Add full pivoting to LDLT decomposition.

This commit is contained in:
Keir Mierle 2009-02-03 17:50:35 +00:00
parent 6c5868cc99
commit b9a82be727
3 changed files with 130 additions and 47 deletions

View File

@ -2,6 +2,7 @@
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
// Copyright (C) 2009 Keir Mierle <mierle@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
@ -29,16 +30,18 @@
*
* \class LDLT
*
* \brief Robust Cholesky decomposition of a matrix and associated features
* \brief Robust Cholesky decomposition of a matrix
*
* \param MatrixType the type of the matrix of which we are computing the LDL^T Cholesky decomposition
* \param MatrixType the type of the matrix of which to compute the LDL^T Cholesky decomposition
*
* This class performs a Cholesky decomposition without square root of a symmetric, positive definite
* matrix A such that A = L D L^* = U^* D U, where L is lower triangular with a unit diagonal
* and D is a diagonal matrix.
* Perform a robust Cholesky decomposition of a symmetric positive semidefinite
* matrix \f$ A \f$ such that \f$ A = P^TLDL^*P \f$, where P is a permutation matrix, L
* is lower triangular with a unit diagonal and D is a diagonal matrix.
*
* Compared to a standard Cholesky decomposition, avoiding the square roots allows for faster and more
* stable computation.
* The decomposition uses pivoting to ensure stability, such that if A is
* positive semidefinite (i.e. eigenvalues are non-negative), then L will have
* zeros in the bottom right rank(A) - n submatrix. Avoiding the square root
* on D also stabilizes the computation.
*
* Note that during the decomposition, only the upper triangular part of A is considered. Therefore,
* the strict lower part does not have to store correct values.
@ -52,9 +55,13 @@ template<typename MatrixType> class LDLT
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;
typedef Matrix<int, MatrixType::RowsAtCompileTime, 1> IntColVectorType;
typedef Matrix<int, 1, MatrixType::RowsAtCompileTime> IntRowVectorType;
LDLT(const MatrixType& matrix)
: m_matrix(matrix.rows(), matrix.cols())
: m_matrix(matrix.rows(), matrix.cols()),
m_p(matrix.rows()),
m_transpositions(matrix.rows())
{
compute(matrix);
}
@ -62,11 +69,30 @@ template<typename MatrixType> class LDLT
/** \returns the lower triangular matrix L */
inline Part<MatrixType, UnitLowerTriangular> matrixL(void) const { return m_matrix; }
/** \returns a vector of integers, whose size is the number of rows of the matrix being decomposed,
* representing the P permutation i.e. the permutation of the rows. For its precise meaning,
* see the examples given in the documentation of class LU.
*/
inline const IntColVectorType& permutationP() const
{
return m_p;
}
/** \returns the coefficients of the diagonal matrix D */
inline DiagonalCoeffs<MatrixType> vectorD(void) const { return m_matrix.diagonal(); }
/** \returns true if the matrix is positive definite */
inline bool isPositiveDefinite(void) const { return m_isPositiveDefinite; }
inline bool isPositiveDefinite(void) const { return m_rank == m_matrix.rows(); }
/** \returns the rank of the matrix of which *this is the LDLT decomposition.
*
* \note This is computed at the time of the construction of the LDLT decomposition. This
* method does not perform any further computation.
*/
inline int rank() const
{
return m_rank;
}
template<typename RhsDerived, typename ResDerived>
bool solve(const MatrixBase<RhsDerived> &b, MatrixBase<ResDerived> *result) const;
@ -78,14 +104,15 @@ template<typename MatrixType> class LDLT
protected:
/** \internal
* Used to compute and store the cholesky decomposition A = L D L^* = U^* D U.
* Used to compute and store the Cholesky decomposition A = L D L^* = U^* D U.
* The strict upper part is used during the decomposition, the strict lower
* part correspond to the coefficients of L (its diagonal is equal to 1 and
* is not stored), and the diagonal entries correspond to D.
*/
MatrixType m_matrix;
bool m_isPositiveDefinite;
IntColVectorType m_p;
IntColVectorType m_transpositions;
int m_rank;
};
/** Compute / recompute the LLT decomposition A = L D L^* = U^* D U of \a matrix
@ -95,50 +122,92 @@ void LDLT<MatrixType>::compute(const MatrixType& a)
{
assert(a.rows()==a.cols());
const int size = a.rows();
m_matrix.resize(size, size);
m_isPositiveDefinite = true;
const RealScalar eps = precision<Scalar>();
m_rank = size;
if (size<=1)
{
m_matrix = a;
if (size <= 1) {
return;
}
// Let's preallocate a temporay vector to evaluate the matrix-vector product into it.
// Unlike the standard LLT decomposition, here we cannot evaluate it to the destination
// matrix because it a sub-row which is not compatible suitable for efficient packet evaluation.
// (at least if we assume the matrix is col-major)
RealScalar cutoff, biggest_in_corner;
// By using a temorary, packet-aligned products are guarenteed. In the LLT
// case this is unnecessary because the diagonal is included and will always
// have optimal alignment.
Matrix<Scalar,MatrixType::RowsAtCompileTime,1> _temporary(size);
// Note that, in this algorithm the rows of the strict upper part of m_matrix is used to store
// column vector, thus the strange .conjugate() and .transpose()...
for (int j = 0; j < size; ++j)
{
// Find largest element diagonal and pivot it upward for processing next.
int row_of_biggest_in_corner, col_of_biggest_in_corner;
biggest_in_corner = m_matrix.diagonal().end(size-j).cwise().abs()
.maxCoeff(&row_of_biggest_in_corner,
&col_of_biggest_in_corner);
m_matrix.row(0) = a.row(0).conjugate();
// The biggest overall is the point of reference to which further diagonals
// are compared; if any diagonal is negligible to machine epsilon compared
// to the largest overall, the algorithm bails. This cutoff is suggested
// in "Analysis of the Cholesky Decomposition of a Semi-definite Matrix" by
// Nicholas J. Higham. Also see "Accuracy and Stability of Numerical
// Algorithms" page 208, also by Higham.
if(j == 0) cutoff = ei_abs(precision<RealScalar>() * size * biggest_in_corner);
// Finish early if the matrix is not full rank.
if(biggest_in_corner < cutoff)
{
for(int i = j; i < size; i++) m_transpositions.coeffRef(i) = i;
m_matrix.block(j, j, size-j, size-j).fill(0); // Zero unreliable data.
m_rank = j;
break;
}
row_of_biggest_in_corner += j;
m_transpositions.coeffRef(j) = row_of_biggest_in_corner;
if(j != row_of_biggest_in_corner)
{
m_matrix.row(j).swap(m_matrix.row(row_of_biggest_in_corner));
m_matrix.col(j).swap(m_matrix.col(row_of_biggest_in_corner));
}
if (j == 0) {
m_matrix.row(0) = m_matrix.row(0).conjugate();
m_matrix.col(0).end(size-1) = m_matrix.row(0).end(size-1) / m_matrix.coeff(0,0);
for (int j = 1; j < size; ++j)
{
RealScalar tmp = ei_real(a.coeff(j,j) - (m_matrix.row(j).start(j) * m_matrix.col(j).start(j).conjugate()).coeff(0,0));
m_matrix.coeffRef(j,j) = tmp;
continue;
}
if (tmp < eps)
RealScalar Djj = ei_real(m_matrix.coeff(j,j) - (m_matrix.row(j).start(j)
* m_matrix.col(j).start(j).conjugate()).coeff(0,0));
m_matrix.coeffRef(j,j) = Djj;
// Finish early if the matrix is not full rank or is indefinite. This
// check is deliberately not against eps, so that the decomposition works
// regardless of overall matrix scale.
if(Djj <= 0)
{
m_isPositiveDefinite = false;
return;
for(int i = j; i < size; i++) m_transpositions.coeffRef(i) = i;
m_matrix.block(j, j, size-j, size-j).fill(0); // Zero unreliable data.
m_rank = j;
break;
}
int endSize = size - j - 1;
if (endSize>0)
{
if (endSize > 0) {
_temporary.end(endSize) = ( m_matrix.block(j+1,0, endSize, j)
* m_matrix.col(j).start(j).conjugate() ).lazy();
m_matrix.row(j).end(endSize) = a.row(j).end(endSize).conjugate()
m_matrix.row(j).end(endSize) = m_matrix.row(j).end(endSize).conjugate()
- _temporary.end(endSize).transpose();
m_matrix.col(j).end(endSize) = m_matrix.row(j).end(endSize) / tmp;
m_matrix.col(j).end(endSize) = m_matrix.row(j).end(endSize) / Djj;
}
}
// Reverse applied swaps to get P matrix.
for(int k = 0; k < size; ++k) m_p.coeffRef(k) = k;
for(int k = size-1; k >= 0; --k) {
std::swap(m_p.coeffRef(k), m_p.coeffRef(m_transpositions.coeff(k)));
}
}
/** Computes the solution x of \f$ A x = b \f$ using the current decomposition of A.
@ -147,7 +216,7 @@ void LDLT<MatrixType>::compute(const MatrixType& a)
* \returns true in case of success, false otherwise.
*
* In other words, it computes \f$ b = A^{-1} b \f$ with
* \f$ {L^{*}}^{-1} D^{-1} L^{-1} b \f$ from right to left.
* \f$ P^T{L^{*}}^{-1} D^{-1} L^{-1} P b \f$ from right to left.
*
* \sa LDLT::solveInPlace(), MatrixBase::ldlt()
*/
@ -177,16 +246,29 @@ bool LDLT<MatrixType>::solveInPlace(MatrixBase<Derived> &bAndX) const
{
const int size = m_matrix.rows();
ei_assert(size == bAndX.rows());
if (!m_isPositiveDefinite)
return false;
if (m_rank != size) return false;
// z = P b
for(int i = 0; i < size; ++i) bAndX.row(m_transpositions.coeff(i)).swap(bAndX.row(i));
// y = L^-1 z
matrixL().solveTriangularInPlace(bAndX);
bAndX = (m_matrix.cwise().inverse().template part<Diagonal>() * bAndX).lazy();
// w = D^-1 y
bAndX = (m_matrix.diagonal().cwise().inverse().asDiagonal() * bAndX).lazy();
// u = L^-T w
m_matrix.adjoint().template part<UnitUpperTriangular>().solveTriangularInPlace(bAndX);
// x = P^T u
for (int i = size-1; i >= 0; --i) bAndX.row(m_transpositions.coeff(i)).swap(bAndX.row(i));
return true;
}
/** \cholesky_module
* \returns the Cholesky decomposition without square root of \c *this
* \returns the Cholesky decomposition with full pivoting without square root of \c *this
*/
template<typename Derived>
inline const LDLT<typename MatrixBase<Derived>::PlainMatrixType>

View File

@ -83,7 +83,8 @@ template<typename MatrixType> void cholesky(const MatrixType& m)
{
LDLT<SquareMatrixType> ldlt(symm);
VERIFY(ldlt.isPositiveDefinite());
VERIFY_IS_APPROX(symm, ldlt.matrixL() * ldlt.vectorD().asDiagonal() * ldlt.matrixL().adjoint());
// TODO(keir): This doesn't make sense now that LDLT pivots.
//VERIFY_IS_APPROX(symm, ldlt.matrixL() * ldlt.vectorD().asDiagonal() * ldlt.matrixL().adjoint());
ldlt.solve(vecB, &vecX);
VERIFY_IS_APPROX(symm * vecX, vecB);
ldlt.solve(matB, &matX);

View File

@ -44,7 +44,7 @@ namespace Eigen
#define EI_PP_MAKE_STRING2(S) #S
#define EI_PP_MAKE_STRING(S) EI_PP_MAKE_STRING2(S)
#define EIGEN_DEFAULT_IO_FORMAT IOFormat(4, AlignCols, " ", "\n", "", "", "", "")
#ifndef EIGEN_NO_ASSERTION_CHECKING