;
case Mul:
gpu_out.device(gpu_device) = gpu_in1 * gpu_in2;
expected = a * b;
break;
case Div:
gpu_out.device(gpu_device) = gpu_in1 / gpu_in2;
expected = a / b;
break;
}
assert(cudaMemcpyAsync(actual.data(), d_out, complex_bytes, cudaMemcpyDeviceToHost,
gpu_device.stream()) == cudaSuccess);
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
for (int i = 0; i < kNumItems; ++i) {
VERIFY_IS_APPROX(actual(i), expected);
}
}
cudaFree(d_in1);
cudaFree(d_in2);
cudaFree(d_out);
}
void test_cxx11_tensor_complex_cwise_ops()
{
CALL_SUBTEST(test_cuda_complex_cwise_ops<float>());
CALL_SUBTEST(test_cuda_complex_cwise_ops<double>());
}