mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-22 01:29:35 +08:00
Remove mat.pow * vec specialization, which causes segfault for mat.pow * mat.pow
This commit is contained in:
parent
ee8a28fb85
commit
b9fc9d8f32
@ -59,7 +59,6 @@
|
|||||||
#include "src/MatrixFunctions/MatrixFunction.h"
|
#include "src/MatrixFunctions/MatrixFunction.h"
|
||||||
#include "src/MatrixFunctions/MatrixSquareRoot.h"
|
#include "src/MatrixFunctions/MatrixSquareRoot.h"
|
||||||
#include "src/MatrixFunctions/MatrixLogarithm.h"
|
#include "src/MatrixFunctions/MatrixLogarithm.h"
|
||||||
#include "src/MatrixFunctions/MatrixPowerBase.h"
|
|
||||||
#include "src/MatrixFunctions/MatrixPower.h"
|
#include "src/MatrixFunctions/MatrixPower.h"
|
||||||
|
|
||||||
|
|
||||||
|
@ -1,7 +1,7 @@
|
|||||||
// This file is part of Eigen, a lightweight C++ template library
|
// This file is part of Eigen, a lightweight C++ template library
|
||||||
// for linear algebra.
|
// for linear algebra.
|
||||||
//
|
//
|
||||||
// Copyright (C) 2012 Chen-Pang He <jdh8@ms63.hinet.net>
|
// Copyright (C) 2012, 2013 Chen-Pang He <jdh8@ms63.hinet.net>
|
||||||
//
|
//
|
||||||
// This Source Code Form is subject to the terms of the Mozilla
|
// This Source Code Form is subject to the terms of the Mozilla
|
||||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||||
@ -12,6 +12,248 @@
|
|||||||
|
|
||||||
namespace Eigen {
|
namespace Eigen {
|
||||||
|
|
||||||
|
namespace MatrixPowerHelper {
|
||||||
|
|
||||||
|
template<typename MatrixPowerType>
|
||||||
|
class ReturnValue : public ReturnByValue< ReturnValue<MatrixPowerType> >
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
typedef typename MatrixPowerType::PlainObject::RealScalar RealScalar;
|
||||||
|
typedef typename MatrixPowerType::PlainObject::Index Index;
|
||||||
|
|
||||||
|
ReturnValue(MatrixPowerType& pow, RealScalar p) : m_pow(pow), m_p(p)
|
||||||
|
{ }
|
||||||
|
|
||||||
|
template<typename ResultType>
|
||||||
|
inline void evalTo(ResultType& res) const
|
||||||
|
{ m_pow.compute(res, m_p); }
|
||||||
|
|
||||||
|
Index rows() const { return m_pow.rows(); }
|
||||||
|
Index cols() const { return m_pow.cols(); }
|
||||||
|
|
||||||
|
private:
|
||||||
|
MatrixPowerType& m_pow;
|
||||||
|
const RealScalar m_p;
|
||||||
|
ReturnValue& operator=(const ReturnValue&);
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace MatrixPowerHelper
|
||||||
|
|
||||||
|
template<typename MatrixType>
|
||||||
|
class MatrixPowerAtomic
|
||||||
|
{
|
||||||
|
private:
|
||||||
|
enum {
|
||||||
|
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||||
|
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime
|
||||||
|
};
|
||||||
|
typedef typename MatrixType::Scalar Scalar;
|
||||||
|
typedef typename MatrixType::RealScalar RealScalar;
|
||||||
|
typedef std::complex<RealScalar> ComplexScalar;
|
||||||
|
typedef typename MatrixType::Index Index;
|
||||||
|
typedef Array< Scalar, RowsAtCompileTime, 1, ColMajor, MaxRowsAtCompileTime > ArrayType;
|
||||||
|
|
||||||
|
const MatrixType& m_A;
|
||||||
|
RealScalar m_p;
|
||||||
|
|
||||||
|
void computePade(int degree, const MatrixType& IminusT, MatrixType& res) const;
|
||||||
|
void compute2x2(MatrixType& res, RealScalar p) const;
|
||||||
|
void computeBig(MatrixType& res) const;
|
||||||
|
static int getPadeDegree(float normIminusT);
|
||||||
|
static int getPadeDegree(double normIminusT);
|
||||||
|
static int getPadeDegree(long double normIminusT);
|
||||||
|
static ComplexScalar computeSuperDiag(const ComplexScalar&, const ComplexScalar&, RealScalar p);
|
||||||
|
static RealScalar computeSuperDiag(RealScalar, RealScalar, RealScalar p);
|
||||||
|
|
||||||
|
public:
|
||||||
|
MatrixPowerAtomic(const MatrixType& T, RealScalar p);
|
||||||
|
void compute(MatrixType& res) const;
|
||||||
|
};
|
||||||
|
|
||||||
|
template<typename MatrixType>
|
||||||
|
MatrixPowerAtomic<MatrixType>::MatrixPowerAtomic(const MatrixType& T, RealScalar p) :
|
||||||
|
m_A(T), m_p(p)
|
||||||
|
{ eigen_assert(T.rows() == T.cols()); }
|
||||||
|
|
||||||
|
template<typename MatrixType>
|
||||||
|
void MatrixPowerAtomic<MatrixType>::compute(MatrixType& res) const
|
||||||
|
{
|
||||||
|
res.resizeLike(m_A);
|
||||||
|
switch (m_A.rows()) {
|
||||||
|
case 0:
|
||||||
|
break;
|
||||||
|
case 1:
|
||||||
|
res(0,0) = std::pow(m_A(0,0), m_p);
|
||||||
|
break;
|
||||||
|
case 2:
|
||||||
|
compute2x2(res, m_p);
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
computeBig(res);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename MatrixType>
|
||||||
|
void MatrixPowerAtomic<MatrixType>::computePade(int degree, const MatrixType& IminusT, MatrixType& res) const
|
||||||
|
{
|
||||||
|
int i = degree<<1;
|
||||||
|
res = (m_p-degree) / ((i-1)<<1) * IminusT;
|
||||||
|
for (--i; i; --i) {
|
||||||
|
res = (MatrixType::Identity(IminusT.rows(), IminusT.cols()) + res).template triangularView<Upper>()
|
||||||
|
.solve((i==1 ? -m_p : i&1 ? (-m_p-(i>>1))/(i<<1) : (m_p-(i>>1))/((i-1)<<1)) * IminusT).eval();
|
||||||
|
}
|
||||||
|
res += MatrixType::Identity(IminusT.rows(), IminusT.cols());
|
||||||
|
}
|
||||||
|
|
||||||
|
// This function assumes that res has the correct size (see bug 614)
|
||||||
|
template<typename MatrixType>
|
||||||
|
void MatrixPowerAtomic<MatrixType>::compute2x2(MatrixType& res, RealScalar p) const
|
||||||
|
{
|
||||||
|
using std::abs;
|
||||||
|
using std::pow;
|
||||||
|
|
||||||
|
ArrayType logTdiag = m_A.diagonal().array().log();
|
||||||
|
res.coeffRef(0,0) = pow(m_A.coeff(0,0), p);
|
||||||
|
|
||||||
|
for (Index i=1; i < m_A.cols(); ++i) {
|
||||||
|
res.coeffRef(i,i) = pow(m_A.coeff(i,i), p);
|
||||||
|
if (m_A.coeff(i-1,i-1) == m_A.coeff(i,i))
|
||||||
|
res.coeffRef(i-1,i) = p * pow(m_A.coeff(i,i), p-1);
|
||||||
|
else if (2*abs(m_A.coeff(i-1,i-1)) < abs(m_A.coeff(i,i)) || 2*abs(m_A.coeff(i,i)) < abs(m_A.coeff(i-1,i-1)))
|
||||||
|
res.coeffRef(i-1,i) = (res.coeff(i,i)-res.coeff(i-1,i-1)) / (m_A.coeff(i,i)-m_A.coeff(i-1,i-1));
|
||||||
|
else
|
||||||
|
res.coeffRef(i-1,i) = computeSuperDiag(m_A.coeff(i,i), m_A.coeff(i-1,i-1), p);
|
||||||
|
res.coeffRef(i-1,i) *= m_A.coeff(i-1,i);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename MatrixType>
|
||||||
|
void MatrixPowerAtomic<MatrixType>::computeBig(MatrixType& res) const
|
||||||
|
{
|
||||||
|
const int digits = std::numeric_limits<RealScalar>::digits;
|
||||||
|
const RealScalar maxNormForPade = digits <= 24? 4.3386528e-1f: // sigle precision
|
||||||
|
digits <= 53? 2.789358995219730e-1: // double precision
|
||||||
|
digits <= 64? 2.4471944416607995472e-1L: // extended precision
|
||||||
|
digits <= 106? 1.1016843812851143391275867258512e-1L: // double-double
|
||||||
|
9.134603732914548552537150753385375e-2L; // quadruple precision
|
||||||
|
MatrixType IminusT, sqrtT, T = m_A.template triangularView<Upper>();
|
||||||
|
RealScalar normIminusT;
|
||||||
|
int degree, degree2, numberOfSquareRoots = 0;
|
||||||
|
bool hasExtraSquareRoot = false;
|
||||||
|
|
||||||
|
/* FIXME
|
||||||
|
* For singular T, norm(I - T) >= 1 but maxNormForPade < 1, leads to infinite
|
||||||
|
* loop. We should move 0 eigenvalues to bottom right corner. We need not
|
||||||
|
* worry about tiny values (e.g. 1e-300) because they will reach 1 if
|
||||||
|
* repetitively sqrt'ed.
|
||||||
|
*
|
||||||
|
* If the 0 eigenvalues are semisimple, they can form a 0 matrix at the
|
||||||
|
* bottom right corner.
|
||||||
|
*
|
||||||
|
* [ T A ]^p [ T^p (T^-1 T^p A) ]
|
||||||
|
* [ ] = [ ]
|
||||||
|
* [ 0 0 ] [ 0 0 ]
|
||||||
|
*/
|
||||||
|
for (Index i=0; i < m_A.cols(); ++i)
|
||||||
|
eigen_assert(m_A(i,i) != RealScalar(0));
|
||||||
|
|
||||||
|
while (true) {
|
||||||
|
IminusT = MatrixType::Identity(m_A.rows(), m_A.cols()) - T;
|
||||||
|
normIminusT = IminusT.cwiseAbs().colwise().sum().maxCoeff();
|
||||||
|
if (normIminusT < maxNormForPade) {
|
||||||
|
degree = getPadeDegree(normIminusT);
|
||||||
|
degree2 = getPadeDegree(normIminusT/2);
|
||||||
|
if (degree - degree2 <= 1 || hasExtraSquareRoot)
|
||||||
|
break;
|
||||||
|
hasExtraSquareRoot = true;
|
||||||
|
}
|
||||||
|
MatrixSquareRootTriangular<MatrixType>(T).compute(sqrtT);
|
||||||
|
T = sqrtT.template triangularView<Upper>();
|
||||||
|
++numberOfSquareRoots;
|
||||||
|
}
|
||||||
|
computePade(degree, IminusT, res);
|
||||||
|
|
||||||
|
for (; numberOfSquareRoots; --numberOfSquareRoots) {
|
||||||
|
compute2x2(res, std::ldexp(m_p, -numberOfSquareRoots));
|
||||||
|
res = res.template triangularView<Upper>() * res;
|
||||||
|
}
|
||||||
|
compute2x2(res, m_p);
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename MatrixType>
|
||||||
|
inline int MatrixPowerAtomic<MatrixType>::getPadeDegree(float normIminusT)
|
||||||
|
{
|
||||||
|
const float maxNormForPade[] = { 2.8064004e-1f /* degree = 3 */ , 4.3386528e-1f };
|
||||||
|
int degree = 3;
|
||||||
|
for (; degree <= 4; ++degree)
|
||||||
|
if (normIminusT <= maxNormForPade[degree - 3])
|
||||||
|
break;
|
||||||
|
return degree;
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename MatrixType>
|
||||||
|
inline int MatrixPowerAtomic<MatrixType>::getPadeDegree(double normIminusT)
|
||||||
|
{
|
||||||
|
const double maxNormForPade[] = { 1.884160592658218e-2 /* degree = 3 */ , 6.038881904059573e-2, 1.239917516308172e-1,
|
||||||
|
1.999045567181744e-1, 2.789358995219730e-1 };
|
||||||
|
int degree = 3;
|
||||||
|
for (; degree <= 7; ++degree)
|
||||||
|
if (normIminusT <= maxNormForPade[degree - 3])
|
||||||
|
break;
|
||||||
|
return degree;
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename MatrixType>
|
||||||
|
inline int MatrixPowerAtomic<MatrixType>::getPadeDegree(long double normIminusT)
|
||||||
|
{
|
||||||
|
#if LDBL_MANT_DIG == 53
|
||||||
|
const int maxPadeDegree = 7;
|
||||||
|
const double maxNormForPade[] = { 1.884160592658218e-2L /* degree = 3 */ , 6.038881904059573e-2L, 1.239917516308172e-1L,
|
||||||
|
1.999045567181744e-1L, 2.789358995219730e-1L };
|
||||||
|
#elif LDBL_MANT_DIG <= 64
|
||||||
|
const int maxPadeDegree = 8;
|
||||||
|
const double maxNormForPade[] = { 6.3854693117491799460e-3L /* degree = 3 */ , 2.6394893435456973676e-2L,
|
||||||
|
6.4216043030404063729e-2L, 1.1701165502926694307e-1L, 1.7904284231268670284e-1L, 2.4471944416607995472e-1L };
|
||||||
|
#elif LDBL_MANT_DIG <= 106
|
||||||
|
const int maxPadeDegree = 10;
|
||||||
|
const double maxNormForPade[] = { 1.0007161601787493236741409687186e-4L /* degree = 3 */ ,
|
||||||
|
1.0007161601787493236741409687186e-3L, 4.7069769360887572939882574746264e-3L, 1.3220386624169159689406653101695e-2L,
|
||||||
|
2.8063482381631737920612944054906e-2L, 4.9625993951953473052385361085058e-2L, 7.7367040706027886224557538328171e-2L,
|
||||||
|
1.1016843812851143391275867258512e-1L };
|
||||||
|
#else
|
||||||
|
const int maxPadeDegree = 10;
|
||||||
|
const double maxNormForPade[] = { 5.524506147036624377378713555116378e-5L /* degree = 3 */ ,
|
||||||
|
6.640600568157479679823602193345995e-4L, 3.227716520106894279249709728084626e-3L,
|
||||||
|
9.619593944683432960546978734646284e-3L, 2.134595382433742403911124458161147e-2L,
|
||||||
|
3.908166513900489428442993794761185e-2L, 6.266780814639442865832535460550138e-2L,
|
||||||
|
9.134603732914548552537150753385375e-2L };
|
||||||
|
#endif
|
||||||
|
int degree = 3;
|
||||||
|
for (; degree <= maxPadeDegree; ++degree)
|
||||||
|
if (normIminusT <= maxNormForPade[degree - 3])
|
||||||
|
break;
|
||||||
|
return degree;
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename MatrixType>
|
||||||
|
inline typename MatrixPowerAtomic<MatrixType>::ComplexScalar
|
||||||
|
MatrixPowerAtomic<MatrixType>::computeSuperDiag(const ComplexScalar& curr, const ComplexScalar& prev, RealScalar p)
|
||||||
|
{
|
||||||
|
ComplexScalar logCurr = std::log(curr);
|
||||||
|
ComplexScalar logPrev = std::log(prev);
|
||||||
|
int unwindingNumber = std::ceil((numext::imag(logCurr - logPrev) - M_PI) / (2*M_PI));
|
||||||
|
ComplexScalar w = numext::atanh2(curr - prev, curr + prev) + ComplexScalar(0, M_PI*unwindingNumber);
|
||||||
|
return RealScalar(2) * std::exp(RealScalar(0.5) * p * (logCurr + logPrev)) * std::sinh(p * w) / (curr - prev);
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename MatrixType>
|
||||||
|
inline typename MatrixPowerAtomic<MatrixType>::RealScalar
|
||||||
|
MatrixPowerAtomic<MatrixType>::computeSuperDiag(RealScalar curr, RealScalar prev, RealScalar p)
|
||||||
|
{
|
||||||
|
RealScalar w = numext::atanh2(curr - prev, curr + prev);
|
||||||
|
return 2 * std::exp(p * (std::log(curr) + std::log(prev)) / 2) * std::sinh(p * w) / (curr - prev);
|
||||||
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* \ingroup MatrixFunctions_Module
|
* \ingroup MatrixFunctions_Module
|
||||||
*
|
*
|
||||||
@ -24,10 +266,22 @@ namespace Eigen {
|
|||||||
* to an arbitrary real power.
|
* to an arbitrary real power.
|
||||||
*/
|
*/
|
||||||
template<typename MatrixType>
|
template<typename MatrixType>
|
||||||
class MatrixPowerTriangular : public MatrixPowerBase<MatrixPowerTriangular<MatrixType>,MatrixType>
|
class MatrixPowerTriangular
|
||||||
{
|
{
|
||||||
|
private:
|
||||||
|
enum {
|
||||||
|
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||||
|
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||||||
|
Options = MatrixType::Options,
|
||||||
|
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
||||||
|
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
|
||||||
|
};
|
||||||
|
typedef typename MatrixType::Scalar Scalar;
|
||||||
|
typedef typename MatrixType::RealScalar RealScalar;
|
||||||
|
typedef typename MatrixType::Index Index;
|
||||||
|
|
||||||
public:
|
public:
|
||||||
EIGEN_MATRIX_POWER_PUBLIC_INTERFACE(MatrixPowerTriangular)
|
typedef MatrixType PlainObject;
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* \brief Constructor.
|
* \brief Constructor.
|
||||||
@ -37,10 +291,9 @@ class MatrixPowerTriangular : public MatrixPowerBase<MatrixPowerTriangular<Matri
|
|||||||
* The class stores a reference to A, so it should not be changed
|
* The class stores a reference to A, so it should not be changed
|
||||||
* (or destroyed) before evaluation.
|
* (or destroyed) before evaluation.
|
||||||
*/
|
*/
|
||||||
explicit MatrixPowerTriangular(const MatrixType& A) : Base(A), m_T(Base::m_A)
|
explicit MatrixPowerTriangular(const MatrixType& A) : m_A(A), m_conditionNumber(0)
|
||||||
{ }
|
{ eigen_assert(A.rows() == A.cols()); }
|
||||||
|
|
||||||
#ifdef EIGEN_PARSED_BY_DOXYGEN
|
|
||||||
/**
|
/**
|
||||||
* \brief Returns the matrix power.
|
* \brief Returns the matrix power.
|
||||||
*
|
*
|
||||||
@ -48,8 +301,8 @@ class MatrixPowerTriangular : public MatrixPowerBase<MatrixPowerTriangular<Matri
|
|||||||
* \return The expression \f$ A^p \f$, where A is specified in the
|
* \return The expression \f$ A^p \f$, where A is specified in the
|
||||||
* constructor.
|
* constructor.
|
||||||
*/
|
*/
|
||||||
const MatrixPowerBaseReturnValue<MatrixPowerTriangular<MatrixType>,MatrixType> operator()(RealScalar p);
|
const MatrixPowerHelper::ReturnValue<MatrixPowerTriangular> operator()(RealScalar p)
|
||||||
#endif
|
{ return MatrixPowerHelper::ReturnValue<MatrixPowerTriangular>(*this, p); }
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* \brief Compute the matrix power.
|
* \brief Compute the matrix power.
|
||||||
@ -60,33 +313,18 @@ class MatrixPowerTriangular : public MatrixPowerBase<MatrixPowerTriangular<Matri
|
|||||||
*/
|
*/
|
||||||
void compute(MatrixType& res, RealScalar p);
|
void compute(MatrixType& res, RealScalar p);
|
||||||
|
|
||||||
/**
|
Index rows() const { return m_A.rows(); }
|
||||||
* \brief Compute the matrix power multiplied by another matrix.
|
Index cols() const { return m_A.cols(); }
|
||||||
*
|
|
||||||
* \param[in] b a matrix with the same rows as A.
|
|
||||||
* \param[in] p exponent, a real scalar.
|
|
||||||
* \param[out] res \f$ A^p b \f$, where A is specified in the
|
|
||||||
* constructor.
|
|
||||||
*/
|
|
||||||
template<typename Derived, typename ResultType>
|
|
||||||
void compute(const Derived& b, ResultType& res, RealScalar p);
|
|
||||||
|
|
||||||
private:
|
private:
|
||||||
EIGEN_MATRIX_POWER_PROTECTED_MEMBERS(MatrixPowerTriangular)
|
typename MatrixType::Nested m_A;
|
||||||
|
MatrixType m_tmp;
|
||||||
const TriangularView<MatrixType,Upper> m_T;
|
RealScalar m_conditionNumber;
|
||||||
|
|
||||||
RealScalar modfAndInit(RealScalar, RealScalar*);
|
RealScalar modfAndInit(RealScalar, RealScalar*);
|
||||||
|
|
||||||
template<typename Derived, typename ResultType>
|
|
||||||
void apply(const Derived&, ResultType&, bool&);
|
|
||||||
|
|
||||||
template<typename ResultType>
|
template<typename ResultType>
|
||||||
void computeIntPower(ResultType&, RealScalar);
|
void computeIntPower(ResultType&, RealScalar);
|
||||||
|
|
||||||
template<typename Derived, typename ResultType>
|
|
||||||
void computeIntPower(const Derived&, ResultType&, RealScalar);
|
|
||||||
|
|
||||||
template<typename ResultType>
|
template<typename ResultType>
|
||||||
void computeFracPower(ResultType&, RealScalar);
|
void computeFracPower(ResultType&, RealScalar);
|
||||||
};
|
};
|
||||||
@ -94,41 +332,25 @@ class MatrixPowerTriangular : public MatrixPowerBase<MatrixPowerTriangular<Matri
|
|||||||
template<typename MatrixType>
|
template<typename MatrixType>
|
||||||
void MatrixPowerTriangular<MatrixType>::compute(MatrixType& res, RealScalar p)
|
void MatrixPowerTriangular<MatrixType>::compute(MatrixType& res, RealScalar p)
|
||||||
{
|
{
|
||||||
switch (m_A.cols()) {
|
switch (cols()) {
|
||||||
case 0:
|
case 0:
|
||||||
break;
|
break;
|
||||||
case 1:
|
case 1:
|
||||||
res(0,0) = std::pow(m_T.coeff(0,0), p);
|
res(0,0) = std::pow(m_A.coeff(0,0), p);
|
||||||
break;
|
break;
|
||||||
default:
|
default:
|
||||||
RealScalar intpart, x = modfAndInit(p, &intpart);
|
RealScalar intpart, x = modfAndInit(p, &intpart);
|
||||||
res = MatrixType::Identity(m_A.rows(), m_A.cols());
|
|
||||||
computeIntPower(res, intpart);
|
computeIntPower(res, intpart);
|
||||||
computeFracPower(res, x);
|
computeFracPower(res, x);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
template<typename MatrixType>
|
|
||||||
template<typename Derived, typename ResultType>
|
|
||||||
void MatrixPowerTriangular<MatrixType>::compute(const Derived& b, ResultType& res, RealScalar p)
|
|
||||||
{
|
|
||||||
switch (m_A.cols()) {
|
|
||||||
case 0:
|
|
||||||
break;
|
|
||||||
case 1:
|
|
||||||
res = std::pow(m_T.coeff(0,0), p) * b;
|
|
||||||
break;
|
|
||||||
default:
|
|
||||||
RealScalar intpart, x = modfAndInit(p, &intpart);
|
|
||||||
computeIntPower(b, res, intpart);
|
|
||||||
computeFracPower(res, x);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
template<typename MatrixType>
|
template<typename MatrixType>
|
||||||
typename MatrixPowerTriangular<MatrixType>::RealScalar
|
typename MatrixPowerTriangular<MatrixType>::RealScalar
|
||||||
MatrixPowerTriangular<MatrixType>::modfAndInit(RealScalar x, RealScalar* intpart)
|
MatrixPowerTriangular<MatrixType>::modfAndInit(RealScalar x, RealScalar* intpart)
|
||||||
{
|
{
|
||||||
|
typedef Array< RealScalar, RowsAtCompileTime, 1, ColMajor, MaxRowsAtCompileTime > RealArray;
|
||||||
|
|
||||||
*intpart = std::floor(x);
|
*intpart = std::floor(x);
|
||||||
RealScalar res = x - *intpart;
|
RealScalar res = x - *intpart;
|
||||||
|
|
||||||
@ -137,95 +359,39 @@ MatrixPowerTriangular<MatrixType>::modfAndInit(RealScalar x, RealScalar* intpart
|
|||||||
m_conditionNumber = absTdiag.maxCoeff() / absTdiag.minCoeff();
|
m_conditionNumber = absTdiag.maxCoeff() / absTdiag.minCoeff();
|
||||||
}
|
}
|
||||||
|
|
||||||
if (res>RealScalar(0.5) && res>(1-res)*std::pow(m_conditionNumber,res)) {
|
if (res>RealScalar(0.5) && res>(1-res)*std::pow(m_conditionNumber, res)) {
|
||||||
--res;
|
--res;
|
||||||
++*intpart;
|
++*intpart;
|
||||||
}
|
}
|
||||||
return res;
|
return res;
|
||||||
}
|
}
|
||||||
|
|
||||||
template<typename MatrixType>
|
|
||||||
template<typename Derived, typename ResultType>
|
|
||||||
void MatrixPowerTriangular<MatrixType>::apply(const Derived& b, ResultType& res, bool& init)
|
|
||||||
{
|
|
||||||
if (init)
|
|
||||||
res = m_tmp1.template triangularView<Upper>() * res;
|
|
||||||
else {
|
|
||||||
init = true;
|
|
||||||
res.noalias() = m_tmp1.template triangularView<Upper>() * b;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
template<typename MatrixType>
|
template<typename MatrixType>
|
||||||
template<typename ResultType>
|
template<typename ResultType>
|
||||||
void MatrixPowerTriangular<MatrixType>::computeIntPower(ResultType& res, RealScalar p)
|
void MatrixPowerTriangular<MatrixType>::computeIntPower(ResultType& res, RealScalar p)
|
||||||
{
|
{
|
||||||
RealScalar pp = std::abs(p);
|
RealScalar pp = std::abs(p);
|
||||||
|
|
||||||
if (p<0) m_tmp1 = m_T.solve(MatrixType::Identity(m_A.rows(), m_A.cols()));
|
if (p<0) m_tmp = m_A.template triangularView<Upper>().solve(MatrixType::Identity(rows(), cols()));
|
||||||
else m_tmp1 = m_T;
|
else m_tmp = m_A.template triangularView<Upper>();
|
||||||
|
|
||||||
|
res = MatrixType::Identity(rows(), cols());
|
||||||
while (pp >= 1) {
|
while (pp >= 1) {
|
||||||
if (std::fmod(pp, 2) >= 1)
|
if (std::fmod(pp, 2) >= 1)
|
||||||
res = m_tmp1.template triangularView<Upper>() * res;
|
res.template triangularView<Upper>() = m_tmp.template triangularView<Upper>() * res;
|
||||||
m_tmp1 = m_tmp1.template triangularView<Upper>() * m_tmp1;
|
m_tmp.template triangularView<Upper>() = m_tmp.template triangularView<Upper>() * m_tmp;
|
||||||
pp /= 2;
|
pp /= 2;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
template<typename MatrixType>
|
|
||||||
template<typename Derived, typename ResultType>
|
|
||||||
void MatrixPowerTriangular<MatrixType>::computeIntPower(const Derived& b, ResultType& res, RealScalar p)
|
|
||||||
{
|
|
||||||
if (b.cols() >= m_A.cols()) {
|
|
||||||
m_tmp2 = MatrixType::Identity(m_A.rows(), m_A.cols());
|
|
||||||
computeIntPower(m_tmp2, p);
|
|
||||||
res.noalias() = m_tmp2.template triangularView<Upper>() * b;
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
RealScalar pp = std::abs(p);
|
|
||||||
int squarings, applyings = internal::binary_powering_cost(pp, &squarings);
|
|
||||||
bool init = false;
|
|
||||||
|
|
||||||
if (p==0) {
|
|
||||||
res = b;
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
else if (p>0) {
|
|
||||||
m_tmp1 = m_T;
|
|
||||||
}
|
|
||||||
else if (b.cols()*(pp-applyings) <= m_A.cols()*squarings) {
|
|
||||||
res = m_T.solve(b);
|
|
||||||
for (--pp; pp >= 1; --pp)
|
|
||||||
res = m_T.solve(res);
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
m_tmp1 = m_T.solve(MatrixType::Identity(m_A.rows(), m_A.cols()));
|
|
||||||
}
|
|
||||||
|
|
||||||
while (b.cols()*(pp-applyings) > m_A.cols()*squarings) {
|
|
||||||
if (std::fmod(pp, 2) >= 1) {
|
|
||||||
apply(b, res, init);
|
|
||||||
--applyings;
|
|
||||||
}
|
|
||||||
m_tmp1 = m_tmp1.template triangularView<Upper>() * m_tmp1;
|
|
||||||
--squarings;
|
|
||||||
pp /= 2;
|
|
||||||
}
|
|
||||||
for (; pp >= 1; --pp)
|
|
||||||
apply(b, res, init);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
template<typename MatrixType>
|
template<typename MatrixType>
|
||||||
template<typename ResultType>
|
template<typename ResultType>
|
||||||
void MatrixPowerTriangular<MatrixType>::computeFracPower(ResultType& res, RealScalar p)
|
void MatrixPowerTriangular<MatrixType>::computeFracPower(ResultType& res, RealScalar p)
|
||||||
{
|
{
|
||||||
if (p) {
|
if (p) {
|
||||||
eigen_assert(m_conditionNumber);
|
eigen_assert(m_conditionNumber);
|
||||||
MatrixPowerTriangularAtomic<MatrixType>(m_A).compute(m_tmp1, p);
|
MatrixPowerAtomic<MatrixType>(m_A, p).compute(m_tmp);
|
||||||
res = m_tmp1.template triangularView<Upper>() * res;
|
res = m_tmp * res;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -249,10 +415,22 @@ void MatrixPowerTriangular<MatrixType>::computeFracPower(ResultType& res, RealSc
|
|||||||
* Output: \verbinclude MatrixPower_optimal.out
|
* Output: \verbinclude MatrixPower_optimal.out
|
||||||
*/
|
*/
|
||||||
template<typename MatrixType>
|
template<typename MatrixType>
|
||||||
class MatrixPower : public MatrixPowerBase<MatrixPower<MatrixType>,MatrixType>
|
class MatrixPower
|
||||||
{
|
{
|
||||||
|
private:
|
||||||
|
enum {
|
||||||
|
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||||
|
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||||||
|
Options = MatrixType::Options,
|
||||||
|
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
||||||
|
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
|
||||||
|
};
|
||||||
|
typedef typename MatrixType::Scalar Scalar;
|
||||||
|
typedef typename MatrixType::RealScalar RealScalar;
|
||||||
|
typedef typename MatrixType::Index Index;
|
||||||
|
|
||||||
public:
|
public:
|
||||||
EIGEN_MATRIX_POWER_PUBLIC_INTERFACE(MatrixPower)
|
typedef MatrixType PlainObject;
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* \brief Constructor.
|
* \brief Constructor.
|
||||||
@ -262,10 +440,9 @@ class MatrixPower : public MatrixPowerBase<MatrixPower<MatrixType>,MatrixType>
|
|||||||
* The class stores a reference to A, so it should not be changed
|
* The class stores a reference to A, so it should not be changed
|
||||||
* (or destroyed) before evaluation.
|
* (or destroyed) before evaluation.
|
||||||
*/
|
*/
|
||||||
explicit MatrixPower(const MatrixType& A) : Base(A)
|
explicit MatrixPower(const MatrixType& A) : m_A(A), m_conditionNumber(0)
|
||||||
{ }
|
{ eigen_assert(A.rows() == A.cols()); }
|
||||||
|
|
||||||
#ifdef EIGEN_PARSED_BY_DOXYGEN
|
|
||||||
/**
|
/**
|
||||||
* \brief Returns the matrix power.
|
* \brief Returns the matrix power.
|
||||||
*
|
*
|
||||||
@ -273,8 +450,8 @@ class MatrixPower : public MatrixPowerBase<MatrixPower<MatrixType>,MatrixType>
|
|||||||
* \return The expression \f$ A^p \f$, where A is specified in the
|
* \return The expression \f$ A^p \f$, where A is specified in the
|
||||||
* constructor.
|
* constructor.
|
||||||
*/
|
*/
|
||||||
const MatrixPowerBaseReturnValue<MatrixPower<MatrixType>,MatrixType> operator()(RealScalar p);
|
const MatrixPowerHelper::ReturnValue<MatrixPower> operator()(RealScalar p)
|
||||||
#endif
|
{ return MatrixPowerHelper::ReturnValue<MatrixPower>(*this, p); }
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* \brief Compute the matrix power.
|
* \brief Compute the matrix power.
|
||||||
@ -285,44 +462,44 @@ class MatrixPower : public MatrixPowerBase<MatrixPower<MatrixType>,MatrixType>
|
|||||||
*/
|
*/
|
||||||
void compute(MatrixType& res, RealScalar p);
|
void compute(MatrixType& res, RealScalar p);
|
||||||
|
|
||||||
/**
|
Index rows() const { return m_A.rows(); }
|
||||||
* \brief Compute the matrix power multiplied by another matrix.
|
Index cols() const { return m_A.cols(); }
|
||||||
*
|
|
||||||
* \param[in] b a matrix with the same rows as A.
|
|
||||||
* \param[in] p exponent, a real scalar.
|
|
||||||
* \param[out] res \f$ A^p b \f$, where A is specified in the
|
|
||||||
* constructor.
|
|
||||||
*/
|
|
||||||
template<typename Derived, typename ResultType>
|
|
||||||
void compute(const Derived& b, ResultType& res, RealScalar p);
|
|
||||||
|
|
||||||
private:
|
private:
|
||||||
EIGEN_MATRIX_POWER_PROTECTED_MEMBERS(MatrixPower)
|
typedef std::complex<RealScalar> ComplexScalar;
|
||||||
|
typedef Matrix< ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime,
|
||||||
|
MaxColsAtCompileTime > ComplexMatrix;
|
||||||
|
|
||||||
typedef Matrix<std::complex<RealScalar>, RowsAtCompileTime, ColsAtCompileTime,
|
typename MatrixType::Nested m_A;
|
||||||
Options,MaxRowsAtCompileTime,MaxColsAtCompileTime> ComplexMatrix;
|
MatrixType m_tmp;
|
||||||
static const bool m_OKforLU = RowsAtCompileTime == Dynamic || RowsAtCompileTime > 4;
|
|
||||||
ComplexMatrix m_T, m_U, m_fT;
|
ComplexMatrix m_T, m_U, m_fT;
|
||||||
|
RealScalar m_conditionNumber;
|
||||||
|
|
||||||
RealScalar modfAndInit(RealScalar, RealScalar*);
|
RealScalar modfAndInit(RealScalar, RealScalar*);
|
||||||
|
|
||||||
template<typename Derived, typename ResultType>
|
|
||||||
void apply(const Derived&, ResultType&, bool&);
|
|
||||||
|
|
||||||
template<typename ResultType>
|
template<typename ResultType>
|
||||||
void computeIntPower(ResultType&, RealScalar);
|
void computeIntPower(ResultType&, RealScalar);
|
||||||
|
|
||||||
template<typename Derived, typename ResultType>
|
|
||||||
void computeIntPower(const Derived&, ResultType&, RealScalar);
|
|
||||||
|
|
||||||
template<typename ResultType>
|
template<typename ResultType>
|
||||||
void computeFracPower(ResultType&, RealScalar);
|
void computeFracPower(ResultType&, RealScalar);
|
||||||
|
|
||||||
|
template<int Rows, int Cols, int Opt, int MaxRows, int MaxCols>
|
||||||
|
static void revertSchur(
|
||||||
|
Matrix< ComplexScalar, Rows, Cols, Opt, MaxRows, MaxCols >& res,
|
||||||
|
const ComplexMatrix& T,
|
||||||
|
const ComplexMatrix& U);
|
||||||
|
|
||||||
|
template<int Rows, int Cols, int Opt, int MaxRows, int MaxCols>
|
||||||
|
static void revertSchur(
|
||||||
|
Matrix< RealScalar, Rows, Cols, Opt, MaxRows, MaxCols >& res,
|
||||||
|
const ComplexMatrix& T,
|
||||||
|
const ComplexMatrix& U);
|
||||||
};
|
};
|
||||||
|
|
||||||
template<typename MatrixType>
|
template<typename MatrixType>
|
||||||
void MatrixPower<MatrixType>::compute(MatrixType& res, RealScalar p)
|
void MatrixPower<MatrixType>::compute(MatrixType& res, RealScalar p)
|
||||||
{
|
{
|
||||||
switch (m_A.cols()) {
|
switch (cols()) {
|
||||||
case 0:
|
case 0:
|
||||||
break;
|
break;
|
||||||
case 1:
|
case 1:
|
||||||
@ -330,32 +507,17 @@ void MatrixPower<MatrixType>::compute(MatrixType& res, RealScalar p)
|
|||||||
break;
|
break;
|
||||||
default:
|
default:
|
||||||
RealScalar intpart, x = modfAndInit(p, &intpart);
|
RealScalar intpart, x = modfAndInit(p, &intpart);
|
||||||
res = MatrixType::Identity(m_A.rows(), m_A.cols());
|
|
||||||
computeIntPower(res, intpart);
|
computeIntPower(res, intpart);
|
||||||
computeFracPower(res, x);
|
computeFracPower(res, x);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
template<typename MatrixType>
|
template<typename MatrixType>
|
||||||
template<typename Derived, typename ResultType>
|
typename MatrixPower<MatrixType>::RealScalar
|
||||||
void MatrixPower<MatrixType>::compute(const Derived& b, ResultType& res, RealScalar p)
|
MatrixPower<MatrixType>::modfAndInit(RealScalar x, RealScalar* intpart)
|
||||||
{
|
{
|
||||||
switch (m_A.cols()) {
|
typedef Array< RealScalar, RowsAtCompileTime, 1, ColMajor, MaxRowsAtCompileTime > RealArray;
|
||||||
case 0:
|
|
||||||
break;
|
|
||||||
case 1:
|
|
||||||
res = std::pow(m_A.coeff(0,0), p) * b;
|
|
||||||
break;
|
|
||||||
default:
|
|
||||||
RealScalar intpart, x = modfAndInit(p, &intpart);
|
|
||||||
computeIntPower(b, res, intpart);
|
|
||||||
computeFracPower(res, x);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
template<typename MatrixType>
|
|
||||||
typename MatrixPower<MatrixType>::RealScalar MatrixPower<MatrixType>::modfAndInit(RealScalar x, RealScalar* intpart)
|
|
||||||
{
|
|
||||||
*intpart = std::floor(x);
|
*intpart = std::floor(x);
|
||||||
RealScalar res = x - *intpart;
|
RealScalar res = x - *intpart;
|
||||||
|
|
||||||
@ -375,100 +537,51 @@ typename MatrixPower<MatrixType>::RealScalar MatrixPower<MatrixType>::modfAndIni
|
|||||||
return res;
|
return res;
|
||||||
}
|
}
|
||||||
|
|
||||||
template<typename MatrixType>
|
|
||||||
template<typename Derived, typename ResultType>
|
|
||||||
void MatrixPower<MatrixType>::apply(const Derived& b, ResultType& res, bool& init)
|
|
||||||
{
|
|
||||||
if (init)
|
|
||||||
res = m_tmp1 * res;
|
|
||||||
else {
|
|
||||||
init = true;
|
|
||||||
res.noalias() = m_tmp1 * b;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
template<typename MatrixType>
|
template<typename MatrixType>
|
||||||
template<typename ResultType>
|
template<typename ResultType>
|
||||||
void MatrixPower<MatrixType>::computeIntPower(ResultType& res, RealScalar p)
|
void MatrixPower<MatrixType>::computeIntPower(ResultType& res, RealScalar p)
|
||||||
{
|
{
|
||||||
RealScalar pp = std::abs(p);
|
RealScalar pp = std::abs(p);
|
||||||
|
|
||||||
if (p<0) m_tmp1 = m_A.inverse();
|
if (p<0) m_tmp = m_A.inverse();
|
||||||
else m_tmp1 = m_A;
|
else m_tmp = m_A;
|
||||||
|
|
||||||
|
res = MatrixType::Identity(rows(), cols());
|
||||||
while (pp >= 1) {
|
while (pp >= 1) {
|
||||||
if (std::fmod(pp, 2) >= 1)
|
if (std::fmod(pp, 2) >= 1)
|
||||||
res = m_tmp1 * res;
|
res = m_tmp * res;
|
||||||
m_tmp1 *= m_tmp1;
|
m_tmp *= m_tmp;
|
||||||
pp /= 2;
|
pp /= 2;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
template<typename MatrixType>
|
|
||||||
template<typename Derived, typename ResultType>
|
|
||||||
void MatrixPower<MatrixType>::computeIntPower(const Derived& b, ResultType& res, RealScalar p)
|
|
||||||
{
|
|
||||||
if (b.cols() >= m_A.cols()) {
|
|
||||||
m_tmp2 = MatrixType::Identity(m_A.rows(), m_A.cols());
|
|
||||||
computeIntPower(m_tmp2, p);
|
|
||||||
res.noalias() = m_tmp2 * b;
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
RealScalar pp = std::abs(p);
|
|
||||||
int squarings, applyings = internal::binary_powering_cost(pp, &squarings);
|
|
||||||
bool init = false;
|
|
||||||
|
|
||||||
if (p==0) {
|
|
||||||
res = b;
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
else if (p>0) {
|
|
||||||
m_tmp1 = m_A;
|
|
||||||
}
|
|
||||||
else if (m_OKforLU && b.cols()*(pp-applyings) <= m_A.cols()*squarings) {
|
|
||||||
PartialPivLU<MatrixType> A(m_A);
|
|
||||||
res = A.solve(b);
|
|
||||||
for (--pp; pp >= 1; --pp)
|
|
||||||
res = A.solve(res);
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
m_tmp1 = m_A.inverse();
|
|
||||||
}
|
|
||||||
|
|
||||||
while (b.cols()*(pp-applyings) > m_A.cols()*squarings) {
|
|
||||||
if (std::fmod(pp, 2) >= 1) {
|
|
||||||
apply(b, res, init);
|
|
||||||
--applyings;
|
|
||||||
}
|
|
||||||
m_tmp1 *= m_tmp1;
|
|
||||||
--squarings;
|
|
||||||
pp /= 2;
|
|
||||||
}
|
|
||||||
for (; pp >= 1; --pp)
|
|
||||||
apply(b, res, init);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
template<typename MatrixType>
|
template<typename MatrixType>
|
||||||
template<typename ResultType>
|
template<typename ResultType>
|
||||||
void MatrixPower<MatrixType>::computeFracPower(ResultType& res, RealScalar p)
|
void MatrixPower<MatrixType>::computeFracPower(ResultType& res, RealScalar p)
|
||||||
{
|
{
|
||||||
if (p) {
|
if (p) {
|
||||||
eigen_assert(m_conditionNumber);
|
eigen_assert(m_conditionNumber);
|
||||||
MatrixPowerTriangularAtomic<ComplexMatrix>(m_T).compute(m_fT, p);
|
MatrixPowerAtomic<ComplexMatrix>(m_T, p).compute(m_fT);
|
||||||
internal::recompose_complex_schur<NumTraits<Scalar>::IsComplex>::run(m_tmp1, m_fT, m_U);
|
revertSchur(m_tmp, m_fT, m_U);
|
||||||
res = m_tmp1 * res;
|
res = m_tmp * res;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
namespace internal {
|
template<typename MatrixType>
|
||||||
|
template<int Rows, int Cols, int Opt, int MaxRows, int MaxCols>
|
||||||
|
inline void MatrixPower<MatrixType>::revertSchur(
|
||||||
|
Matrix< ComplexScalar, Rows, Cols, Opt, MaxRows, MaxCols >& res,
|
||||||
|
const ComplexMatrix& T,
|
||||||
|
const ComplexMatrix& U)
|
||||||
|
{ res.noalias() = U * (T.template triangularView<Upper>() * U.adjoint()); }
|
||||||
|
|
||||||
template<typename Derived>
|
template<typename MatrixType>
|
||||||
struct traits<MatrixPowerReturnValue<Derived> >
|
template<int Rows, int Cols, int Opt, int MaxRows, int MaxCols>
|
||||||
{ typedef typename Derived::PlainObject ReturnType; };
|
inline void MatrixPower<MatrixType>::revertSchur(
|
||||||
|
Matrix< RealScalar, Rows, Cols, Opt, MaxRows, MaxCols >& res,
|
||||||
} // namespace internal
|
const ComplexMatrix& T,
|
||||||
|
const ComplexMatrix& U)
|
||||||
|
{ res.noalias() = (U * (T.template triangularView<Upper>() * U.adjoint())).real(); }
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* \ingroup MatrixFunctions_Module
|
* \ingroup MatrixFunctions_Module
|
||||||
@ -484,7 +597,7 @@ struct traits<MatrixPowerReturnValue<Derived> >
|
|||||||
* time this is the only way it is used.
|
* time this is the only way it is used.
|
||||||
*/
|
*/
|
||||||
template<typename Derived>
|
template<typename Derived>
|
||||||
class MatrixPowerReturnValue : public ReturnByValue<MatrixPowerReturnValue<Derived> >
|
class MatrixPowerReturnValue : public ReturnByValue< MatrixPowerReturnValue<Derived> >
|
||||||
{
|
{
|
||||||
public:
|
public:
|
||||||
typedef typename Derived::PlainObject PlainObject;
|
typedef typename Derived::PlainObject PlainObject;
|
||||||
@ -510,21 +623,6 @@ class MatrixPowerReturnValue : public ReturnByValue<MatrixPowerReturnValue<Deriv
|
|||||||
inline void evalTo(ResultType& res) const
|
inline void evalTo(ResultType& res) const
|
||||||
{ MatrixPower<PlainObject>(m_A.eval()).compute(res, m_p); }
|
{ MatrixPower<PlainObject>(m_A.eval()).compute(res, m_p); }
|
||||||
|
|
||||||
/**
|
|
||||||
* \brief Return the expression \f$ A^p b \f$.
|
|
||||||
*
|
|
||||||
* \p A and \p p are specified in the constructor.
|
|
||||||
*
|
|
||||||
* \param[in] b the matrix (expression) to be applied.
|
|
||||||
*/
|
|
||||||
template<typename OtherDerived>
|
|
||||||
const MatrixPowerProduct<MatrixPower<PlainObject>,PlainObject,OtherDerived>
|
|
||||||
operator*(const MatrixBase<OtherDerived>& b) const
|
|
||||||
{
|
|
||||||
MatrixPower<PlainObject> Apow(m_A.eval());
|
|
||||||
return MatrixPowerProduct<MatrixPower<PlainObject>,PlainObject,OtherDerived>(Apow, b.derived(), m_p);
|
|
||||||
}
|
|
||||||
|
|
||||||
Index rows() const { return m_A.rows(); }
|
Index rows() const { return m_A.rows(); }
|
||||||
Index cols() const { return m_A.cols(); }
|
Index cols() const { return m_A.cols(); }
|
||||||
|
|
||||||
@ -534,6 +632,18 @@ class MatrixPowerReturnValue : public ReturnByValue<MatrixPowerReturnValue<Deriv
|
|||||||
MatrixPowerReturnValue& operator=(const MatrixPowerReturnValue&);
|
MatrixPowerReturnValue& operator=(const MatrixPowerReturnValue&);
|
||||||
};
|
};
|
||||||
|
|
||||||
|
namespace internal {
|
||||||
|
|
||||||
|
template<typename MatrixPowerType>
|
||||||
|
struct traits< MatrixPowerHelper::ReturnValue<MatrixPowerType> >
|
||||||
|
{ typedef typename MatrixPowerType::PlainObject ReturnType; };
|
||||||
|
|
||||||
|
template<typename Derived>
|
||||||
|
struct traits< MatrixPowerReturnValue<Derived> >
|
||||||
|
{ typedef typename Derived::PlainObject ReturnType; };
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
template<typename Derived>
|
template<typename Derived>
|
||||||
const MatrixPowerReturnValue<Derived> MatrixBase<Derived>::pow(const RealScalar& p) const
|
const MatrixPowerReturnValue<Derived> MatrixBase<Derived>::pow(const RealScalar& p) const
|
||||||
{ return MatrixPowerReturnValue<Derived>(derived(), p); }
|
{ return MatrixPowerReturnValue<Derived>(derived(), p); }
|
||||||
|
@ -1,404 +0,0 @@
|
|||||||
// This file is part of Eigen, a lightweight C++ template library
|
|
||||||
// for linear algebra.
|
|
||||||
//
|
|
||||||
// Copyright (C) 2012 Chen-Pang He <jdh8@ms63.hinet.net>
|
|
||||||
//
|
|
||||||
// This Source Code Form is subject to the terms of the Mozilla
|
|
||||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
||||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
||||||
|
|
||||||
#ifndef EIGEN_MATRIX_POWER_BASE
|
|
||||||
#define EIGEN_MATRIX_POWER_BASE
|
|
||||||
|
|
||||||
namespace Eigen {
|
|
||||||
|
|
||||||
#define EIGEN_MATRIX_POWER_PUBLIC_INTERFACE(Derived) \
|
|
||||||
typedef MatrixPowerBase<Derived, MatrixType> Base; \
|
|
||||||
using Base::RowsAtCompileTime; \
|
|
||||||
using Base::ColsAtCompileTime; \
|
|
||||||
using Base::Options; \
|
|
||||||
using Base::MaxRowsAtCompileTime; \
|
|
||||||
using Base::MaxColsAtCompileTime; \
|
|
||||||
typedef typename Base::Scalar Scalar; \
|
|
||||||
typedef typename Base::RealScalar RealScalar; \
|
|
||||||
typedef typename Base::RealArray RealArray;
|
|
||||||
|
|
||||||
#define EIGEN_MATRIX_POWER_PROTECTED_MEMBERS(Derived) \
|
|
||||||
using Base::m_A; \
|
|
||||||
using Base::m_tmp1; \
|
|
||||||
using Base::m_tmp2; \
|
|
||||||
using Base::m_conditionNumber;
|
|
||||||
|
|
||||||
template<typename Derived, typename MatrixType>
|
|
||||||
class MatrixPowerBaseReturnValue : public ReturnByValue<MatrixPowerBaseReturnValue<Derived,MatrixType> >
|
|
||||||
{
|
|
||||||
public:
|
|
||||||
typedef typename MatrixType::RealScalar RealScalar;
|
|
||||||
typedef typename MatrixType::Index Index;
|
|
||||||
|
|
||||||
MatrixPowerBaseReturnValue(Derived& pow, RealScalar p) : m_pow(pow), m_p(p)
|
|
||||||
{ }
|
|
||||||
|
|
||||||
template<typename ResultType>
|
|
||||||
inline void evalTo(ResultType& res) const
|
|
||||||
{ m_pow.compute(res, m_p); }
|
|
||||||
|
|
||||||
template<typename OtherDerived>
|
|
||||||
const MatrixPowerProduct<Derived,MatrixType,OtherDerived> operator*(const MatrixBase<OtherDerived>& b) const
|
|
||||||
{ return MatrixPowerProduct<Derived,MatrixType,OtherDerived>(m_pow, b.derived(), m_p); }
|
|
||||||
|
|
||||||
Index rows() const { return m_pow.rows(); }
|
|
||||||
Index cols() const { return m_pow.cols(); }
|
|
||||||
|
|
||||||
private:
|
|
||||||
Derived& m_pow;
|
|
||||||
const RealScalar m_p;
|
|
||||||
MatrixPowerBaseReturnValue& operator=(const MatrixPowerBaseReturnValue&);
|
|
||||||
};
|
|
||||||
|
|
||||||
template<typename Derived, typename MatrixType>
|
|
||||||
class MatrixPowerBase
|
|
||||||
{
|
|
||||||
private:
|
|
||||||
Derived& derived() { return *static_cast<Derived*>(this); }
|
|
||||||
|
|
||||||
public:
|
|
||||||
enum {
|
|
||||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
|
||||||
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
|
||||||
Options = MatrixType::Options,
|
|
||||||
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
|
||||||
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
|
|
||||||
};
|
|
||||||
typedef typename MatrixType::Scalar Scalar;
|
|
||||||
typedef typename MatrixType::RealScalar RealScalar;
|
|
||||||
typedef typename MatrixType::Index Index;
|
|
||||||
|
|
||||||
explicit MatrixPowerBase(const MatrixType& A) :
|
|
||||||
m_A(A),
|
|
||||||
m_conditionNumber(0)
|
|
||||||
{ eigen_assert(A.rows() == A.cols()); }
|
|
||||||
|
|
||||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
|
||||||
const MatrixPowerBaseReturnValue<Derived,MatrixType> operator()(RealScalar p)
|
|
||||||
{ return MatrixPowerBaseReturnValue<Derived,MatrixType>(derived(), p); }
|
|
||||||
#endif
|
|
||||||
|
|
||||||
void compute(MatrixType& res, RealScalar p)
|
|
||||||
{ derived().compute(res,p); }
|
|
||||||
|
|
||||||
template<typename OtherDerived, typename ResultType>
|
|
||||||
void compute(const OtherDerived& b, ResultType& res, RealScalar p)
|
|
||||||
{ derived().compute(b,res,p); }
|
|
||||||
|
|
||||||
Index rows() const { return m_A.rows(); }
|
|
||||||
Index cols() const { return m_A.cols(); }
|
|
||||||
|
|
||||||
protected:
|
|
||||||
typedef Array<RealScalar,RowsAtCompileTime,1,ColMajor,MaxRowsAtCompileTime> RealArray;
|
|
||||||
|
|
||||||
typename MatrixType::Nested m_A;
|
|
||||||
MatrixType m_tmp1, m_tmp2;
|
|
||||||
RealScalar m_conditionNumber;
|
|
||||||
};
|
|
||||||
|
|
||||||
template<typename Derived, typename Lhs, typename Rhs>
|
|
||||||
class MatrixPowerProduct : public MatrixBase<MatrixPowerProduct<Derived,Lhs,Rhs> >
|
|
||||||
{
|
|
||||||
public:
|
|
||||||
typedef MatrixBase<MatrixPowerProduct> Base;
|
|
||||||
EIGEN_DENSE_PUBLIC_INTERFACE(MatrixPowerProduct)
|
|
||||||
|
|
||||||
MatrixPowerProduct(Derived& pow, const Rhs& b, RealScalar p) :
|
|
||||||
m_pow(pow),
|
|
||||||
m_b(b),
|
|
||||||
m_p(p)
|
|
||||||
{ eigen_assert(pow.cols() == b.rows()); }
|
|
||||||
|
|
||||||
template<typename ResultType>
|
|
||||||
inline void evalTo(ResultType& res) const
|
|
||||||
{ m_pow.compute(m_b, res, m_p); }
|
|
||||||
|
|
||||||
inline Index rows() const { return m_pow.rows(); }
|
|
||||||
inline Index cols() const { return m_b.cols(); }
|
|
||||||
|
|
||||||
private:
|
|
||||||
Derived& m_pow;
|
|
||||||
typename Rhs::Nested m_b;
|
|
||||||
const RealScalar m_p;
|
|
||||||
};
|
|
||||||
|
|
||||||
template<typename Derived>
|
|
||||||
template<typename MatrixPower, typename Lhs, typename Rhs>
|
|
||||||
Derived& MatrixBase<Derived>::lazyAssign(const MatrixPowerProduct<MatrixPower,Lhs,Rhs>& other)
|
|
||||||
{
|
|
||||||
other.evalTo(derived());
|
|
||||||
return derived();
|
|
||||||
}
|
|
||||||
|
|
||||||
namespace internal {
|
|
||||||
|
|
||||||
template<typename Derived, typename MatrixType>
|
|
||||||
struct traits<MatrixPowerBaseReturnValue<Derived, MatrixType> >
|
|
||||||
{ typedef MatrixType ReturnType; };
|
|
||||||
|
|
||||||
template<typename Derived, typename _Lhs, typename _Rhs>
|
|
||||||
struct traits<MatrixPowerProduct<Derived,_Lhs,_Rhs> >
|
|
||||||
{
|
|
||||||
typedef MatrixXpr XprKind;
|
|
||||||
typedef typename remove_all<_Lhs>::type Lhs;
|
|
||||||
typedef typename remove_all<_Rhs>::type Rhs;
|
|
||||||
typedef typename scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType Scalar;
|
|
||||||
typedef Dense StorageKind;
|
|
||||||
typedef typename promote_index_type<typename Lhs::Index, typename Rhs::Index>::type Index;
|
|
||||||
|
|
||||||
enum {
|
|
||||||
RowsAtCompileTime = traits<Lhs>::RowsAtCompileTime,
|
|
||||||
ColsAtCompileTime = traits<Rhs>::ColsAtCompileTime,
|
|
||||||
MaxRowsAtCompileTime = traits<Lhs>::MaxRowsAtCompileTime,
|
|
||||||
MaxColsAtCompileTime = traits<Rhs>::MaxColsAtCompileTime,
|
|
||||||
Flags = (MaxRowsAtCompileTime==1 ? RowMajorBit : 0)
|
|
||||||
| EvalBeforeNestingBit | EvalBeforeAssigningBit | NestByRefBit,
|
|
||||||
CoeffReadCost = 0
|
|
||||||
};
|
|
||||||
};
|
|
||||||
|
|
||||||
template<int IsComplex>
|
|
||||||
struct recompose_complex_schur
|
|
||||||
{
|
|
||||||
template<typename ResultType, typename MatrixType>
|
|
||||||
static inline void run(ResultType& res, const MatrixType& T, const MatrixType& U)
|
|
||||||
{ res.noalias() = U * (T.template triangularView<Upper>() * U.adjoint()); }
|
|
||||||
};
|
|
||||||
|
|
||||||
template<>
|
|
||||||
struct recompose_complex_schur<0>
|
|
||||||
{
|
|
||||||
template<typename ResultType, typename MatrixType>
|
|
||||||
static inline void run(ResultType& res, const MatrixType& T, const MatrixType& U)
|
|
||||||
{ res.noalias() = (U * (T.template triangularView<Upper>() * U.adjoint())).real(); }
|
|
||||||
};
|
|
||||||
|
|
||||||
template<typename Scalar, int IsComplex = NumTraits<Scalar>::IsComplex>
|
|
||||||
struct matrix_power_unwinder
|
|
||||||
{
|
|
||||||
static inline Scalar run(const Scalar& eival, const Scalar& eival0, int unwindingNumber)
|
|
||||||
{ return numext::atanh2(eival-eival0, eival+eival0) + Scalar(0, M_PI*unwindingNumber); }
|
|
||||||
};
|
|
||||||
|
|
||||||
template<typename Scalar>
|
|
||||||
struct matrix_power_unwinder<Scalar,0>
|
|
||||||
{
|
|
||||||
static inline Scalar run(Scalar eival, Scalar eival0, int)
|
|
||||||
{ return numext::atanh2(eival-eival0, eival+eival0); }
|
|
||||||
};
|
|
||||||
|
|
||||||
template<typename T>
|
|
||||||
inline int binary_powering_cost(T p, int* squarings)
|
|
||||||
{
|
|
||||||
int applyings=0, tmp;
|
|
||||||
|
|
||||||
frexp(p, squarings);
|
|
||||||
--*squarings;
|
|
||||||
|
|
||||||
while (std::frexp(p, &tmp), tmp > 0) {
|
|
||||||
p -= std::ldexp(static_cast<T>(0.5), tmp);
|
|
||||||
++applyings;
|
|
||||||
}
|
|
||||||
return applyings;
|
|
||||||
}
|
|
||||||
|
|
||||||
inline int matrix_power_get_pade_degree(float normIminusT)
|
|
||||||
{
|
|
||||||
const float maxNormForPade[] = { 2.8064004e-1f /* degree = 3 */ , 4.3386528e-1f };
|
|
||||||
int degree = 3;
|
|
||||||
for (; degree <= 4; ++degree)
|
|
||||||
if (normIminusT <= maxNormForPade[degree - 3])
|
|
||||||
break;
|
|
||||||
return degree;
|
|
||||||
}
|
|
||||||
|
|
||||||
inline int matrix_power_get_pade_degree(double normIminusT)
|
|
||||||
{
|
|
||||||
const double maxNormForPade[] = { 1.884160592658218e-2 /* degree = 3 */ , 6.038881904059573e-2, 1.239917516308172e-1,
|
|
||||||
1.999045567181744e-1, 2.789358995219730e-1 };
|
|
||||||
int degree = 3;
|
|
||||||
for (; degree <= 7; ++degree)
|
|
||||||
if (normIminusT <= maxNormForPade[degree - 3])
|
|
||||||
break;
|
|
||||||
return degree;
|
|
||||||
}
|
|
||||||
|
|
||||||
inline int matrix_power_get_pade_degree(long double normIminusT)
|
|
||||||
{
|
|
||||||
#if LDBL_MANT_DIG == 53
|
|
||||||
const int maxPadeDegree = 7;
|
|
||||||
const double maxNormForPade[] = { 1.884160592658218e-2L /* degree = 3 */ , 6.038881904059573e-2L, 1.239917516308172e-1L,
|
|
||||||
1.999045567181744e-1L, 2.789358995219730e-1L };
|
|
||||||
#elif LDBL_MANT_DIG <= 64
|
|
||||||
const int maxPadeDegree = 8;
|
|
||||||
const double maxNormForPade[] = { 6.3854693117491799460e-3L /* degree = 3 */ , 2.6394893435456973676e-2L,
|
|
||||||
6.4216043030404063729e-2L, 1.1701165502926694307e-1L, 1.7904284231268670284e-1L, 2.4471944416607995472e-1L };
|
|
||||||
#elif LDBL_MANT_DIG <= 106
|
|
||||||
const int maxPadeDegree = 10;
|
|
||||||
const double maxNormForPade[] = { 1.0007161601787493236741409687186e-4L /* degree = 3 */ ,
|
|
||||||
1.0007161601787493236741409687186e-3L, 4.7069769360887572939882574746264e-3L, 1.3220386624169159689406653101695e-2L,
|
|
||||||
2.8063482381631737920612944054906e-2L, 4.9625993951953473052385361085058e-2L, 7.7367040706027886224557538328171e-2L,
|
|
||||||
1.1016843812851143391275867258512e-1L };
|
|
||||||
#else
|
|
||||||
const int maxPadeDegree = 10;
|
|
||||||
const double maxNormForPade[] = { 5.524506147036624377378713555116378e-5L /* degree = 3 */ ,
|
|
||||||
6.640600568157479679823602193345995e-4L, 3.227716520106894279249709728084626e-3L,
|
|
||||||
9.619593944683432960546978734646284e-3L, 2.134595382433742403911124458161147e-2L,
|
|
||||||
3.908166513900489428442993794761185e-2L, 6.266780814639442865832535460550138e-2L,
|
|
||||||
9.134603732914548552537150753385375e-2L };
|
|
||||||
#endif
|
|
||||||
int degree = 3;
|
|
||||||
for (; degree <= maxPadeDegree; ++degree)
|
|
||||||
if (normIminusT <= maxNormForPade[degree - 3])
|
|
||||||
break;
|
|
||||||
return degree;
|
|
||||||
}
|
|
||||||
|
|
||||||
} // namespace internal
|
|
||||||
|
|
||||||
template<typename MatrixType>
|
|
||||||
class MatrixPowerTriangularAtomic
|
|
||||||
{
|
|
||||||
private:
|
|
||||||
enum {
|
|
||||||
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
|
||||||
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime
|
|
||||||
};
|
|
||||||
typedef typename MatrixType::Scalar Scalar;
|
|
||||||
typedef typename MatrixType::RealScalar RealScalar;
|
|
||||||
typedef typename MatrixType::Index Index;
|
|
||||||
typedef Array<Scalar,RowsAtCompileTime,1,ColMajor,MaxRowsAtCompileTime> ArrayType;
|
|
||||||
|
|
||||||
const MatrixType& m_A;
|
|
||||||
|
|
||||||
static void computePade(int degree, const MatrixType& IminusT, MatrixType& res, RealScalar p);
|
|
||||||
void compute2x2(MatrixType& res, RealScalar p) const;
|
|
||||||
void computeBig(MatrixType& res, RealScalar p) const;
|
|
||||||
|
|
||||||
public:
|
|
||||||
explicit MatrixPowerTriangularAtomic(const MatrixType& T);
|
|
||||||
void compute(MatrixType& res, RealScalar p) const;
|
|
||||||
};
|
|
||||||
|
|
||||||
template<typename MatrixType>
|
|
||||||
MatrixPowerTriangularAtomic<MatrixType>::MatrixPowerTriangularAtomic(const MatrixType& T) :
|
|
||||||
m_A(T)
|
|
||||||
{ eigen_assert(T.rows() == T.cols()); }
|
|
||||||
|
|
||||||
template<typename MatrixType>
|
|
||||||
void MatrixPowerTriangularAtomic<MatrixType>::compute(MatrixType& res, RealScalar p) const
|
|
||||||
{
|
|
||||||
res.resizeLike(m_A);
|
|
||||||
switch (m_A.rows()) {
|
|
||||||
case 0:
|
|
||||||
break;
|
|
||||||
case 1:
|
|
||||||
res(0,0) = std::pow(m_A(0,0), p);
|
|
||||||
break;
|
|
||||||
case 2:
|
|
||||||
compute2x2(res, p);
|
|
||||||
break;
|
|
||||||
default:
|
|
||||||
computeBig(res, p);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
template<typename MatrixType>
|
|
||||||
void MatrixPowerTriangularAtomic<MatrixType>::computePade(int degree, const MatrixType& IminusT, MatrixType& res, RealScalar p)
|
|
||||||
{
|
|
||||||
int i = degree<<1;
|
|
||||||
res = (p-degree) / ((i-1)<<1) * IminusT;
|
|
||||||
for (--i; i; --i) {
|
|
||||||
res = (MatrixType::Identity(IminusT.rows(), IminusT.cols()) + res).template triangularView<Upper>()
|
|
||||||
.solve((i==1 ? -p : i&1 ? (-p-(i>>1))/(i<<1) : (p-(i>>1))/((i-1)<<1)) * IminusT).eval();
|
|
||||||
}
|
|
||||||
res += MatrixType::Identity(IminusT.rows(), IminusT.cols());
|
|
||||||
}
|
|
||||||
|
|
||||||
// this function assumes that res has the correct size (see bug 614)
|
|
||||||
template<typename MatrixType>
|
|
||||||
void MatrixPowerTriangularAtomic<MatrixType>::compute2x2(MatrixType& res, RealScalar p) const
|
|
||||||
{
|
|
||||||
using std::abs;
|
|
||||||
using std::pow;
|
|
||||||
|
|
||||||
ArrayType logTdiag = m_A.diagonal().array().log();
|
|
||||||
res.coeffRef(0,0) = pow(m_A.coeff(0,0), p);
|
|
||||||
|
|
||||||
for (Index i=1; i < m_A.cols(); ++i) {
|
|
||||||
res.coeffRef(i,i) = pow(m_A.coeff(i,i), p);
|
|
||||||
if (m_A.coeff(i-1,i-1) == m_A.coeff(i,i)) {
|
|
||||||
res.coeffRef(i-1,i) = p * pow(m_A.coeff(i,i), p-1);
|
|
||||||
}
|
|
||||||
else if (2*abs(m_A.coeff(i-1,i-1)) < abs(m_A.coeff(i,i)) || 2*abs(m_A.coeff(i,i)) < abs(m_A.coeff(i-1,i-1))) {
|
|
||||||
res.coeffRef(i-1,i) = (res.coeff(i,i)-res.coeff(i-1,i-1)) / (m_A.coeff(i,i)-m_A.coeff(i-1,i-1));
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
int unwindingNumber = std::ceil((numext::imag(logTdiag[i]-logTdiag[i-1]) - M_PI) / (2*M_PI));
|
|
||||||
Scalar w = internal::matrix_power_unwinder<Scalar>::run(m_A.coeff(i,i), m_A.coeff(i-1,i-1), unwindingNumber);
|
|
||||||
res.coeffRef(i-1,i) = RealScalar(2) * std::exp(RealScalar(0.5)*p*(logTdiag[i]+logTdiag[i-1])) * std::sinh(p * w)
|
|
||||||
/ (m_A.coeff(i,i) - m_A.coeff(i-1,i-1));
|
|
||||||
}
|
|
||||||
res.coeffRef(i-1,i) *= m_A.coeff(i-1,i);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
template<typename MatrixType>
|
|
||||||
void MatrixPowerTriangularAtomic<MatrixType>::computeBig(MatrixType& res, RealScalar p) const
|
|
||||||
{
|
|
||||||
const int digits = std::numeric_limits<RealScalar>::digits;
|
|
||||||
const RealScalar maxNormForPade = digits <= 24? 4.3386528e-1f: // sigle precision
|
|
||||||
digits <= 53? 2.789358995219730e-1: // double precision
|
|
||||||
digits <= 64? 2.4471944416607995472e-1L: // extended precision
|
|
||||||
digits <= 106? 1.1016843812851143391275867258512e-1L: // double-double
|
|
||||||
9.134603732914548552537150753385375e-2L; // quadruple precision
|
|
||||||
MatrixType IminusT, sqrtT, T = m_A.template triangularView<Upper>();
|
|
||||||
RealScalar normIminusT;
|
|
||||||
int degree, degree2, numberOfSquareRoots = 0;
|
|
||||||
bool hasExtraSquareRoot = false;
|
|
||||||
|
|
||||||
/* FIXME
|
|
||||||
* For singular T, norm(I - T) >= 1 but maxNormForPade < 1, leads to infinite
|
|
||||||
* loop. We should move 0 eigenvalues to bottom right corner. We need not
|
|
||||||
* worry about tiny values (e.g. 1e-300) because they will reach 1 if
|
|
||||||
* repetitively sqrt'ed.
|
|
||||||
*
|
|
||||||
* [ T A ]^p [ T^p (T^-1 T^p A) ]
|
|
||||||
* [ ] = [ ]
|
|
||||||
* [ 0 0 ] [ 0 0 ]
|
|
||||||
*/
|
|
||||||
for (Index i=0; i < m_A.cols(); ++i)
|
|
||||||
eigen_assert(m_A(i,i) != RealScalar(0));
|
|
||||||
|
|
||||||
while (true) {
|
|
||||||
IminusT = MatrixType::Identity(m_A.rows(), m_A.cols()) - T;
|
|
||||||
normIminusT = IminusT.cwiseAbs().colwise().sum().maxCoeff();
|
|
||||||
if (normIminusT < maxNormForPade) {
|
|
||||||
degree = internal::matrix_power_get_pade_degree(normIminusT);
|
|
||||||
degree2 = internal::matrix_power_get_pade_degree(normIminusT/2);
|
|
||||||
if (degree - degree2 <= 1 || hasExtraSquareRoot)
|
|
||||||
break;
|
|
||||||
hasExtraSquareRoot = true;
|
|
||||||
}
|
|
||||||
MatrixSquareRootTriangular<MatrixType>(T).compute(sqrtT);
|
|
||||||
T = sqrtT.template triangularView<Upper>();
|
|
||||||
++numberOfSquareRoots;
|
|
||||||
}
|
|
||||||
computePade(degree, IminusT, res, p);
|
|
||||||
|
|
||||||
for (; numberOfSquareRoots; --numberOfSquareRoots) {
|
|
||||||
compute2x2(res, std::ldexp(p,-numberOfSquareRoots));
|
|
||||||
res = res.template triangularView<Upper>() * res;
|
|
||||||
}
|
|
||||||
compute2x2(res, p);
|
|
||||||
}
|
|
||||||
|
|
||||||
} // namespace Eigen
|
|
||||||
|
|
||||||
#endif // EIGEN_MATRIX_POWER
|
|
@ -109,61 +109,8 @@ void testExponentLaws(const MatrixType& m, double tol)
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
template<typename MatrixType, typename VectorType>
|
|
||||||
void testProduct(const MatrixType& m, const VectorType& v, double tol)
|
|
||||||
{
|
|
||||||
typedef typename MatrixType::RealScalar RealScalar;
|
|
||||||
MatrixType m1;
|
|
||||||
VectorType v1, v2, v3;
|
|
||||||
RealScalar p;
|
|
||||||
|
|
||||||
for (int i=0; i < g_repeat; ++i) {
|
|
||||||
generateTestMatrix<MatrixType>::run(m1, m.rows());
|
|
||||||
MatrixPower<MatrixType> mpow(m1);
|
|
||||||
|
|
||||||
v1 = VectorType::Random(v.rows(), v.cols());
|
|
||||||
p = internal::random<RealScalar>();
|
|
||||||
|
|
||||||
v2.noalias() = mpow(p) * v1;
|
|
||||||
v3.noalias() = mpow(p).eval() * v1;
|
|
||||||
std::cout << "testProduct: error powerm = " << relerr(v2, v3) << '\n';
|
|
||||||
VERIFY(v2.isApprox(v3, static_cast<RealScalar>(tol)));
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
template<typename MatrixType, typename VectorType>
|
|
||||||
void testTriangularProduct(const MatrixType& m, const VectorType& v, double tol)
|
|
||||||
{
|
|
||||||
typedef typename MatrixType::RealScalar RealScalar;
|
|
||||||
MatrixType m1;
|
|
||||||
VectorType v1, v2, v3;
|
|
||||||
RealScalar p;
|
|
||||||
|
|
||||||
for (int i=0; i < g_repeat; ++i) {
|
|
||||||
generateTriangularMatrix<MatrixType>::run(m1, m.rows());
|
|
||||||
MatrixPowerTriangular<MatrixType> mpow(m1);
|
|
||||||
|
|
||||||
v1 = VectorType::Random(v.rows(), v.cols());
|
|
||||||
p = internal::random<RealScalar>();
|
|
||||||
|
|
||||||
v2.noalias() = mpow(p) * v1;
|
|
||||||
v3.noalias() = mpow(p).eval() * v1;
|
|
||||||
std::cout << "testTriangularProduct: error powerm = " << relerr(v2, v3) << '\n';
|
|
||||||
VERIFY(v2.isApprox(v3, static_cast<RealScalar>(tol)));
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
template<typename MatrixType, typename VectorType>
|
|
||||||
void testMatrixVector(const MatrixType& m, const VectorType& v, double tol)
|
|
||||||
{
|
|
||||||
testExponentLaws(m,tol);
|
|
||||||
testProduct(m,v,tol);
|
|
||||||
testTriangularProduct(m,v,tol);
|
|
||||||
}
|
|
||||||
|
|
||||||
typedef Matrix<double,3,3,RowMajor> Matrix3dRowMajor;
|
typedef Matrix<double,3,3,RowMajor> Matrix3dRowMajor;
|
||||||
typedef Matrix<long double,Dynamic,Dynamic> MatrixXe;
|
typedef Matrix<long double,Dynamic,Dynamic> MatrixXe;
|
||||||
typedef Matrix<long double,Dynamic,1> VectorXe;
|
|
||||||
|
|
||||||
void test_matrix_power()
|
void test_matrix_power()
|
||||||
{
|
{
|
||||||
@ -174,13 +121,13 @@ void test_matrix_power()
|
|||||||
CALL_SUBTEST_1(test2dHyperbolicRotation<float>(1e-5));
|
CALL_SUBTEST_1(test2dHyperbolicRotation<float>(1e-5));
|
||||||
CALL_SUBTEST_9(test2dHyperbolicRotation<long double>(1e-14));
|
CALL_SUBTEST_9(test2dHyperbolicRotation<long double>(1e-14));
|
||||||
|
|
||||||
CALL_SUBTEST_2(testMatrixVector(Matrix2d(), Vector2d(), 1e-13));
|
CALL_SUBTEST_2(testExponentLaws(Matrix2d(), 1e-13));
|
||||||
CALL_SUBTEST_7(testMatrixVector(Matrix3dRowMajor(), MatrixXd(3,5), 1e-13));
|
CALL_SUBTEST_7(testExponentLaws(Matrix3dRowMajor(), 1e-13));
|
||||||
CALL_SUBTEST_3(testMatrixVector(Matrix4cd(), Vector4cd(), 1e-13));
|
CALL_SUBTEST_3(testExponentLaws(Matrix4cd(), 1e-13));
|
||||||
CALL_SUBTEST_4(testMatrixVector(MatrixXd(8,8), VectorXd(8), 2e-12));
|
CALL_SUBTEST_4(testExponentLaws(MatrixXd(8,8), 2e-12));
|
||||||
CALL_SUBTEST_1(testMatrixVector(Matrix2f(), Vector2f(), 1e-4));
|
CALL_SUBTEST_1(testExponentLaws(Matrix2f(), 1e-4));
|
||||||
CALL_SUBTEST_5(testMatrixVector(Matrix3cf(), Vector3cf(), 1e-4));
|
CALL_SUBTEST_5(testExponentLaws(Matrix3cf(), 1e-4));
|
||||||
CALL_SUBTEST_8(testMatrixVector(Matrix4f(), Vector4f(), 1e-4));
|
CALL_SUBTEST_8(testExponentLaws(Matrix4f(), 1e-4));
|
||||||
CALL_SUBTEST_6(testMatrixVector(MatrixXf(2,2), VectorXf(2), 1e-3)); // see bug 614
|
CALL_SUBTEST_6(testExponentLaws(MatrixXf(2,2), 1e-3)); // see bug 614
|
||||||
CALL_SUBTEST_9(testMatrixVector(MatrixXe(7,7), VectorXe(7), 1e-13));
|
CALL_SUBTEST_9(testExponentLaws(MatrixXe(7,7), 1e-13));
|
||||||
}
|
}
|
||||||
|
Loading…
x
Reference in New Issue
Block a user