Pulled latest updates from trunk.

This commit is contained in:
Benoit Steiner 2015-07-27 09:39:57 -07:00
commit b9db19aec4
5 changed files with 70 additions and 22 deletions

View File

@ -71,7 +71,7 @@ Index SparseLUImpl<Scalar,StorageIndex>::pivotL(const Index jcol, const RealScal
// Determine the largest abs numerical value for partial pivoting // Determine the largest abs numerical value for partial pivoting
Index diagind = iperm_c(jcol); // diagonal index Index diagind = iperm_c(jcol); // diagonal index
RealScalar pivmax = 0.0; RealScalar pivmax(-1.0);
Index pivptr = nsupc; Index pivptr = nsupc;
Index diag = emptyIdxLU; Index diag = emptyIdxLU;
RealScalar rtemp; RealScalar rtemp;
@ -87,8 +87,9 @@ Index SparseLUImpl<Scalar,StorageIndex>::pivotL(const Index jcol, const RealScal
} }
// Test for singularity // Test for singularity
if ( pivmax == 0.0 ) { if ( pivmax <= RealScalar(0.0) ) {
pivrow = lsub_ptr[pivptr]; // if pivmax == -1, the column is structurally empty, otherwise it is only numerically zero
pivrow = pivmax < RealScalar(0.0) ? diagind : lsub_ptr[pivptr];
perm_r(pivrow) = StorageIndex(jcol); perm_r(pivrow) = StorageIndex(jcol);
return (jcol+1); return (jcol+1);
} }
@ -104,7 +105,7 @@ Index SparseLUImpl<Scalar,StorageIndex>::pivotL(const Index jcol, const RealScal
// Diagonal element exists // Diagonal element exists
using std::abs; using std::abs;
rtemp = abs(lu_col_ptr[diag]); rtemp = abs(lu_col_ptr[diag]);
if (rtemp != 0.0 && rtemp >= thresh) pivptr = diag; if (rtemp != RealScalar(0.0) && rtemp >= thresh) pivptr = diag;
} }
pivrow = lsub_ptr[pivptr]; pivrow = lsub_ptr[pivptr];
} }

View File

@ -332,7 +332,18 @@ Index generate_sparse_square_problem(Solver&, typename Solver::MatrixType& A, De
return size; return size;
} }
template<typename Solver> void check_sparse_square_solving(Solver& solver, int maxSize = 300, int maxRealWorldSize = 100000)
struct prune_column {
Index m_col;
prune_column(Index col) : m_col(col) {}
template<class Scalar>
bool operator()(Index, Index col, const Scalar&) const {
return col != m_col;
}
};
template<typename Solver> void check_sparse_square_solving(Solver& solver, int maxSize = 300, int maxRealWorldSize = 100000, bool checkDeficient = false)
{ {
typedef typename Solver::MatrixType Mat; typedef typename Solver::MatrixType Mat;
typedef typename Mat::Scalar Scalar; typedef typename Mat::Scalar Scalar;
@ -364,6 +375,13 @@ template<typename Solver> void check_sparse_square_solving(Solver& solver, int m
b = DenseVector::Zero(size); b = DenseVector::Zero(size);
check_sparse_solving(solver, A, b, dA, b); check_sparse_solving(solver, A, b, dA, b);
} }
// regression test for Bug 792 (structurally rank deficient matrices):
if(checkDeficient && size>1) {
Index col = internal::random<int>(0,size-1);
A.prune(prune_column(col));
solver.compute(A);
VERIFY_IS_EQUAL(solver.info(), NumericalIssue);
}
} }
// First, get the folder // First, get the folder

View File

@ -42,8 +42,8 @@ template<typename T> void test_sparselu_T()
SparseLU<SparseMatrix<T, ColMajor, long int>, NaturalOrdering<long int> > sparselu_natural; SparseLU<SparseMatrix<T, ColMajor, long int>, NaturalOrdering<long int> > sparselu_natural;
check_sparse_square_solving(sparselu_colamd); check_sparse_square_solving(sparselu_colamd);
check_sparse_square_solving(sparselu_amd, 300, 2000); check_sparse_square_solving(sparselu_amd, 300, 2000, !true); // FIXME AMD ordering fails for structurally deficient matrices!
check_sparse_square_solving(sparselu_natural, 300, 2000); check_sparse_square_solving(sparselu_natural, 300, 2000, true);
check_sparse_square_abs_determinant(sparselu_colamd); check_sparse_square_abs_determinant(sparselu_colamd);
check_sparse_square_abs_determinant(sparselu_amd); check_sparse_square_abs_determinant(sparselu_amd);

View File

@ -66,7 +66,7 @@ class BaseTensorContractionMapper {
const bool left = (side == Lhs); const bool left = (side == Lhs);
Index nocontract_val = left ? row : col; Index nocontract_val = left ? row : col;
Index linidx = 0; Index linidx = 0;
for (int i = array_size<nocontract_t>::value - 1; i > 0; i--) { for (int i = static_cast<int>(array_size<nocontract_t>::value) - 1; i > 0; i--) {
const Index idx = nocontract_val / m_ij_strides[i]; const Index idx = nocontract_val / m_ij_strides[i];
linidx += idx * m_nocontract_strides[i]; linidx += idx * m_nocontract_strides[i];
nocontract_val -= idx * m_ij_strides[i]; nocontract_val -= idx * m_ij_strides[i];
@ -81,18 +81,20 @@ class BaseTensorContractionMapper {
} }
Index contract_val = left ? col : row; Index contract_val = left ? col : row;
for (int i = array_size<contract_t>::value - 1; i > 0; i--) { for (int i = static_cast<int>(array_size<contract_t>::value) - 1; i > 0; i--) {
const Index idx = contract_val / m_k_strides[i]; const Index idx = contract_val / m_k_strides[i];
linidx += idx * m_contract_strides[i]; linidx += idx * m_contract_strides[i];
contract_val -= idx * m_k_strides[i]; contract_val -= idx * m_k_strides[i];
} }
EIGEN_STATIC_ASSERT(array_size<contract_t>::value > 0, YOU_MADE_A_PROGRAMMING_MISTAKE);
if(array_size<contract_t>::value > 0) {
if (side == Rhs && inner_dim_contiguous) { if (side == Rhs && inner_dim_contiguous) {
eigen_assert(m_contract_strides[0] == 1); eigen_assert(m_contract_strides[0] == 1);
linidx += contract_val; linidx += contract_val;
} else { } else {
linidx += contract_val * m_contract_strides[0]; linidx += contract_val * m_contract_strides[0];
} }
}
return linidx; return linidx;
} }
@ -102,7 +104,7 @@ class BaseTensorContractionMapper {
const bool left = (side == Lhs); const bool left = (side == Lhs);
Index nocontract_val[2] = {left ? row : col, left ? row + distance : col}; Index nocontract_val[2] = {left ? row : col, left ? row + distance : col};
Index linidx[2] = {0, 0}; Index linidx[2] = {0, 0};
for (int i = array_size<nocontract_t>::value - 1; i > 0; i--) { for (int i = static_cast<int>(array_size<nocontract_t>::value) - 1; i > 0; i--) {
const Index idx0 = nocontract_val[0] / m_ij_strides[i]; const Index idx0 = nocontract_val[0] / m_ij_strides[i];
const Index idx1 = nocontract_val[1] / m_ij_strides[i]; const Index idx1 = nocontract_val[1] / m_ij_strides[i];
linidx[0] += idx0 * m_nocontract_strides[i]; linidx[0] += idx0 * m_nocontract_strides[i];
@ -122,7 +124,7 @@ class BaseTensorContractionMapper {
} }
Index contract_val[2] = {left ? col : row, left ? col : row + distance}; Index contract_val[2] = {left ? col : row, left ? col : row + distance};
for (int i = array_size<contract_t>::value - 1; i > 0; i--) { for (int i = static_cast<int>(array_size<contract_t>::value) - 1; i > 0; i--) {
const Index idx0 = contract_val[0] / m_k_strides[i]; const Index idx0 = contract_val[0] / m_k_strides[i];
const Index idx1 = contract_val[1] / m_k_strides[i]; const Index idx1 = contract_val[1] / m_k_strides[i];
linidx[0] += idx0 * m_contract_strides[i]; linidx[0] += idx0 * m_contract_strides[i];
@ -130,7 +132,7 @@ class BaseTensorContractionMapper {
contract_val[0] -= idx0 * m_k_strides[i]; contract_val[0] -= idx0 * m_k_strides[i];
contract_val[1] -= idx1 * m_k_strides[i]; contract_val[1] -= idx1 * m_k_strides[i];
} }
EIGEN_STATIC_ASSERT(array_size<contract_t>::value > 0, YOU_MADE_A_PROGRAMMING_MISTAKE);
if (side == Rhs && inner_dim_contiguous) { if (side == Rhs && inner_dim_contiguous) {
eigen_assert(m_contract_strides[0] == 1); eigen_assert(m_contract_strides[0] == 1);
linidx[0] += contract_val[0]; linidx[0] += contract_val[0];
@ -509,8 +511,6 @@ struct TensorContractionEvaluatorBase
static_cast<int>(TensorEvaluator<RightArgType, Device>::Layout)), static_cast<int>(TensorEvaluator<RightArgType, Device>::Layout)),
YOU_MADE_A_PROGRAMMING_MISTAKE); YOU_MADE_A_PROGRAMMING_MISTAKE);
eigen_assert((internal::array_size<contract_t>::value > 0) && "Must contract on some indices");
DSizes<Index, LDims> eval_left_dims; DSizes<Index, LDims> eval_left_dims;
DSizes<Index, RDims> eval_right_dims; DSizes<Index, RDims> eval_right_dims;
@ -558,7 +558,9 @@ struct TensorContractionEvaluatorBase
m_i_strides[0] = 1; m_i_strides[0] = 1;
m_j_strides[0] = 1; m_j_strides[0] = 1;
if(ContractDims) {
m_k_strides[0] = 1; m_k_strides[0] = 1;
}
m_i_size = 1; m_i_size = 1;
m_j_size = 1; m_j_size = 1;

View File

@ -448,6 +448,31 @@ static void test_small_blocking_factors()
} }
} }
template<int DataLayout>
static void test_tensor_product()
{
Tensor<float, 2, DataLayout> mat1(2, 3);
Tensor<float, 2, DataLayout> mat2(4, 1);
mat1.setRandom();
mat2.setRandom();
Tensor<float, 4, DataLayout> result = mat1.contract(mat2, Eigen::array<DimPair, 0>{{}});
VERIFY_IS_EQUAL(result.dimension(0), 2);
VERIFY_IS_EQUAL(result.dimension(1), 3);
VERIFY_IS_EQUAL(result.dimension(2), 4);
VERIFY_IS_EQUAL(result.dimension(3), 1);
for (int i = 0; i < result.dimension(0); ++i) {
for (int j = 0; j < result.dimension(1); ++j) {
for (int k = 0; k < result.dimension(2); ++k) {
for (int l = 0; l < result.dimension(3); ++l) {
VERIFY_IS_APPROX(result(i, j, k, l), mat1(i, j) * mat2(k, l) );
}
}
}
}
}
void test_cxx11_tensor_contraction() void test_cxx11_tensor_contraction()
{ {
@ -477,4 +502,6 @@ void test_cxx11_tensor_contraction()
CALL_SUBTEST(test_tensor_vector<RowMajor>()); CALL_SUBTEST(test_tensor_vector<RowMajor>());
CALL_SUBTEST(test_small_blocking_factors<ColMajor>()); CALL_SUBTEST(test_small_blocking_factors<ColMajor>());
CALL_SUBTEST(test_small_blocking_factors<RowMajor>()); CALL_SUBTEST(test_small_blocking_factors<RowMajor>());
CALL_SUBTEST(test_tensor_product<ColMajor>());
CALL_SUBTEST(test_tensor_product<RowMajor>());
} }