add logAbsDeterminant()

move log and exp functors from Array to Core
update documentation
This commit is contained in:
Benoit Jacob 2009-08-24 09:46:17 -04:00
parent f31b5a7114
commit b8106e97b4
6 changed files with 87 additions and 70 deletions

View File

@ -43,38 +43,6 @@ Cwise<ExpressionType>::sqrt() const
return _expression();
}
/** \array_module
*
* \returns an expression of the coefficient-wise exponential of *this.
*
* Example: \include Cwise_exp.cpp
* Output: \verbinclude Cwise_exp.out
*
* \sa pow(), log(), sin(), cos()
*/
template<typename ExpressionType>
inline const EIGEN_CWISE_UNOP_RETURN_TYPE(ei_scalar_exp_op)
Cwise<ExpressionType>::exp() const
{
return _expression();
}
/** \array_module
*
* \returns an expression of the coefficient-wise logarithm of *this.
*
* Example: \include Cwise_log.cpp
* Output: \verbinclude Cwise_log.out
*
* \sa exp()
*/
template<typename ExpressionType>
inline const EIGEN_CWISE_UNOP_RETURN_TYPE(ei_scalar_log_op)
Cwise<ExpressionType>::log() const
{
return _expression();
}
/** \array_module
*
* \returns an expression of the coefficient-wise cosine of *this.

View File

@ -69,40 +69,6 @@ struct ei_functor_traits<ei_scalar_sqrt_op<Scalar> >
};
};
/** \internal
*
* \array_module
*
* \brief Template functor to compute the exponential of a scalar
*
* \sa class CwiseUnaryOp, Cwise::exp()
*/
template<typename Scalar> struct ei_scalar_exp_op EIGEN_EMPTY_STRUCT {
inline const Scalar operator() (const Scalar& a) const { return ei_exp(a); }
typedef typename ei_packet_traits<Scalar>::type Packet;
inline Packet packetOp(const Packet& a) const { return ei_pexp(a); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_exp_op<Scalar> >
{ enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = ei_packet_traits<Scalar>::HasExp }; };
/** \internal
*
* \array_module
*
* \brief Template functor to compute the logarithm of a scalar
*
* \sa class CwiseUnaryOp, Cwise::log()
*/
template<typename Scalar> struct ei_scalar_log_op EIGEN_EMPTY_STRUCT {
inline const Scalar operator() (const Scalar& a) const { return ei_log(a); }
typedef typename ei_packet_traits<Scalar>::type Packet;
inline Packet packetOp(const Packet& a) const { return ei_plog(a); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_log_op<Scalar> >
{ enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = ei_packet_traits<Scalar>::HasLog }; };
/** \internal
*
* \array_module

View File

@ -205,6 +205,35 @@ MatrixBase<Derived>::cast() const
return derived();
}
/** \returns an expression of the coefficient-wise exponential of *this.
*
* Example: \include Cwise_exp.cpp
* Output: \verbinclude Cwise_exp.out
*
* \sa pow(), log(), sin(), cos()
*/
template<typename ExpressionType>
inline const EIGEN_CWISE_UNOP_RETURN_TYPE(ei_scalar_exp_op)
Cwise<ExpressionType>::exp() const
{
return _expression();
}
/** \returns an expression of the coefficient-wise logarithm of *this.
*
* Example: \include Cwise_log.cpp
* Output: \verbinclude Cwise_log.out
*
* \sa exp()
*/
template<typename ExpressionType>
inline const EIGEN_CWISE_UNOP_RETURN_TYPE(ei_scalar_log_op)
Cwise<ExpressionType>::log() const
{
return _expression();
}
/** \relates MatrixBase */
template<typename Derived>
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::ScalarMultipleReturnType

View File

@ -298,6 +298,36 @@ template<typename Scalar>
struct ei_functor_traits<ei_scalar_imag_op<Scalar> >
{ enum { Cost = 0, PacketAccess = false }; };
/** \internal
*
* \brief Template functor to compute the exponential of a scalar
*
* \sa class CwiseUnaryOp, Cwise::exp()
*/
template<typename Scalar> struct ei_scalar_exp_op EIGEN_EMPTY_STRUCT {
inline const Scalar operator() (const Scalar& a) const { return ei_exp(a); }
typedef typename ei_packet_traits<Scalar>::type Packet;
inline Packet packetOp(const Packet& a) const { return ei_pexp(a); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_exp_op<Scalar> >
{ enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = ei_packet_traits<Scalar>::HasExp }; };
/** \internal
*
* \brief Template functor to compute the logarithm of a scalar
*
* \sa class CwiseUnaryOp, Cwise::log()
*/
template<typename Scalar> struct ei_scalar_log_op EIGEN_EMPTY_STRUCT {
inline const Scalar operator() (const Scalar& a) const { return ei_log(a); }
typedef typename ei_packet_traits<Scalar>::type Packet;
inline Packet packetOp(const Packet& a) const { return ei_plog(a); }
};
template<typename Scalar>
struct ei_functor_traits<ei_scalar_log_op<Scalar> >
{ enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = ei_packet_traits<Scalar>::HasLog }; };
/** \internal
* \brief Template functor to multiply a scalar by a fixed other one
*

View File

@ -37,10 +37,10 @@
*
* This class performs a rank-revealing QR decomposition using Householder transformations.
*
* This decomposition performs full-pivoting in order to be rank-revealing and achieve optimal
* numerical stability.
* This decomposition performs a very prudent full pivoting in order to be rank-revealing and achieve optimal
* numerical stability. The trade-off is that it is slower than HouseholderQR and ColPivotingHouseholderQR.
*
* \sa MatrixBase::householderRrqr()
* \sa MatrixBase::fullPivotingHouseholderQr()
*/
template<typename MatrixType> class FullPivotingHouseholderQR
{
@ -125,11 +125,26 @@ template<typename MatrixType> class FullPivotingHouseholderQR
*
* \warning a determinant can be very big or small, so for matrices
* of large enough dimension, there is a risk of overflow/underflow.
* One way to work around that is to use logAbsDeterminant() instead.
*
* \sa MatrixBase::determinant()
* \sa logAbsDeterminant(), MatrixBase::determinant()
*/
typename MatrixType::RealScalar absDeterminant() const;
/** \returns the natural log of the absolute value of the determinant of the matrix of which
* *this is the QR decomposition. It has only linear complexity
* (that is, O(n) where n is the dimension of the square matrix)
* as the QR decomposition has already been computed.
*
* \note This is only for square matrices.
*
* \note This method is useful to work around the risk of overflow/underflow that's inherent
* to determinant computation.
*
* \sa absDeterminant(), MatrixBase::determinant()
*/
typename MatrixType::RealScalar logAbsDeterminant() const;
/** \returns the rank of the matrix of which *this is the QR decomposition.
*
* \note This is computed at the time of the construction of the QR decomposition. This
@ -238,6 +253,14 @@ typename MatrixType::RealScalar FullPivotingHouseholderQR<MatrixType>::absDeterm
return ei_abs(m_qr.diagonal().prod());
}
template<typename MatrixType>
typename MatrixType::RealScalar FullPivotingHouseholderQR<MatrixType>::logAbsDeterminant() const
{
ei_assert(m_isInitialized && "FullPivotingHouseholderQR is not initialized.");
ei_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
return m_qr.diagonal().cwise().abs().cwise().log().sum();
}
template<typename MatrixType>
FullPivotingHouseholderQR<MatrixType>& FullPivotingHouseholderQR<MatrixType>::compute(const MatrixType& matrix)
{

View File

@ -99,6 +99,7 @@ template<typename MatrixType> void qr_invertible()
m1 = m3 * m1 * m3;
qr.compute(m1);
VERIFY_IS_APPROX(absdet, qr.absDeterminant());
VERIFY_IS_APPROX(ei_log(absdet), qr.logAbsDeterminant());
}
template<typename MatrixType> void qr_verify_assert()