From b578930657c962def63c3b4d0bdd1dde8927f1cd Mon Sep 17 00:00:00 2001 From: Nikolaus Demmel Date: Fri, 8 Jan 2021 13:09:54 +0000 Subject: [PATCH] Fix documentation typos in LDLT.h --- Eigen/src/Cholesky/LDLT.h | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/Eigen/src/Cholesky/LDLT.h b/Eigen/src/Cholesky/LDLT.h index 492cd5a95..30f1f5285 100644 --- a/Eigen/src/Cholesky/LDLT.h +++ b/Eigen/src/Cholesky/LDLT.h @@ -45,7 +45,7 @@ namespace internal { * matrix \f$ A \f$ such that \f$ A = P^TLDL^*P \f$, where P is a permutation matrix, L * is lower triangular with a unit diagonal and D is a diagonal matrix. * - * The decomposition uses pivoting to ensure stability, so that L will have + * The decomposition uses pivoting to ensure stability, so that D will have * zeros in the bottom right rank(A) - n submatrix. Avoiding the square root * on D also stabilizes the computation. * @@ -200,7 +200,7 @@ template class LDLT * \f$ L^* y_4 = y_3 \f$ and \f$ P x = y_4 \f$ in succession. If the matrix \f$ A \f$ is singular, then * \f$ D \f$ will also be singular (all the other matrices are invertible). In that case, the * least-square solution of \f$ D y_3 = y_2 \f$ is computed. This does not mean that this function - * computes the least-square solution of \f$ A x = b \f$ is \f$ A \f$ is singular. + * computes the least-square solution of \f$ A x = b \f$ if \f$ A \f$ is singular. * * \sa MatrixBase::ldlt(), SelfAdjointView::ldlt() */