mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-05-21 00:57:42 +08:00
merge
This commit is contained in:
commit
b6fac91998
@ -132,13 +132,15 @@ Vector4d c(5.0, 6.0, 7.0, 8.0);
|
||||
The primary coefficient accessors and mutators in Eigen are the overloaded parenthesis operators.
|
||||
For matrices, the row index is always passed first. For vectors, just pass one index.
|
||||
The numbering starts at 0. This example is self-explanatory:
|
||||
\include tut_matrix_coefficient_accessors.cpp
|
||||
Output: \verbinclude tut_matrix_coefficient_accessors.out
|
||||
|
||||
Note that the syntax
|
||||
\code
|
||||
m(index)
|
||||
\endcode
|
||||
<table class="tutorial_code"><tr><td>
|
||||
Example: \include tut_matrix_coefficient_accessors.cpp
|
||||
</td>
|
||||
<td>
|
||||
Output: \verbinclude tut_matrix_coefficient_accessors.out
|
||||
</td></tr></table>
|
||||
|
||||
Note that the syntax <tt> m(index) </tt>
|
||||
is not restricted to vectors, it is also available for general matrices, meaning index-based access
|
||||
in the array of coefficients. This however depends on the matrix's storage order. All Eigen matrices default to
|
||||
column-major storage order, but this can be changed to row-major, see \ref TopicStorageOrders "Storage orders".
|
||||
@ -149,17 +151,29 @@ would make matrix[i,j] compile to the same thing as matrix[j] !
|
||||
|
||||
\section TutorialMatrixCommaInitializer Comma-initialization
|
||||
|
||||
Matrix and vector coefficients can be conveniently set using the so-called \em comma-initializer syntax.
|
||||
%Matrix and vector coefficients can be conveniently set using the so-called \em comma-initializer syntax.
|
||||
For now, it is enough to know this example:
|
||||
\include Tutorial_commainit_01.cpp
|
||||
|
||||
<table class="tutorial_code"><tr><td>
|
||||
Example: \include Tutorial_commainit_01.cpp
|
||||
</td>
|
||||
<td>
|
||||
Output: \verbinclude Tutorial_commainit_01.out
|
||||
</td></tr></table>
|
||||
|
||||
|
||||
The right-hand side can also contain matrix expressions as discussed in \ref TutorialAdvancedInitialization "this page".
|
||||
|
||||
\section TutorialMatrixSizesResizing Resizing
|
||||
|
||||
The current size of a matrix can be retrieved by \link EigenBase::rows() rows()\endlink, \link EigenBase::cols() cols() \endlink and \link EigenBase::size() size()\endlink. These methods return the number of rows, the number of columns and the number of coefficients, respectively. Resizing a dynamic-size matrix is done by the \link DenseStorageBase::resize(Index,Index) resize() \endlink method.
|
||||
For example: \include tut_matrix_resize.cpp
|
||||
|
||||
<table class="tutorial_code"><tr><td>
|
||||
Example: \include tut_matrix_resize.cpp
|
||||
</td>
|
||||
<td>
|
||||
Output: \verbinclude tut_matrix_resize.out
|
||||
</td></tr></table>
|
||||
|
||||
The resize() method is a no-operation if the actual matrix size doesn't change; otherwise it is destructive: the values of the coefficients may change.
|
||||
If you want a conservative variant of resize() which does not change the coefficients, use \link DenseStorageBase::conservativeResize() conservativeResize()\endlink, see \ref TopicResizing "this page" for more details.
|
||||
@ -167,14 +181,25 @@ If you want a conservative variant of resize() which does not change the coeffic
|
||||
All these methods are still available on fixed-size matrices, for the sake of API uniformity. Of course, you can't actually
|
||||
resize a fixed-size matrix. Trying to change a fixed size to an actually different value will trigger an assertion failure;
|
||||
but the following code is legal:
|
||||
\include tut_matrix_resize_fixed_size.cpp
|
||||
|
||||
<table class="tutorial_code"><tr><td>
|
||||
Example: \include tut_matrix_resize_fixed_size.cpp
|
||||
</td>
|
||||
<td>
|
||||
Output: \verbinclude tut_matrix_resize_fixed_size.out
|
||||
</td></tr></table>
|
||||
|
||||
|
||||
\section TutorialMatrixAssignment Assignment and resizing
|
||||
|
||||
Assignment is the action of copying a matrix into another, using \c operator=. Eigen resizes the matrix on the left-hand side automatically so that it matches the size of the matrix on the right-hand size. For example:
|
||||
\include tut_matrix_assignment_resizing.cpp
|
||||
|
||||
<table class="tutorial_code"><tr><td>
|
||||
Example: \include tut_matrix_assignment_resizing.cpp
|
||||
</td>
|
||||
<td>
|
||||
Output: \verbinclude tut_matrix_assignment_resizing.out
|
||||
</td></tr></table>
|
||||
|
||||
Of course, if the left-hand side is of fixed size, resizing it is not allowed.
|
||||
|
||||
|
@ -43,7 +43,7 @@ also have the same \c Scalar type, as Eigen doesn't do automatic type promotion.
|
||||
Example: \include tut_arithmetic_add_sub.cpp
|
||||
</td>
|
||||
<td>
|
||||
Output: \include tut_arithmetic_add_sub.out
|
||||
Output: \verbinclude tut_arithmetic_add_sub.out
|
||||
</td></tr></table>
|
||||
|
||||
\section TutorialArithmeticScalarMulDiv Scalar multiplication and division
|
||||
@ -59,7 +59,7 @@ Multiplication and division by a scalar is very simple too. The operators at han
|
||||
Example: \include tut_arithmetic_scalar_mul_div.cpp
|
||||
</td>
|
||||
<td>
|
||||
Output: \include tut_arithmetic_scalar_mul_div.out
|
||||
Output: \verbinclude tut_arithmetic_scalar_mul_div.out
|
||||
</td></tr></table>
|
||||
|
||||
|
||||
@ -93,7 +93,7 @@ The transpose \f$ a^T \f$, conjugate \f$ \bar{a} \f$, and adjoint (i.e., conjuga
|
||||
Example: \include tut_arithmetic_transpose_conjugate.cpp
|
||||
</td>
|
||||
<td>
|
||||
Output: \include tut_arithmetic_transpose_conjugate.out
|
||||
Output: \verbinclude tut_arithmetic_transpose_conjugate.out
|
||||
</td></tr></table>
|
||||
|
||||
For real matrices, \c conjugate() is a no-operation, and so \c adjoint() is 100% equivalent to \c transpose().
|
||||
@ -103,7 +103,7 @@ As for basic arithmetic operators, \c transpose() and \c adjoint() simply return
|
||||
Example: \include tut_arithmetic_transpose_aliasing.cpp
|
||||
</td>
|
||||
<td>
|
||||
Output: \include tut_arithmetic_transpose_aliasing.out
|
||||
Output: \verbinclude tut_arithmetic_transpose_aliasing.out
|
||||
</td></tr></table>
|
||||
This is the so-called \ref TopicAliasing "aliasing issue". In "debug mode", i.e., when \ref TopicAssertions "assertions" have not been disabled, such common pitfalls are automatically detected.
|
||||
|
||||
@ -112,7 +112,7 @@ For \em in-place transposition, as for instance in <tt>a = a.transpose()</tt>, s
|
||||
Example: \include tut_arithmetic_transpose_inplace.cpp
|
||||
</td>
|
||||
<td>
|
||||
Output: \include tut_arithmetic_transpose_inplace.out
|
||||
Output: \verbinclude tut_arithmetic_transpose_inplace.out
|
||||
</td></tr></table>
|
||||
There is also the \link MatrixBase::adjointInPlace() adjointInPlace()\endlink function for complex matrices.
|
||||
|
||||
@ -129,7 +129,7 @@ two operators:
|
||||
Example: \include tut_arithmetic_matrix_mul.cpp
|
||||
</td>
|
||||
<td>
|
||||
Output: \include tut_arithmetic_matrix_mul.out
|
||||
Output: \verbinclude tut_arithmetic_matrix_mul.out
|
||||
</td></tr></table>
|
||||
|
||||
Note: if you read the above paragraph on expression templates and are worried that doing \c m=m*m might cause
|
||||
@ -154,7 +154,7 @@ The above-discussed \c operator* cannot be used to compute dot and cross product
|
||||
Example: \include tut_arithmetic_dot_cross.cpp
|
||||
</td>
|
||||
<td>
|
||||
Output: \include tut_arithmetic_dot_cross.out
|
||||
Output: \verbinclude tut_arithmetic_dot_cross.out
|
||||
</td></tr></table>
|
||||
|
||||
Remember that cross product is only for vectors of size 3. Dot product is for vectors of any sizes.
|
||||
@ -168,7 +168,7 @@ Eigen also provides some reduction operations to reduce a given matrix or vector
|
||||
Example: \include tut_arithmetic_redux_basic.cpp
|
||||
</td>
|
||||
<td>
|
||||
Output: \include tut_arithmetic_redux_basic.out
|
||||
Output: \verbinclude tut_arithmetic_redux_basic.out
|
||||
</td></tr></table>
|
||||
|
||||
The \em trace of a matrix, as returned by the function \link MatrixBase::trace() trace()\endlink, is the sum of the diagonal coefficients and can also be computed as efficiently using <tt>a.diagonal().sum()</tt>, as we will see later on.
|
||||
@ -179,7 +179,7 @@ There also exist variants of the \c minCoeff and \c maxCoeff functions returning
|
||||
Example: \include tut_arithmetic_redux_minmax.cpp
|
||||
</td>
|
||||
<td>
|
||||
Output: \include tut_arithmetic_redux_minmax.out
|
||||
Output: \verbinclude tut_arithmetic_redux_minmax.out
|
||||
</td></tr></table>
|
||||
|
||||
|
||||
|
@ -7,7 +7,7 @@ namespace Eigen {
|
||||
\li \b Next: \ref TutorialBlockOperations
|
||||
|
||||
This tutorial aims to provide an overview and explanations on how to use
|
||||
Eigen's \link ArrayBase Array \endlink class
|
||||
Eigen's Array class.
|
||||
|
||||
\b Table \b of \b contents
|
||||
- \ref TutorialArrayClassIntro
|
||||
@ -15,6 +15,7 @@ Eigen's \link ArrayBase Array \endlink class
|
||||
- \ref TutorialArrayClassAccess
|
||||
- \ref TutorialArrayClassAddSub
|
||||
- \ref TutorialArrayClassMult
|
||||
- \ref TutorialArrayClassCwiseOther
|
||||
- \ref TutorialArrayClassConvert
|
||||
|
||||
\section TutorialArrayClassIntro What is the Array class?
|
||||
@ -27,17 +28,17 @@ such as adding a constant to every coefficient in the array or multiplying two a
|
||||
|
||||
\section TutorialArrayClassTypes Array types
|
||||
Array is a class template taking the same template parameters as Matrix.
|
||||
As with Matrix, the first 3 template parameters are mandatory:
|
||||
As with Matrix, the first three template parameters are mandatory:
|
||||
\code
|
||||
Array<typename Scalar, int RowsAtCompileTime, int ColsAtCompileTime>
|
||||
\endcode
|
||||
And the last 3 template parameters are optional. Since this is exactly the same as for Matrix,
|
||||
we won't reexplain it and just refer to \ref TutorialMatrixClass "this page".
|
||||
The last three template parameters are optional. Since this is exactly the same as for Matrix,
|
||||
we won't explain it again here and just refer to \ref TutorialMatrixClass.
|
||||
|
||||
Eigen also provides typedefs for some common cases, in a way that is similar to the Matrix typedefs
|
||||
but with some slight differences, as the word "array" is used for both 1-dimensional and 2-dimensional arrays.
|
||||
We adopt that convention that typedefs of the form ArrayNt stand for 1-dimensional arrays, where N and t are
|
||||
as in the Matrix typedefs explained on \ref TutorialMatrixClass "this page". For 2-dimensional arrays, we
|
||||
the size and the scalar type, as in the Matrix typedefs explained on \ref TutorialMatrixClass "this page". For 2-dimensional arrays, we
|
||||
use typedefs of the form ArrayNNt. Some examples are shown in the following table:
|
||||
|
||||
<table class="tutorial_code" align="center">
|
||||
@ -71,69 +72,103 @@ use typedefs of the form ArrayNNt. Some examples are shown in the following tabl
|
||||
|
||||
|
||||
\section TutorialArrayClassAccess Accessing values inside an Array
|
||||
Write and read access to coefficients of an array expression is done in the same way as with matrix expressions.
|
||||
For example:
|
||||
|
||||
\include Tutorial_ArrayClass_accessors.cpp
|
||||
Output:
|
||||
\verbinclude Tutorial_ArrayClass_accessors.out
|
||||
The parenthesis operator is overloaded to provide write and read access to the coefficients of an array, just as with matrices.
|
||||
Furthermore, the \c << operator can be used to initialize arrays (via the comma initializer) or to print them.
|
||||
|
||||
For more information about the comma initializer, refer to \ref TutorialAdvancedInitialization "this page".
|
||||
<table class="tutorial_code"><tr><td>
|
||||
Example: \include Tutorial_ArrayClass_accessors.cpp
|
||||
</td>
|
||||
<td>
|
||||
Output: \verbinclude Tutorial_ArrayClass_accessors.out
|
||||
</td></tr></table>
|
||||
|
||||
For more information about the comma initializer, see \ref TutorialAdvancedInitialization.
|
||||
|
||||
|
||||
\section TutorialArrayClassAddSub Addition and substraction
|
||||
\section TutorialArrayClassAddSub Addition and subtraction
|
||||
|
||||
Adding and subtracting two arrays is the same as for matrices.
|
||||
The operation is valid if both arrays have the same size, and the addition or subtraction is done coefficient-wise.
|
||||
|
||||
Arrays also support expressions of the form <tt>array + scalar</tt> which add a scalar to each coefficient in the array.
|
||||
This provides a functionality that is not directly available for Matrix objects.
|
||||
|
||||
<table class="tutorial_code"><tr><td>
|
||||
Example: \include Tutorial_ArrayClass_addition.cpp
|
||||
</td>
|
||||
<td>
|
||||
Output: \verbinclude Tutorial_ArrayClass_addition.out
|
||||
</td></tr></table>
|
||||
|
||||
|
||||
Adding and substracting two arrays has the same result as for Matrices.
|
||||
This is valid as long as both arrays have the same sizes:
|
||||
|
||||
\include Tutorial_ArrayClass_addition.cpp
|
||||
Output:
|
||||
\verbinclude Tutorial_ArrayClass_addition.out
|
||||
|
||||
It is also allowed to add a scalar to each coefficient in an Array,
|
||||
providing a functionality that was not available for Matrix objects:
|
||||
|
||||
\include Tutorial_ArrayClass_addition_scalar.cpp
|
||||
Output:
|
||||
\verbinclude Tutorial_ArrayClass_addition_scalar.out
|
||||
|
||||
|
||||
\subsection TutorialArrayClassMult Array multiplication
|
||||
\section TutorialArrayClassMult Array multiplication
|
||||
|
||||
First of all, of course you can multiply an array by a scalar, this works in the same way as matrices. Where arrays
|
||||
are fundamentally different from matrices, is when you multiply two arrays together. While Matrices interprete
|
||||
multiplication as matrix product, arrays interprete multiplication as coefficient-wise product. For example:
|
||||
are fundamentally different from matrices, is when you multiply two together. Matrices interpret
|
||||
multiplication as the matrix product and arrays interpret multiplication as the coefficient-wise product. Thus, two
|
||||
arrays can be multiplied if they have the same size.
|
||||
|
||||
\include Tutorial_ArrayClass_mult.cpp
|
||||
Output:
|
||||
\verbinclude Tutorial_ArrayClass_mult.out
|
||||
<table class="tutorial_code"><tr><td>
|
||||
Example: \include Tutorial_ArrayClass_mult.cpp
|
||||
</td>
|
||||
<td>
|
||||
Output: \verbinclude Tutorial_ArrayClass_mult.out
|
||||
</td></tr></table>
|
||||
|
||||
|
||||
\section TutorialArrayClassCwiseOther Other coefficient-wise operations
|
||||
|
||||
The Array class defined other coefficient-wise operations besides the addition, subtraction and multiplication
|
||||
operators described about. For example, the \link ArrayBase::abs() .abs() \endlink method takes the absolute
|
||||
value of each coefficient, while \link ArrayBase::sqrt() .sqrt() \endlink computes the square root of the
|
||||
coefficients. If you have two arrays of the same size, you can call \link ArrayBase::min() .min() \endlink to
|
||||
construct the array whose coefficients are the minimum of the corresponding coefficients of the two given
|
||||
arrays. These operations are illustrated in the following example.
|
||||
|
||||
<table class="tutorial_code"><tr><td>
|
||||
Example: \include Tutorial_ArrayClass_cwise_other.cpp
|
||||
</td>
|
||||
<td>
|
||||
Output: \verbinclude Tutorial_ArrayClass_cwise_other.out
|
||||
</td></tr></table>
|
||||
|
||||
More coefficient-wise operations can be found in the \ref QuickRefPage.
|
||||
|
||||
|
||||
\section TutorialArrayClassConvert Converting between array and matrix expressions
|
||||
|
||||
It is possible to wrap a matrix expression as an array expression and conversely. This gives access to all operations
|
||||
regardless of the choice of declaring objects as arrays or as matrices.
|
||||
When should you use objects of the Matrix class and when should you use objects of the Array class? You cannot
|
||||
apply Matrix operations on arrays, or Array operations on matrices. Thus, if you need to do linear algebraic
|
||||
operations such as matrix multiplication, then you should use matrices; if you need to do coefficient-wise
|
||||
operations, then you should use arrays. However, sometimes it is not that simple, but you need to use both
|
||||
Matrix and Array operations. In that case, you need to convert a matrix to an array or reversely. This gives
|
||||
access to all operations regardless of the choice of declaring objects as arrays or as matrices.
|
||||
|
||||
\link MatrixBase Matrix expressions \endlink have a \link MatrixBase::array() .array() \endlink method that
|
||||
'converts' them into \link ArrayBase array expressions \endlink, so that coefficient-wise operations
|
||||
\link MatrixBase Matrix expressions \endlink have an \link MatrixBase::array() .array() \endlink method that
|
||||
'converts' them into \link ArrayBase array expressions\endlink, so that coefficient-wise operations
|
||||
can be applied easily. Conversely, \link ArrayBase array expressions \endlink
|
||||
have a \link ArrayBase::matrix() .matrix() \endlink method. As with all Eigen expression abstractions,
|
||||
this doesn't have any runtime cost (provided that you let your compiler optimize).
|
||||
|
||||
Both \link MatrixBase::array() .array() \endlink and \link ArrayBase::matrix() .matrix() \endlink
|
||||
can be used as rvalues and as lvalues.
|
||||
|
||||
Mixing matrices and arrays in an expression is forbidden with Eigen. However,
|
||||
Mixing matrices and arrays in an expression is forbidden with Eigen. For instance, you cannot add a amtrix and
|
||||
array directly; the operands of a \c + operator should either both be matrices or both be arrays. However,
|
||||
it is easy to convert from one to the other with \link MatrixBase::array() .array() \endlink and
|
||||
\link ArrayBase::matrix() .matrix() \endlink.
|
||||
\link ArrayBase::matrix() .matrix()\endlink. The exception to this rule is the assignment operator: it is
|
||||
allowed to assign a matrix expression to an array variable, or to assign an array expression to a matrix
|
||||
variable.
|
||||
|
||||
On the other hand, assigning a matrix (resp. array) expression to an array (resp. matrix) expression is allowed.
|
||||
The following example shows how to use array operations on a Matrix object by employing the
|
||||
\link MatrixBase::array() .array() \endlink method. For example, the statement
|
||||
<tt>result = m.array() * n.array()</tt> takes two matrices \c m and \c n, converts them both to an array, uses
|
||||
* to multiply them coefficient-wise and assigns the result to the matrix variable \c result (this is legal
|
||||
because Eigen allows assigning array expressions to matrix variables).
|
||||
|
||||
\subsection TutorialArrayClassInteropMatrix Matrix to array example
|
||||
The following example shows how to use array operations on a Matrix object by employing
|
||||
the \link MatrixBase::array() .array() \endlink method:
|
||||
As a matter of fact, this usage case is so common that Eigen provides a \link MatrixBase::cwiseProduct()
|
||||
.cwiseProduct() \endlink method for matrices to compute the coefficient-wise product. This is also shown in
|
||||
the example program.
|
||||
|
||||
<table class="tutorial_code"><tr><td>
|
||||
\include Tutorial_ArrayClass_interop_matrix.cpp
|
||||
@ -143,21 +178,13 @@ Output:
|
||||
\verbinclude Tutorial_ArrayClass_interop_matrix.out
|
||||
</td></tr></table>
|
||||
|
||||
Similarly, if \c array1 and \c array2 are arrays, then the expression <tt>array1.matrix() * array2.matrix()</tt>
|
||||
computes their matrix product.
|
||||
|
||||
\subsection TutorialArrayClassInteropArray Array to matrix example
|
||||
The following example shows how to use matrix operations with an Array
|
||||
object by employing the \link ArrayBase::matrix() .matrix() \endlink method:
|
||||
|
||||
<table class="tutorial_code"><tr><td>
|
||||
\include Tutorial_ArrayClass_interop_array.cpp
|
||||
</td>
|
||||
<td>
|
||||
Output:
|
||||
\verbinclude Tutorial_ArrayClass_interop_array.out
|
||||
</td></tr></table>
|
||||
|
||||
\subsection TutorialArrayClassInteropCombination Example with combinations of .array() and .matrix()
|
||||
Here is a more advanced example:
|
||||
Here is a more advanced example. The expression <tt>(m.array() + 4).matrix() * m</tt> adds 4 to every
|
||||
coefficient in the matrix \c m and then computes the matrix product of the result with \c m. Similarly, the
|
||||
expression <tt>(m.array() * n.array()).matrix() * m</tt> computes the coefficient-wise product of the matrices
|
||||
\c m and \c n and then the matrix product of the result with \c m.
|
||||
|
||||
<table class="tutorial_code"><tr><td>
|
||||
\include Tutorial_ArrayClass_interop.cpp
|
||||
|
@ -13,21 +13,22 @@ provided that you let your compiler optimize.
|
||||
|
||||
\b Table \b of \b contents
|
||||
- \ref TutorialBlockOperationsUsing
|
||||
- \ref TutorialBlockOperationsSyntax
|
||||
- \ref TutorialBlockOperationsSyntaxColumnRows
|
||||
- \ref TutorialBlockOperationsSyntaxCorners
|
||||
- \ref TutorialBlockOperationsSyntaxColumnRows
|
||||
- \ref TutorialBlockOperationsSyntaxCorners
|
||||
- \ref TutorialBlockOperationsSyntaxVectors
|
||||
|
||||
|
||||
\section TutorialBlockOperationsUsing Using block operations
|
||||
|
||||
The most general block operation in Eigen is called \link DenseBase::block() .block() \endlink.
|
||||
This function returns a block of size <tt>(p,q)</tt> whose origin is at <tt>(i,j)</tt> by using
|
||||
the following syntax:
|
||||
This function returns a block of size <tt>(p,q)</tt> whose origin is at <tt>(i,j)</tt>.
|
||||
There are two versions, whose syntax is as follows:
|
||||
|
||||
<table class="tutorial_code" align="center">
|
||||
<tr><td align="center">\b Block \b operation</td>
|
||||
<td align="center">Default \b version</td>
|
||||
<tr><td align="center">\b %Block \b operation</td>
|
||||
<td align="center">Default version</td>
|
||||
<td align="center">Optimized version when the<br>size is known at compile time</td></tr>
|
||||
<tr><td>Block of size <tt>(p,q)</tt>, starting at <tt>(i,j)</tt></td>
|
||||
<tr><td>%Block of size <tt>(p,q)</tt>, starting at <tt>(i,j)</tt></td>
|
||||
<td>\code
|
||||
matrix.block(i,j,p,q);\endcode </td>
|
||||
<td>\code
|
||||
@ -35,7 +36,15 @@ matrix.block<p,q>(i,j);\endcode </td>
|
||||
</tr>
|
||||
</table>
|
||||
|
||||
Therefore, if we want to print the values of a block inside a matrix we can simply write:
|
||||
The default version is a method which takes four arguments. It can always be used. The optimized version
|
||||
takes two template arguments (the size of the block) and two normal arguments (the position of the block).
|
||||
It can only be used if the size of the block is known at compile time, but it may be faster than the
|
||||
non-optimized version, especially if the size of the block is small. Both versions can be used on fixed-size
|
||||
and dynamic-size matrices and arrays.
|
||||
|
||||
The following program uses the default and optimized versions to print the values of several blocks inside a
|
||||
matrix.
|
||||
|
||||
<table class="tutorial_code"><tr><td>
|
||||
\include Tutorial_BlockOperations_print_block.cpp
|
||||
</td>
|
||||
@ -44,10 +53,15 @@ Output:
|
||||
\verbinclude Tutorial_BlockOperations_print_block.out
|
||||
</td></tr></table>
|
||||
|
||||
In the above example the \link DenseBase::block() .block() \endlink function was employed
|
||||
to read the values inside matrix \p m . However, blocks can also be used as lvalues, meaning that you can
|
||||
assign to a block.
|
||||
|
||||
In the previous example the \link DenseBase::block() .block() \endlink function was employed
|
||||
to read the values inside matrix \p m . Blocks can also be used to perform operations and
|
||||
assignments within matrices or arrays of different size:
|
||||
This is illustrated in the following example, which uses arrays instead of matrices. The coefficients of the
|
||||
5-by-5 array \c n are first all set to 0.6, but then the 3-by-3 block in the middle is set to the values in
|
||||
\c m . The penultimate line shows that blocks can be combined with matrices and arrays to create more complex
|
||||
expressions. Blocks of an array are an array expression, and thus the multiplication here is coefficient-wise
|
||||
multiplication.
|
||||
|
||||
<table class="tutorial_code"><tr><td>
|
||||
\include Tutorial_BlockOperations_block_assignment.cpp
|
||||
@ -57,55 +71,38 @@ Output:
|
||||
\verbinclude Tutorial_BlockOperations_block_assignment.out
|
||||
</td></tr></table>
|
||||
|
||||
The \link DenseBase::block() .block() \endlink method is used for general block operations, but there are
|
||||
other methods for special cases. These are described in the rest of this page.
|
||||
|
||||
Blocks can also be combined with matrices and arrays to create more complex expressions:
|
||||
|
||||
\code
|
||||
MatrixXf m(3,3), n(2,2);
|
||||
MatrixXf p(3,3);
|
||||
|
||||
m.block(0,0,2,2) = m.block(0,0,2,2) * n + p.block(1,1,2,2);
|
||||
\endcode
|
||||
\section TutorialBlockOperationsSyntaxColumnRows Columns and rows
|
||||
|
||||
It is important to point out that \link DenseBase::block() .block() \endlink is the
|
||||
general case for a block operation but there are many other useful block operations,
|
||||
as described in the next section.
|
||||
|
||||
\section TutorialBlockOperationsSyntax Block operation syntax
|
||||
The following tables show a summary of Eigen's block operations and how they are applied to
|
||||
fixed- and dynamic-sized Eigen objects.
|
||||
|
||||
\subsection TutorialBlockOperationsSyntaxColumnRows Columns and rows
|
||||
Other extremely useful block operations are \link DenseBase::col() .col() \endlink and
|
||||
\link DenseBase::row() .row() \endlink which provide access to a
|
||||
specific row or column. This is a special case in the sense that the syntax for fixed- and
|
||||
dynamic-sized objects is exactly the same:
|
||||
Individual columns and rows are special cases of blocks. Eigen provides methods to easily access them:
|
||||
\link DenseBase::col() .col() \endlink and \link DenseBase::row() .row()\endlink. There is no syntax variant
|
||||
for an optimized version.
|
||||
|
||||
<table class="tutorial_code" align="center">
|
||||
<tr><td align="center">\b Block \b operation</td>
|
||||
<tr><td align="center">\b %Block \b operation</td>
|
||||
<td align="center">Default version</td>
|
||||
<td align="center">Optimized version when the<br>size is known at compile time</td></tr>
|
||||
<tr><td>i<sup>th</sup> row
|
||||
\link DenseBase::row() * \endlink</td>
|
||||
<td>\code
|
||||
MatrixXf m;
|
||||
std::cout << m.row(i);\endcode </td>
|
||||
matrix.row(i);\endcode </td>
|
||||
<td>\code
|
||||
Matrix3f m;
|
||||
std::cout << m.row(i);\endcode </td>
|
||||
matrix.row(i);\endcode </td>
|
||||
</tr>
|
||||
<tr><td>j<sup>th</sup> column
|
||||
\link DenseBase::col() * \endlink</td>
|
||||
<td>\code
|
||||
MatrixXf m;
|
||||
std::cout << m.col(j);\endcode </td>
|
||||
matrix.col(j);\endcode </td>
|
||||
<td>\code
|
||||
Matrix3f m;
|
||||
std::cout << m.col(j);\endcode </td>
|
||||
matrix.col(j);\endcode </td>
|
||||
</tr>
|
||||
</table>
|
||||
|
||||
A simple example demonstrating these feature follows:
|
||||
The argument for \p col() and \p row() is the index of the column or row to be accessed, starting at
|
||||
0. Therefore, \p col(0) will access the first column and \p col(1) the second one.
|
||||
|
||||
<table class="tutorial_code"><tr><td>
|
||||
C++ code:
|
||||
@ -113,94 +110,83 @@ C++ code:
|
||||
</td>
|
||||
<td>
|
||||
Output:
|
||||
\include Tutorial_BlockOperations_colrow.out
|
||||
\verbinclude Tutorial_BlockOperations_colrow.out
|
||||
</td></tr></table>
|
||||
|
||||
|
||||
\b NOTE: the argument for \p col() and \p row() is the index of the column or row to be accessed,
|
||||
starting at 0. Therefore, \p col(0) will access the first column and \p col(1) the second one.
|
||||
\section TutorialBlockOperationsSyntaxCorners Corner-related operations
|
||||
|
||||
Eigen also provides special methods for blocks that are flushed against one of the corners or sides of a
|
||||
matrix or array. For instance, \link DenseBase::topLeftCorner() .topLeftCorner() \endlink can be used to refer
|
||||
to a block in the top-left corner of a matrix. Use <tt>matrix.topLeftCorner(p,q)</tt> to access the block
|
||||
consisting of the coefficients <tt>matrix(i,j)</tt> with \c i < \c p and \c j < \c q. As an other
|
||||
example, blocks consisting of whole rows flushed against the top side of the matrix can be accessed by
|
||||
\link DenseBase::topRows() .topRows() \endlink.
|
||||
|
||||
The different possibilities are summarized in the following table:
|
||||
|
||||
\subsection TutorialBlockOperationsSyntaxCorners Corner-related operations
|
||||
<table class="tutorial_code" align="center">
|
||||
<tr><td align="center">\b Block \b operation</td>
|
||||
<tr><td align="center">\b %Block \b operation</td>
|
||||
<td align="center">Default version</td>
|
||||
<td align="center">Optimized version when the<br>size is known at compile time</td></tr>
|
||||
<tr><td>Top-left p by q block \link DenseBase::topLeftCorner() * \endlink</td>
|
||||
<td>\code
|
||||
MatrixXf m;
|
||||
std::cout << m.topLeftCorner(p,q);\endcode </td>
|
||||
matrix.topLeftCorner(p,q);\endcode </td>
|
||||
<td>\code
|
||||
Matrix3f m;
|
||||
std::cout << m.topLeftCorner<p,q>();\endcode </td>
|
||||
matrix.topLeftCorner<p,q>();\endcode </td>
|
||||
</tr>
|
||||
<tr><td>Bottom-left p by q block
|
||||
\link DenseBase::bottomLeftCorner() * \endlink</td>
|
||||
<td>\code
|
||||
MatrixXf m;
|
||||
std::cout << m.bottomLeftCorner(p,q);\endcode </td>
|
||||
matrix.bottomLeftCorner(p,q);\endcode </td>
|
||||
<td>\code
|
||||
Matrix3f m;
|
||||
std::cout << m.bottomLeftCorner<p,q>();\endcode </td>
|
||||
matrix.bottomLeftCorner<p,q>();\endcode </td>
|
||||
</tr>
|
||||
<tr><td>Top-right p by q block
|
||||
\link DenseBase::topRightCorner() * \endlink</td>
|
||||
<td>\code
|
||||
MatrixXf m;
|
||||
std::cout << m.topRightCorner(p,q);\endcode </td>
|
||||
matrix.topRightCorner(p,q);\endcode </td>
|
||||
<td>\code
|
||||
Matrix3f m;
|
||||
std::cout << m.topRightCorner<p,q>();\endcode </td>
|
||||
matrix.topRightCorner<p,q>();\endcode </td>
|
||||
</tr>
|
||||
<tr><td>Bottom-right p by q block
|
||||
\link DenseBase::bottomRightCorner() * \endlink</td>
|
||||
<td>\code
|
||||
MatrixXf m;
|
||||
std::cout << m.bottomRightCorner(p,q);\endcode </td>
|
||||
matrix.bottomRightCorner(p,q);\endcode </td>
|
||||
<td>\code
|
||||
Matrix3f m;
|
||||
std::cout << m.bottomRightCorner<p,q>();\endcode </td>
|
||||
matrix.bottomRightCorner<p,q>();\endcode </td>
|
||||
</tr>
|
||||
<tr><td>Block containing the first q rows
|
||||
<tr><td>%Block containing the first q rows
|
||||
\link DenseBase::topRows() * \endlink</td>
|
||||
<td>\code
|
||||
MatrixXf m;
|
||||
std::cout << m.topRows(q);\endcode </td>
|
||||
matrix.topRows(q);\endcode </td>
|
||||
<td>\code
|
||||
Matrix3f m;
|
||||
std::cout << m.topRows<q>();\endcode </td>
|
||||
matrix.topRows<q>();\endcode </td>
|
||||
</tr>
|
||||
<tr><td>Block containing the last q rows
|
||||
<tr><td>%Block containing the last q rows
|
||||
\link DenseBase::bottomRows() * \endlink</td>
|
||||
<td>\code
|
||||
MatrixXf m;
|
||||
std::cout << m.bottomRows(q);\endcode </td>
|
||||
matrix.bottomRows(q);\endcode </td>
|
||||
<td>\code
|
||||
Matrix3f m;
|
||||
std::cout << m.bottomRows<q>();\endcode </td>
|
||||
matrix.bottomRows<q>();\endcode </td>
|
||||
</tr>
|
||||
<tr><td>Block containing the first p columns
|
||||
<tr><td>%Block containing the first p columns
|
||||
\link DenseBase::leftCols() * \endlink</td>
|
||||
<td>\code
|
||||
MatrixXf m;
|
||||
std::cout << m.leftCols(p);\endcode </td>
|
||||
matrix.leftCols(p);\endcode </td>
|
||||
<td>\code
|
||||
Matrix3f m;
|
||||
std::cout << m.leftCols<p>();\endcode </td>
|
||||
matrix.leftCols<p>();\endcode </td>
|
||||
</tr>
|
||||
<tr><td>Block containing the last q columns
|
||||
<tr><td>%Block containing the last q columns
|
||||
\link DenseBase::rightCols() * \endlink</td>
|
||||
<td>\code
|
||||
MatrixXf m;
|
||||
std::cout << m.rightCols(q);\endcode </td>
|
||||
matrix.rightCols(q);\endcode </td>
|
||||
<td>\code
|
||||
Matrix3f m;
|
||||
std::cout << m.rightCols<q>();\endcode </td>
|
||||
matrix.rightCols<q>();\endcode </td>
|
||||
</tr>
|
||||
</table>
|
||||
|
||||
|
||||
Here is a simple example showing the power of the operations presented above:
|
||||
Here is a simple example illustrating the use of the operations presented above:
|
||||
|
||||
<table class="tutorial_code"><tr><td>
|
||||
C++ code:
|
||||
@ -208,49 +194,38 @@ C++ code:
|
||||
</td>
|
||||
<td>
|
||||
Output:
|
||||
\include Tutorial_BlockOperations_corner.out
|
||||
\verbinclude Tutorial_BlockOperations_corner.out
|
||||
</td></tr></table>
|
||||
|
||||
|
||||
\section TutorialBlockOperationsSyntaxVectors Block operations for vectors
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\subsection TutorialBlockOperationsSyntaxVectors Block operations for vectors
|
||||
Eigen also provides a set of block operations designed specifically for vectors:
|
||||
Eigen also provides a set of block operations designed specifically for vectors and one-dimensional arrays:
|
||||
|
||||
<table class="tutorial_code" align="center">
|
||||
<tr><td align="center">\b Block \b operation</td>
|
||||
<tr><td align="center">\b %Block \b operation</td>
|
||||
<td align="center">Default version</td>
|
||||
<td align="center">Optimized version when the<br>size is known at compile time</td></tr>
|
||||
<tr><td>Block containing the first \p n elements
|
||||
<tr><td>%Block containing the first \p n elements
|
||||
\link DenseBase::head() * \endlink</td>
|
||||
<td>\code
|
||||
VectorXf v;
|
||||
std::cout << v.head(n);\endcode </td>
|
||||
vector.head(n);\endcode </td>
|
||||
<td>\code
|
||||
Vector3f v;
|
||||
std::cout << v.head<n>();\endcode </td>
|
||||
vector.head<n>();\endcode </td>
|
||||
</tr>
|
||||
<tr><td>Block containing the last \p n elements
|
||||
<tr><td>%Block containing the last \p n elements
|
||||
\link DenseBase::tail() * \endlink</td>
|
||||
<td>\code
|
||||
VectorXf v;
|
||||
std::cout << v.tail(n);\endcode </td>
|
||||
vector.tail(n);\endcode </td>
|
||||
<td>\code
|
||||
Vector3f m;
|
||||
std::cout << v.tail<n>();\endcode </td>
|
||||
vector.tail<n>();\endcode </td>
|
||||
</tr>
|
||||
<tr><td>Block containing \p n elements, starting at position \p i
|
||||
<tr><td>%Block containing \p n elements, starting at position \p i
|
||||
\link DenseBase::segment() * \endlink</td>
|
||||
<td>\code
|
||||
VectorXf v;
|
||||
std::cout << v.segment(i,n);\endcode </td>
|
||||
vector.segment(i,n);\endcode </td>
|
||||
<td>\code
|
||||
Vector3f m;
|
||||
std::cout << v.segment<n>(i);\endcode </td>
|
||||
vector.segment<n>(i);\endcode </td>
|
||||
</tr>
|
||||
</table>
|
||||
|
||||
@ -262,7 +237,7 @@ C++ code:
|
||||
</td>
|
||||
<td>
|
||||
Output:
|
||||
\include Tutorial_BlockOperations_vector.out
|
||||
\verbinclude Tutorial_BlockOperations_vector.out
|
||||
</td></tr></table>
|
||||
|
||||
\li \b Next: \ref TutorialAdvancedInitialization
|
||||
|
@ -30,7 +30,7 @@ which returns the addition of all the coefficients inside a given matrix or arra
|
||||
Example: \include tut_arithmetic_redux_basic.cpp
|
||||
</td>
|
||||
<td>
|
||||
Output: \include tut_arithmetic_redux_basic.out
|
||||
Output: \verbinclude tut_arithmetic_redux_basic.out
|
||||
</td></tr></table>
|
||||
|
||||
The \em trace of a matrix, as returned by the function \c trace(), is the sum of the diagonal coefficients and can also be computed as efficiently using <tt>a.diagonal().sum()</tt>, as we will see later on.
|
||||
|
@ -1217,12 +1217,14 @@ PREDEFINED = EIGEN_EMPTY_STRUCT \
|
||||
# The macro definition that is found in the sources will be used.
|
||||
# Use the PREDEFINED tag if you want to use a different macro definition.
|
||||
|
||||
EXPAND_AS_DEFINED = EIGEN_MAKE_SCALAR_OPS \
|
||||
EIGEN_MAKE_TYPEDEFS \
|
||||
EXPAND_AS_DEFINED = EIGEN_MAKE_TYPEDEFS \
|
||||
EIGEN_MAKE_FIXED_TYPEDEFS \
|
||||
EIGEN_MAKE_TYPEDEFS_ALL_SIZES \
|
||||
EIGEN_MAKE_CWISE_BINARY_OP \
|
||||
EIGEN_CWISE_UNOP_RETURN_TYPE \
|
||||
EIGEN_CWISE_BINOP_RETURN_TYPE \
|
||||
EIGEN_CWISE_PRODUCT_RETURN_TYPE \
|
||||
EIGEN_CURRENT_STORAGE_BASE_CLASS \
|
||||
_EIGEN_GENERIC_PUBLIC_INTERFACE
|
||||
|
||||
# If the SKIP_FUNCTION_MACROS tag is set to YES (the default) then
|
||||
|
@ -8,17 +8,17 @@ int main()
|
||||
{
|
||||
ArrayXXf m(2,2);
|
||||
|
||||
//assign some values coefficient by coefficient
|
||||
// assign some values coefficient by coefficient
|
||||
m(0,0) = 1.0; m(0,1) = 2.0;
|
||||
m(1,0) = 3.0; m(1,1) = 4.0;
|
||||
m(1,0) = 3.0; m(1,1) = m(0,1) + m(1,0);
|
||||
|
||||
//print values to standard output
|
||||
// print values to standard output
|
||||
cout << m << endl << endl;
|
||||
|
||||
// using the comma-initializer is also allowed
|
||||
m << 1.0,2.0,
|
||||
3.0,4.0;
|
||||
|
||||
//print values to standard output
|
||||
// print values to standard output
|
||||
cout << m << endl;
|
||||
}
|
||||
|
@ -8,15 +8,16 @@ int main()
|
||||
{
|
||||
ArrayXXf a(3,3);
|
||||
ArrayXXf b(3,3);
|
||||
|
||||
a << 1,2,3,
|
||||
4,5,6,
|
||||
7,8,9;
|
||||
|
||||
b << 1,2,3,
|
||||
1,2,3,
|
||||
1,2,3;
|
||||
|
||||
cout << "a + b = " << endl
|
||||
<< a + b << endl;
|
||||
// Adding two arrays
|
||||
cout << "a + b = " << endl << a + b << endl << endl;
|
||||
|
||||
// Subtracting a scalar from an array
|
||||
cout << "a - 2 = " << endl << a - 2 << endl;
|
||||
}
|
||||
|
@ -1,17 +0,0 @@
|
||||
#include <Eigen/Dense>
|
||||
#include <iostream>
|
||||
|
||||
using namespace Eigen;
|
||||
using namespace std;
|
||||
|
||||
int main()
|
||||
{
|
||||
ArrayXXf a(3,3);
|
||||
|
||||
a << 1,2,3,
|
||||
4,5,6,
|
||||
7,8,9;
|
||||
|
||||
cout << "a + 2 = " << endl
|
||||
<< a + 2 << endl;
|
||||
}
|
19
doc/examples/Tutorial_ArrayClass_cwise_other.cpp
Normal file
19
doc/examples/Tutorial_ArrayClass_cwise_other.cpp
Normal file
@ -0,0 +1,19 @@
|
||||
#include <Eigen/Dense>
|
||||
#include <iostream>
|
||||
|
||||
using namespace Eigen;
|
||||
using namespace std;
|
||||
|
||||
int main()
|
||||
{
|
||||
ArrayXf a = ArrayXf::Random(5);
|
||||
a *= 2;
|
||||
cout << "a =" << endl
|
||||
<< a << endl;
|
||||
cout << "a.abs() =" << endl
|
||||
<< a.abs() << endl;
|
||||
cout << "a.abs().sqrt() =" << endl
|
||||
<< a.abs().sqrt() << endl;
|
||||
cout << "a.min(a.abs().sqrt()) =" << endl
|
||||
<< a.min(a.abs().sqrt()) << endl;
|
||||
}
|
@ -8,31 +8,15 @@ int main()
|
||||
{
|
||||
MatrixXf m(2,2);
|
||||
MatrixXf n(2,2);
|
||||
|
||||
MatrixXf result(2,2);
|
||||
|
||||
//initialize matrices
|
||||
m << 1,2,
|
||||
3,4;
|
||||
|
||||
n << 5,6,
|
||||
7,8;
|
||||
|
||||
// mix of array and matrix operations
|
||||
// first coefficient-wise addition
|
||||
// then the result is used with matrix multiplication
|
||||
result = (m.array() + 4).matrix() * m;
|
||||
|
||||
cout << "-- Combination 1: --" << endl
|
||||
<< result << endl << endl;
|
||||
|
||||
|
||||
// mix of array and matrix operations
|
||||
// first coefficient-wise multiplication
|
||||
// then the result is used with matrix multiplication
|
||||
cout << "-- Combination 1: --" << endl << result << endl << endl;
|
||||
result = (m.array() * n.array()).matrix() * m;
|
||||
|
||||
cout << "-- Combination 2: --" << endl
|
||||
<< result << endl << endl;
|
||||
|
||||
cout << "-- Combination 2: --" << endl << result << endl << endl;
|
||||
}
|
||||
|
@ -1,34 +0,0 @@
|
||||
#include <Eigen/Dense>
|
||||
#include <iostream>
|
||||
|
||||
using namespace Eigen;
|
||||
using namespace std;
|
||||
|
||||
int main()
|
||||
{
|
||||
ArrayXXf m(2,2);
|
||||
ArrayXXf n(2,2);
|
||||
|
||||
ArrayXXf result(2,2);
|
||||
|
||||
//initialize arrays
|
||||
m << 1,2,
|
||||
3,4;
|
||||
|
||||
n << 5,6,
|
||||
7,8;
|
||||
|
||||
|
||||
// --> array multiplication
|
||||
result = m * n;
|
||||
|
||||
cout << "-- Array m*n: --" << endl
|
||||
<< result << endl << endl;
|
||||
|
||||
|
||||
// --> Matrix multiplication
|
||||
result = m.matrix() * n.matrix();
|
||||
|
||||
cout << "-- Matrix m*n: --" << endl
|
||||
<< result << endl << endl;
|
||||
}
|
@ -8,34 +8,19 @@ int main()
|
||||
{
|
||||
MatrixXf m(2,2);
|
||||
MatrixXf n(2,2);
|
||||
|
||||
MatrixXf result(2,2);
|
||||
|
||||
//initialize matrices
|
||||
m << 1,2,
|
||||
3,4;
|
||||
|
||||
n << 5,6,
|
||||
7,8;
|
||||
|
||||
|
||||
// --> matrix multiplication
|
||||
result = m * n;
|
||||
|
||||
cout << "-- Matrix m*n: --" << endl
|
||||
<< result << endl << endl;
|
||||
|
||||
|
||||
// --> coeff-wise multiplication
|
||||
cout << "-- Matrix m*n: --" << endl << result << endl << endl;
|
||||
result = m.array() * n.array();
|
||||
|
||||
cout << "-- Array m*n: --" << endl
|
||||
<< result << endl << endl;
|
||||
|
||||
|
||||
// ->> coeff-wise addition of a scalar
|
||||
cout << "-- Array m*n: --" << endl << result << endl << endl;
|
||||
result = m.cwiseProduct(n);
|
||||
cout << "-- With cwiseProduct: --" << endl << result << endl << endl;
|
||||
result = m.array() + 4;
|
||||
|
||||
cout << "-- Array m + 4: --" << endl
|
||||
<< result << endl << endl;
|
||||
cout << "-- Array m + 4: --" << endl << result << endl << endl;
|
||||
}
|
||||
|
@ -8,13 +8,9 @@ int main()
|
||||
{
|
||||
ArrayXXf a(2,2);
|
||||
ArrayXXf b(2,2);
|
||||
|
||||
a << 1,2,
|
||||
3,4;
|
||||
|
||||
b << 5,6,
|
||||
7,8;
|
||||
|
||||
cout << "a * b = " << endl
|
||||
<< a * b << endl;
|
||||
cout << "a * b = " << endl << a * b << endl;
|
||||
}
|
||||
|
@ -6,26 +6,13 @@ using namespace Eigen;
|
||||
|
||||
int main()
|
||||
{
|
||||
MatrixXf m(3,3), n(2,2);
|
||||
|
||||
Array33f m;
|
||||
m << 1,2,3,
|
||||
4,5,6,
|
||||
7,8,9;
|
||||
|
||||
// assignment through a block operation,
|
||||
// block as rvalue
|
||||
n = m.block(0,0,2,2);
|
||||
|
||||
//print n
|
||||
Array<float,5,5> n = Array<float,5,5>::Constant(0.6);
|
||||
n.block(1,1,3,3) = m;
|
||||
cout << "n = " << endl << n << endl << endl;
|
||||
|
||||
|
||||
n << 1,1,
|
||||
1,1;
|
||||
|
||||
// block as lvalue
|
||||
m.block(0,0,2,2) = n;
|
||||
|
||||
//print m
|
||||
cout << "m = " << endl << m << endl;
|
||||
Array33f res = n.block(0,0,3,3) * m;
|
||||
cout << "res =" << endl << res << endl;
|
||||
}
|
||||
|
@ -1,15 +1,14 @@
|
||||
#include <Eigen/Dense>
|
||||
#include <iostream>
|
||||
using namespace Eigen;
|
||||
|
||||
int main()
|
||||
{
|
||||
MatrixXf m(3,3);
|
||||
|
||||
Eigen::MatrixXf m(3,3);
|
||||
m << 1,2,3,
|
||||
4,5,6,
|
||||
7,8,9;
|
||||
|
||||
std::cout << "2nd Row: "
|
||||
<< m.row(1) << std::endl;
|
||||
std::cout << "2nd Row: " << m.row(1) << std::endl;
|
||||
m.col(0) += m.col(2);
|
||||
std::cout << "m after adding third column to first:\n";
|
||||
std::cout << m << std::endl;
|
||||
}
|
||||
|
@ -2,26 +2,16 @@
|
||||
#include <iostream>
|
||||
|
||||
using namespace std;
|
||||
using namespace Eigen;
|
||||
|
||||
int main()
|
||||
{
|
||||
MatrixXf m(4,4);
|
||||
|
||||
Eigen::Matrix4f m;
|
||||
m << 1, 2, 3, 4,
|
||||
5, 6, 7, 8,
|
||||
9, 10,11,12,
|
||||
13,14,15,16;
|
||||
|
||||
//print first two columns
|
||||
cout << "-- leftCols(2) --" << endl
|
||||
<< m.leftCols(2) << endl << endl;
|
||||
|
||||
//print last two rows
|
||||
cout << "-- bottomRows(2) --" << endl
|
||||
<< m.bottomRows(2) << endl << endl;
|
||||
|
||||
//print top-left 2x3 corner
|
||||
cout << "-- topLeftCorner(2,3) --" << endl
|
||||
<< m.topLeftCorner(2,3) << endl;
|
||||
cout << "m.leftCols(2) =" << endl << m.leftCols(2) << endl << endl;
|
||||
cout << "m.bottomRows<2>() =" << endl << m.bottomRows<2>() << endl << endl;
|
||||
m.topLeftCorner(1,3) = m.bottomRightCorner(3,1).transpose();
|
||||
cout << "After assignment, m = " << endl << m << endl;
|
||||
}
|
||||
|
@ -1,14 +1,18 @@
|
||||
#include <Eigen/Dense>
|
||||
#include <iostream>
|
||||
using namespace Eigen;
|
||||
|
||||
int main()
|
||||
{
|
||||
MatrixXf m(3,3);
|
||||
|
||||
m << 1,2,3,
|
||||
4,5,6,
|
||||
7,8,9;
|
||||
|
||||
std::cout << m.block(0,0,2,2) << std::endl;
|
||||
Eigen::MatrixXf m(4,4);
|
||||
m << 1, 2, 3, 4,
|
||||
5, 6, 7, 8,
|
||||
9,10,11,12,
|
||||
13,14,15,16;
|
||||
std::cout << "Block in the middle" << std::endl;
|
||||
std::cout << m.block<2,2>(1,1) << std::endl << std::endl;
|
||||
for (int i = 1; i < 4; ++i)
|
||||
{
|
||||
std::cout << "Block of size " << i << std::endl;
|
||||
std::cout << m.block(0,0,i,i) << std::endl << std::endl;
|
||||
}
|
||||
}
|
||||
|
@ -2,23 +2,13 @@
|
||||
#include <iostream>
|
||||
|
||||
using namespace std;
|
||||
using namespace Eigen;
|
||||
|
||||
int main()
|
||||
{
|
||||
VectorXf v(6);
|
||||
|
||||
Eigen::ArrayXf v(6);
|
||||
v << 1, 2, 3, 4, 5, 6;
|
||||
|
||||
//print first three elements
|
||||
cout << "-- head(3) --" << endl
|
||||
<< v.head(3) << endl << endl;
|
||||
|
||||
//print last three elements
|
||||
cout << "-- tail(3) --" << endl
|
||||
<< v.tail(3) << endl << endl;
|
||||
|
||||
//print between 2nd and 5th elem. inclusive
|
||||
cout << "-- segment(1,4) --" << endl
|
||||
<< v.segment(1,4) << endl;
|
||||
cout << "v.head(3) =" << endl << v.head(3) << endl << endl;
|
||||
cout << "v.tail<3>() = " << endl << v.tail<3>() << endl << endl;
|
||||
v.segment(1,4) *= 2;
|
||||
cout << "after 'v.segment(1,4) *= 2', v =" << endl << v << endl;
|
||||
}
|
||||
|
@ -15,5 +15,4 @@ int main()
|
||||
v(0) = 4;
|
||||
v(1) = v(0) - 1;
|
||||
std::cout << "Here is the vector v:\n" << v << std::endl;
|
||||
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user