Allow user to specify max number of iterations (bug #479).

This commit is contained in:
Jitse Niesen 2012-07-24 15:17:59 +01:00
parent b7ac053b9c
commit ba5eecae53
8 changed files with 178 additions and 27 deletions

View File

@ -3,7 +3,7 @@
//
// Copyright (C) 2009 Claire Maurice
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
@ -208,7 +208,27 @@ template<typename _MatrixType> class ComplexEigenSolver
* Example: \include ComplexEigenSolver_compute.cpp
* Output: \verbinclude ComplexEigenSolver_compute.out
*/
ComplexEigenSolver& compute(const MatrixType& matrix, bool computeEigenvectors = true);
ComplexEigenSolver& compute(const MatrixType& matrix, bool computeEigenvectors = true)
{
return computeInternal(matrix, computeEigenvectors, false, 0);
}
/** \brief Computes eigendecomposition with specified maximum number of iterations.
*
* \param[in] matrix Square matrix whose eigendecomposition is to be computed.
* \param[in] computeEigenvectors If true, both the eigenvectors and the
* eigenvalues are computed; if false, only the eigenvalues are
* computed.
* \param[in] maxIter Maximum number of iterations.
* \returns Reference to \c *this
*
* This method provides the same functionality as compute(const MatrixType&, bool) but it also allows the
* user to specify the maximum number of iterations to be used when computing the Schur decomposition.
*/
ComplexEigenSolver& compute(const MatrixType& matrix, bool computeEigenvectors, Index maxIter)
{
return computeInternal(matrix, computeEigenvectors, true, maxIter);
}
/** \brief Reports whether previous computation was successful.
*
@ -231,18 +251,26 @@ template<typename _MatrixType> class ComplexEigenSolver
private:
void doComputeEigenvectors(RealScalar matrixnorm);
void sortEigenvalues(bool computeEigenvectors);
ComplexEigenSolver& computeInternal(const MatrixType& matrix, bool computeEigenvectors,
bool maxIterSpecified, Index maxIter);
};
template<typename MatrixType>
ComplexEigenSolver<MatrixType>& ComplexEigenSolver<MatrixType>::compute(const MatrixType& matrix, bool computeEigenvectors)
ComplexEigenSolver<MatrixType>&
ComplexEigenSolver<MatrixType>::computeInternal(const MatrixType& matrix, bool computeEigenvectors,
bool maxIterSpecified, Index maxIter)
{
// this code is inspired from Jampack
assert(matrix.cols() == matrix.rows());
// Do a complex Schur decomposition, A = U T U^*
// The eigenvalues are on the diagonal of T.
m_schur.compute(matrix, computeEigenvectors);
if (maxIterSpecified)
m_schur.compute(matrix, computeEigenvectors, maxIter);
else
m_schur.compute(matrix, computeEigenvectors);
if(m_schur.info() == Success)
{

View File

@ -3,7 +3,7 @@
//
// Copyright (C) 2009 Claire Maurice
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
@ -166,6 +166,7 @@ template<typename _MatrixType> class ComplexSchur
*
* \param[in] matrix Square matrix whose Schur decomposition is to be computed.
* \param[in] computeU If true, both T and U are computed; if false, only T is computed.
* \returns Reference to \c *this
*
* The Schur decomposition is computed by first reducing the
@ -180,8 +181,27 @@ template<typename _MatrixType> class ComplexSchur
*
* Example: \include ComplexSchur_compute.cpp
* Output: \verbinclude ComplexSchur_compute.out
*
* \sa compute(const MatrixType&, bool, Index)
*/
ComplexSchur& compute(const MatrixType& matrix, bool computeU = true);
ComplexSchur& compute(const MatrixType& matrix, bool computeU = true)
{
return compute(matrix, computeU, m_maxIterations * matrix.rows());
}
/** \brief Computes Schur decomposition with specified maximum number of iterations.
*
* \param[in] matrix Square matrix whose Schur decomposition is to be computed.
* \param[in] computeU If true, both T and U are computed; if false, only T is computed.
* \param[in] maxIter Maximum number of iterations.
*
* \returns Reference to \c *this
*
* This method provides the same functionality as compute(const MatrixType&, bool) but it also allows the
* user to specify the maximum number of QR iterations to be used. The maximum number of iterations for
* compute(const MatrixType&, bool) is #m_maxIterations times the size of the matrix.
*/
ComplexSchur& compute(const MatrixType& matrix, bool computeU, Index maxIter);
/** \brief Reports whether previous computation was successful.
*
@ -189,13 +209,14 @@ template<typename _MatrixType> class ComplexSchur
*/
ComputationInfo info() const
{
eigen_assert(m_isInitialized && "RealSchur is not initialized.");
eigen_assert(m_isInitialized && "ComplexSchur is not initialized.");
return m_info;
}
/** \brief Maximum number of iterations.
*
* Maximum number of iterations allowed for an eigenvalue to converge.
* If not otherwise specified, the maximum number of iterations is this number times the size of the
* matrix. It is currently set to 30.
*/
static const int m_maxIterations = 30;
@ -209,7 +230,7 @@ template<typename _MatrixType> class ComplexSchur
private:
bool subdiagonalEntryIsNeglegible(Index i);
ComplexScalar computeShift(Index iu, Index iter);
void reduceToTriangularForm(bool computeU);
void reduceToTriangularForm(bool computeU, Index maxIter);
friend struct internal::complex_schur_reduce_to_hessenberg<MatrixType, NumTraits<Scalar>::IsComplex>;
};
@ -268,7 +289,7 @@ typename ComplexSchur<MatrixType>::ComplexScalar ComplexSchur<MatrixType>::compu
template<typename MatrixType>
ComplexSchur<MatrixType>& ComplexSchur<MatrixType>::compute(const MatrixType& matrix, bool computeU)
ComplexSchur<MatrixType>& ComplexSchur<MatrixType>::compute(const MatrixType& matrix, bool computeU, Index maxIter)
{
m_matUisUptodate = false;
eigen_assert(matrix.cols() == matrix.rows());
@ -284,7 +305,7 @@ ComplexSchur<MatrixType>& ComplexSchur<MatrixType>::compute(const MatrixType& ma
}
internal::complex_schur_reduce_to_hessenberg<MatrixType, NumTraits<Scalar>::IsComplex>::run(*this, matrix, computeU);
reduceToTriangularForm(computeU);
reduceToTriangularForm(computeU, maxIter);
return *this;
}
@ -327,7 +348,7 @@ struct complex_schur_reduce_to_hessenberg<MatrixType, false>
// Reduce the Hessenberg matrix m_matT to triangular form by QR iteration.
template<typename MatrixType>
void ComplexSchur<MatrixType>::reduceToTriangularForm(bool computeU)
void ComplexSchur<MatrixType>::reduceToTriangularForm(bool computeU, Index maxIter)
{
// The matrix m_matT is divided in three parts.
// Rows 0,...,il-1 are decoupled from the rest because m_matT(il,il-1) is zero.
@ -354,7 +375,7 @@ void ComplexSchur<MatrixType>::reduceToTriangularForm(bool computeU)
// if we spent too many iterations, we give up
iter++;
totalIter++;
if(totalIter > m_maxIterations * m_matT.cols()) break;
if(totalIter > maxIter) break;
// find il, the top row of the active submatrix
il = iu-1;
@ -384,7 +405,7 @@ void ComplexSchur<MatrixType>::reduceToTriangularForm(bool computeU)
}
}
if(totalIter <= m_maxIterations * m_matT.cols())
if(totalIter <= maxIter)
m_info = Success;
else
m_info = NoConvergence;

View File

@ -2,7 +2,7 @@
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
@ -273,7 +273,27 @@ template<typename _MatrixType> class EigenSolver
* Example: \include EigenSolver_compute.cpp
* Output: \verbinclude EigenSolver_compute.out
*/
EigenSolver& compute(const MatrixType& matrix, bool computeEigenvectors = true);
EigenSolver& compute(const MatrixType& matrix, bool computeEigenvectors = true)
{
return computeInternal(matrix, computeEigenvectors, false, 0);
}
/** \brief Computes eigendecomposition with specified maximum number of iterations.
*
* \param[in] matrix Square matrix whose eigendecomposition is to be computed.
* \param[in] computeEigenvectors If true, both the eigenvectors and the
* eigenvalues are computed; if false, only the eigenvalues are
* computed.
* \param[in] maxIter Maximum number of iterations.
* \returns Reference to \c *this
*
* This method provides the same functionality as compute(const MatrixType&, bool) but it also allows the
* user to specify the maximum number of iterations to be used when computing the Schur decomposition.
*/
EigenSolver& compute(const MatrixType& matrix, bool computeEigenvectors, Index maxIter)
{
return computeInternal(matrix, computeEigenvectors, true, maxIter);
}
ComputationInfo info() const
{
@ -283,6 +303,8 @@ template<typename _MatrixType> class EigenSolver
private:
void doComputeEigenvectors();
EigenSolver& computeInternal(const MatrixType& matrix, bool computeEigenvectors,
bool maxIterSpecified, Index maxIter);
protected:
MatrixType m_eivec;
@ -348,12 +370,18 @@ typename EigenSolver<MatrixType>::EigenvectorsType EigenSolver<MatrixType>::eige
}
template<typename MatrixType>
EigenSolver<MatrixType>& EigenSolver<MatrixType>::compute(const MatrixType& matrix, bool computeEigenvectors)
EigenSolver<MatrixType>&
EigenSolver<MatrixType>::computeInternal(const MatrixType& matrix, bool computeEigenvectors,
bool maxIterSpecified, Index maxIter)
{
assert(matrix.cols() == matrix.rows());
// Reduce to real Schur form.
m_realSchur.compute(matrix, computeEigenvectors);
if (maxIterSpecified)
m_realSchur.compute(matrix, computeEigenvectors, maxIter);
else
m_realSchur.compute(matrix, computeEigenvectors);
if (m_realSchur.info() == Success)
{
m_matT = m_realSchur.matrixT();

View File

@ -2,7 +2,7 @@
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
@ -160,8 +160,27 @@ template<typename _MatrixType> class RealSchur
*
* Example: \include RealSchur_compute.cpp
* Output: \verbinclude RealSchur_compute.out
*
* \sa compute(const MatrixType&, bool, Index)
*/
RealSchur& compute(const MatrixType& matrix, bool computeU = true);
RealSchur& compute(const MatrixType& matrix, bool computeU = true)
{
return compute(matrix, computeU, m_maxIterations * matrix.rows());
}
/** \brief Computes Schur decomposition with specified maximum number of iterations.
*
* \param[in] matrix Square matrix whose Schur decomposition is to be computed.
* \param[in] computeU If true, both T and U are computed; if false, only T is computed.
* \param[in] maxIter Maximum number of iterations.
*
* \returns Reference to \c *this
*
* This method provides the same functionality as compute(const MatrixType&, bool) but it also allows the
* user to specify the maximum number of QR iterations to be used. The maximum number of iterations for
* compute(const MatrixType&, bool) is #m_maxIterations times the size of the matrix.
*/
RealSchur& compute(const MatrixType& matrix, bool computeU, Index maxIter);
/** \brief Reports whether previous computation was successful.
*
@ -175,7 +194,8 @@ template<typename _MatrixType> class RealSchur
/** \brief Maximum number of iterations.
*
* Maximum number of iterations allowed for an eigenvalue to converge.
* If not otherwise specified, the maximum number of iterations is this number times the size of the
* matrix. It is currently set to 40.
*/
static const int m_maxIterations = 40;
@ -201,7 +221,7 @@ template<typename _MatrixType> class RealSchur
template<typename MatrixType>
RealSchur<MatrixType>& RealSchur<MatrixType>::compute(const MatrixType& matrix, bool computeU)
RealSchur<MatrixType>& RealSchur<MatrixType>::compute(const MatrixType& matrix, bool computeU, Index maxIter)
{
assert(matrix.cols() == matrix.rows());
@ -253,14 +273,14 @@ RealSchur<MatrixType>& RealSchur<MatrixType>::compute(const MatrixType& matrix,
computeShift(iu, iter, exshift, shiftInfo);
iter = iter + 1;
totalIter = totalIter + 1;
if (totalIter > m_maxIterations * matrix.cols()) break;
if (totalIter > maxIter) break;
Index im;
initFrancisQRStep(il, iu, shiftInfo, im, firstHouseholderVector);
performFrancisQRStep(il, im, iu, computeU, firstHouseholderVector, workspace);
}
}
}
if(totalIter <= m_maxIterations * matrix.cols())
if(totalIter <= maxIter)
m_info = Success;
else
m_info = NoConvergence;

View File

@ -59,6 +59,16 @@ template<typename MatrixType> void eigensolver(const MatrixType& m)
// another algorithm so results may differ slightly
verify_is_approx_upto_permutation(a.eigenvalues(), ei1.eigenvalues());
ComplexEigenSolver<MatrixType> ei2;
ei2.compute(a, true, ComplexSchur<MatrixType>::m_maxIterations * rows);
VERIFY_IS_EQUAL(ei2.info(), Success);
VERIFY_IS_EQUAL(ei2.eigenvectors(), ei1.eigenvectors());
VERIFY_IS_EQUAL(ei2.eigenvalues(), ei1.eigenvalues());
if (rows > 2) {
ei2.compute(a, true, 1);
VERIFY_IS_EQUAL(ei2.info(), NoConvergence);
}
ComplexEigenSolver<MatrixType> eiNoEivecs(a, false);
VERIFY_IS_EQUAL(eiNoEivecs.info(), Success);
VERIFY_IS_APPROX(ei1.eigenvalues(), eiNoEivecs.eigenvalues());

View File

@ -2,7 +2,7 @@
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
@ -45,6 +45,16 @@ template<typename MatrixType> void eigensolver(const MatrixType& m)
VERIFY_IS_APPROX(ei1.eigenvectors().colwise().norm(), RealVectorType::Ones(rows).transpose());
VERIFY_IS_APPROX(a.eigenvalues(), ei1.eigenvalues());
EigenSolver<MatrixType> ei2;
ei2.compute(a, true, RealSchur<MatrixType>::m_maxIterations * rows);
VERIFY_IS_EQUAL(ei2.info(), Success);
VERIFY_IS_EQUAL(ei2.eigenvectors(), ei1.eigenvectors());
VERIFY_IS_EQUAL(ei2.eigenvalues(), ei1.eigenvalues());
if (rows > 2) {
ei2.compute(a, true, 1);
VERIFY_IS_EQUAL(ei2.info(), NoConvergence);
}
EigenSolver<MatrixType> eiNoEivecs(a, false);
VERIFY_IS_EQUAL(eiNoEivecs.info(), Success);
VERIFY_IS_APPROX(ei1.eigenvalues(), eiNoEivecs.eigenvalues());

View File

@ -1,7 +1,7 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
@ -47,6 +47,22 @@ template<typename MatrixType> void schur(int size = MatrixType::ColsAtCompileTim
VERIFY_IS_EQUAL(cs1.matrixT(), cs2.matrixT());
VERIFY_IS_EQUAL(cs1.matrixU(), cs2.matrixU());
// Test maximum number of iterations
ComplexSchur<MatrixType> cs3;
cs3.compute(A, true, ComplexSchur<MatrixType>::m_maxIterations * size);
VERIFY_IS_EQUAL(cs3.info(), Success);
VERIFY_IS_EQUAL(cs3.matrixT(), cs1.matrixT());
VERIFY_IS_EQUAL(cs3.matrixU(), cs1.matrixU());
cs3.compute(A, true, 1);
VERIFY_IS_EQUAL(cs3.info(), size > 1 ? NoConvergence : Success);
MatrixType Atriangular = A;
Atriangular.template triangularView<StrictlyLower>().setZero();
cs3.compute(Atriangular, true, 1); // triangular matrices do not need any iterations
VERIFY_IS_EQUAL(cs3.info(), Success);
VERIFY_IS_EQUAL(cs3.matrixT(), Atriangular.template cast<ComplexScalar>());
VERIFY_IS_EQUAL(cs3.matrixU(), ComplexMatrixType::Identity(size, size));
// Test computation of only T, not U
ComplexSchur<MatrixType> csOnlyT(A, false);
VERIFY_IS_EQUAL(csOnlyT.info(), Success);

View File

@ -1,7 +1,7 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
@ -66,6 +66,24 @@ template<typename MatrixType> void schur(int size = MatrixType::ColsAtCompileTim
VERIFY_IS_EQUAL(rs1.matrixT(), rs2.matrixT());
VERIFY_IS_EQUAL(rs1.matrixU(), rs2.matrixU());
// Test maximum number of iterations
RealSchur<MatrixType> rs3;
rs3.compute(A, true, RealSchur<MatrixType>::m_maxIterations * size);
VERIFY_IS_EQUAL(rs3.info(), Success);
VERIFY_IS_EQUAL(rs3.matrixT(), rs1.matrixT());
VERIFY_IS_EQUAL(rs3.matrixU(), rs1.matrixU());
if (size > 2) {
rs3.compute(A, true, 1);
VERIFY_IS_EQUAL(rs3.info(), NoConvergence);
}
MatrixType Atriangular = A;
Atriangular.template triangularView<StrictlyLower>().setZero();
rs3.compute(Atriangular, true, 1); // triangular matrices do not need any iterations
VERIFY_IS_EQUAL(rs3.info(), Success);
VERIFY_IS_EQUAL(rs3.matrixT(), Atriangular);
VERIFY_IS_EQUAL(rs3.matrixU(), MatrixType::Identity(size, size));
// Test computation of only T, not U
RealSchur<MatrixType> rsOnlyT(A, false);
VERIFY_IS_EQUAL(rsOnlyT.info(), Success);