mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-09-26 00:03:14 +08:00
Allow user to specify max number of iterations (bug #479).
This commit is contained in:
parent
b7ac053b9c
commit
ba5eecae53
@ -3,7 +3,7 @@
|
|||||||
//
|
//
|
||||||
// Copyright (C) 2009 Claire Maurice
|
// Copyright (C) 2009 Claire Maurice
|
||||||
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||||
// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
|
// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
|
||||||
//
|
//
|
||||||
// This Source Code Form is subject to the terms of the Mozilla
|
// This Source Code Form is subject to the terms of the Mozilla
|
||||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||||
@ -208,7 +208,27 @@ template<typename _MatrixType> class ComplexEigenSolver
|
|||||||
* Example: \include ComplexEigenSolver_compute.cpp
|
* Example: \include ComplexEigenSolver_compute.cpp
|
||||||
* Output: \verbinclude ComplexEigenSolver_compute.out
|
* Output: \verbinclude ComplexEigenSolver_compute.out
|
||||||
*/
|
*/
|
||||||
ComplexEigenSolver& compute(const MatrixType& matrix, bool computeEigenvectors = true);
|
ComplexEigenSolver& compute(const MatrixType& matrix, bool computeEigenvectors = true)
|
||||||
|
{
|
||||||
|
return computeInternal(matrix, computeEigenvectors, false, 0);
|
||||||
|
}
|
||||||
|
|
||||||
|
/** \brief Computes eigendecomposition with specified maximum number of iterations.
|
||||||
|
*
|
||||||
|
* \param[in] matrix Square matrix whose eigendecomposition is to be computed.
|
||||||
|
* \param[in] computeEigenvectors If true, both the eigenvectors and the
|
||||||
|
* eigenvalues are computed; if false, only the eigenvalues are
|
||||||
|
* computed.
|
||||||
|
* \param[in] maxIter Maximum number of iterations.
|
||||||
|
* \returns Reference to \c *this
|
||||||
|
*
|
||||||
|
* This method provides the same functionality as compute(const MatrixType&, bool) but it also allows the
|
||||||
|
* user to specify the maximum number of iterations to be used when computing the Schur decomposition.
|
||||||
|
*/
|
||||||
|
ComplexEigenSolver& compute(const MatrixType& matrix, bool computeEigenvectors, Index maxIter)
|
||||||
|
{
|
||||||
|
return computeInternal(matrix, computeEigenvectors, true, maxIter);
|
||||||
|
}
|
||||||
|
|
||||||
/** \brief Reports whether previous computation was successful.
|
/** \brief Reports whether previous computation was successful.
|
||||||
*
|
*
|
||||||
@ -231,18 +251,26 @@ template<typename _MatrixType> class ComplexEigenSolver
|
|||||||
private:
|
private:
|
||||||
void doComputeEigenvectors(RealScalar matrixnorm);
|
void doComputeEigenvectors(RealScalar matrixnorm);
|
||||||
void sortEigenvalues(bool computeEigenvectors);
|
void sortEigenvalues(bool computeEigenvectors);
|
||||||
|
ComplexEigenSolver& computeInternal(const MatrixType& matrix, bool computeEigenvectors,
|
||||||
|
bool maxIterSpecified, Index maxIter);
|
||||||
|
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|
||||||
template<typename MatrixType>
|
template<typename MatrixType>
|
||||||
ComplexEigenSolver<MatrixType>& ComplexEigenSolver<MatrixType>::compute(const MatrixType& matrix, bool computeEigenvectors)
|
ComplexEigenSolver<MatrixType>&
|
||||||
|
ComplexEigenSolver<MatrixType>::computeInternal(const MatrixType& matrix, bool computeEigenvectors,
|
||||||
|
bool maxIterSpecified, Index maxIter)
|
||||||
{
|
{
|
||||||
// this code is inspired from Jampack
|
// this code is inspired from Jampack
|
||||||
assert(matrix.cols() == matrix.rows());
|
assert(matrix.cols() == matrix.rows());
|
||||||
|
|
||||||
// Do a complex Schur decomposition, A = U T U^*
|
// Do a complex Schur decomposition, A = U T U^*
|
||||||
// The eigenvalues are on the diagonal of T.
|
// The eigenvalues are on the diagonal of T.
|
||||||
m_schur.compute(matrix, computeEigenvectors);
|
if (maxIterSpecified)
|
||||||
|
m_schur.compute(matrix, computeEigenvectors, maxIter);
|
||||||
|
else
|
||||||
|
m_schur.compute(matrix, computeEigenvectors);
|
||||||
|
|
||||||
if(m_schur.info() == Success)
|
if(m_schur.info() == Success)
|
||||||
{
|
{
|
||||||
|
@ -3,7 +3,7 @@
|
|||||||
//
|
//
|
||||||
// Copyright (C) 2009 Claire Maurice
|
// Copyright (C) 2009 Claire Maurice
|
||||||
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||||
// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
|
// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
|
||||||
//
|
//
|
||||||
// This Source Code Form is subject to the terms of the Mozilla
|
// This Source Code Form is subject to the terms of the Mozilla
|
||||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||||
@ -166,6 +166,7 @@ template<typename _MatrixType> class ComplexSchur
|
|||||||
*
|
*
|
||||||
* \param[in] matrix Square matrix whose Schur decomposition is to be computed.
|
* \param[in] matrix Square matrix whose Schur decomposition is to be computed.
|
||||||
* \param[in] computeU If true, both T and U are computed; if false, only T is computed.
|
* \param[in] computeU If true, both T and U are computed; if false, only T is computed.
|
||||||
|
|
||||||
* \returns Reference to \c *this
|
* \returns Reference to \c *this
|
||||||
*
|
*
|
||||||
* The Schur decomposition is computed by first reducing the
|
* The Schur decomposition is computed by first reducing the
|
||||||
@ -180,8 +181,27 @@ template<typename _MatrixType> class ComplexSchur
|
|||||||
*
|
*
|
||||||
* Example: \include ComplexSchur_compute.cpp
|
* Example: \include ComplexSchur_compute.cpp
|
||||||
* Output: \verbinclude ComplexSchur_compute.out
|
* Output: \verbinclude ComplexSchur_compute.out
|
||||||
|
*
|
||||||
|
* \sa compute(const MatrixType&, bool, Index)
|
||||||
*/
|
*/
|
||||||
ComplexSchur& compute(const MatrixType& matrix, bool computeU = true);
|
ComplexSchur& compute(const MatrixType& matrix, bool computeU = true)
|
||||||
|
{
|
||||||
|
return compute(matrix, computeU, m_maxIterations * matrix.rows());
|
||||||
|
}
|
||||||
|
|
||||||
|
/** \brief Computes Schur decomposition with specified maximum number of iterations.
|
||||||
|
*
|
||||||
|
* \param[in] matrix Square matrix whose Schur decomposition is to be computed.
|
||||||
|
* \param[in] computeU If true, both T and U are computed; if false, only T is computed.
|
||||||
|
* \param[in] maxIter Maximum number of iterations.
|
||||||
|
*
|
||||||
|
* \returns Reference to \c *this
|
||||||
|
*
|
||||||
|
* This method provides the same functionality as compute(const MatrixType&, bool) but it also allows the
|
||||||
|
* user to specify the maximum number of QR iterations to be used. The maximum number of iterations for
|
||||||
|
* compute(const MatrixType&, bool) is #m_maxIterations times the size of the matrix.
|
||||||
|
*/
|
||||||
|
ComplexSchur& compute(const MatrixType& matrix, bool computeU, Index maxIter);
|
||||||
|
|
||||||
/** \brief Reports whether previous computation was successful.
|
/** \brief Reports whether previous computation was successful.
|
||||||
*
|
*
|
||||||
@ -189,13 +209,14 @@ template<typename _MatrixType> class ComplexSchur
|
|||||||
*/
|
*/
|
||||||
ComputationInfo info() const
|
ComputationInfo info() const
|
||||||
{
|
{
|
||||||
eigen_assert(m_isInitialized && "RealSchur is not initialized.");
|
eigen_assert(m_isInitialized && "ComplexSchur is not initialized.");
|
||||||
return m_info;
|
return m_info;
|
||||||
}
|
}
|
||||||
|
|
||||||
/** \brief Maximum number of iterations.
|
/** \brief Maximum number of iterations.
|
||||||
*
|
*
|
||||||
* Maximum number of iterations allowed for an eigenvalue to converge.
|
* If not otherwise specified, the maximum number of iterations is this number times the size of the
|
||||||
|
* matrix. It is currently set to 30.
|
||||||
*/
|
*/
|
||||||
static const int m_maxIterations = 30;
|
static const int m_maxIterations = 30;
|
||||||
|
|
||||||
@ -209,7 +230,7 @@ template<typename _MatrixType> class ComplexSchur
|
|||||||
private:
|
private:
|
||||||
bool subdiagonalEntryIsNeglegible(Index i);
|
bool subdiagonalEntryIsNeglegible(Index i);
|
||||||
ComplexScalar computeShift(Index iu, Index iter);
|
ComplexScalar computeShift(Index iu, Index iter);
|
||||||
void reduceToTriangularForm(bool computeU);
|
void reduceToTriangularForm(bool computeU, Index maxIter);
|
||||||
friend struct internal::complex_schur_reduce_to_hessenberg<MatrixType, NumTraits<Scalar>::IsComplex>;
|
friend struct internal::complex_schur_reduce_to_hessenberg<MatrixType, NumTraits<Scalar>::IsComplex>;
|
||||||
};
|
};
|
||||||
|
|
||||||
@ -268,7 +289,7 @@ typename ComplexSchur<MatrixType>::ComplexScalar ComplexSchur<MatrixType>::compu
|
|||||||
|
|
||||||
|
|
||||||
template<typename MatrixType>
|
template<typename MatrixType>
|
||||||
ComplexSchur<MatrixType>& ComplexSchur<MatrixType>::compute(const MatrixType& matrix, bool computeU)
|
ComplexSchur<MatrixType>& ComplexSchur<MatrixType>::compute(const MatrixType& matrix, bool computeU, Index maxIter)
|
||||||
{
|
{
|
||||||
m_matUisUptodate = false;
|
m_matUisUptodate = false;
|
||||||
eigen_assert(matrix.cols() == matrix.rows());
|
eigen_assert(matrix.cols() == matrix.rows());
|
||||||
@ -284,7 +305,7 @@ ComplexSchur<MatrixType>& ComplexSchur<MatrixType>::compute(const MatrixType& ma
|
|||||||
}
|
}
|
||||||
|
|
||||||
internal::complex_schur_reduce_to_hessenberg<MatrixType, NumTraits<Scalar>::IsComplex>::run(*this, matrix, computeU);
|
internal::complex_schur_reduce_to_hessenberg<MatrixType, NumTraits<Scalar>::IsComplex>::run(*this, matrix, computeU);
|
||||||
reduceToTriangularForm(computeU);
|
reduceToTriangularForm(computeU, maxIter);
|
||||||
return *this;
|
return *this;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -327,7 +348,7 @@ struct complex_schur_reduce_to_hessenberg<MatrixType, false>
|
|||||||
|
|
||||||
// Reduce the Hessenberg matrix m_matT to triangular form by QR iteration.
|
// Reduce the Hessenberg matrix m_matT to triangular form by QR iteration.
|
||||||
template<typename MatrixType>
|
template<typename MatrixType>
|
||||||
void ComplexSchur<MatrixType>::reduceToTriangularForm(bool computeU)
|
void ComplexSchur<MatrixType>::reduceToTriangularForm(bool computeU, Index maxIter)
|
||||||
{
|
{
|
||||||
// The matrix m_matT is divided in three parts.
|
// The matrix m_matT is divided in three parts.
|
||||||
// Rows 0,...,il-1 are decoupled from the rest because m_matT(il,il-1) is zero.
|
// Rows 0,...,il-1 are decoupled from the rest because m_matT(il,il-1) is zero.
|
||||||
@ -354,7 +375,7 @@ void ComplexSchur<MatrixType>::reduceToTriangularForm(bool computeU)
|
|||||||
// if we spent too many iterations, we give up
|
// if we spent too many iterations, we give up
|
||||||
iter++;
|
iter++;
|
||||||
totalIter++;
|
totalIter++;
|
||||||
if(totalIter > m_maxIterations * m_matT.cols()) break;
|
if(totalIter > maxIter) break;
|
||||||
|
|
||||||
// find il, the top row of the active submatrix
|
// find il, the top row of the active submatrix
|
||||||
il = iu-1;
|
il = iu-1;
|
||||||
@ -384,7 +405,7 @@ void ComplexSchur<MatrixType>::reduceToTriangularForm(bool computeU)
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
if(totalIter <= m_maxIterations * m_matT.cols())
|
if(totalIter <= maxIter)
|
||||||
m_info = Success;
|
m_info = Success;
|
||||||
else
|
else
|
||||||
m_info = NoConvergence;
|
m_info = NoConvergence;
|
||||||
|
@ -2,7 +2,7 @@
|
|||||||
// for linear algebra.
|
// for linear algebra.
|
||||||
//
|
//
|
||||||
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||||
// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
|
// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
|
||||||
//
|
//
|
||||||
// This Source Code Form is subject to the terms of the Mozilla
|
// This Source Code Form is subject to the terms of the Mozilla
|
||||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||||
@ -273,7 +273,27 @@ template<typename _MatrixType> class EigenSolver
|
|||||||
* Example: \include EigenSolver_compute.cpp
|
* Example: \include EigenSolver_compute.cpp
|
||||||
* Output: \verbinclude EigenSolver_compute.out
|
* Output: \verbinclude EigenSolver_compute.out
|
||||||
*/
|
*/
|
||||||
EigenSolver& compute(const MatrixType& matrix, bool computeEigenvectors = true);
|
EigenSolver& compute(const MatrixType& matrix, bool computeEigenvectors = true)
|
||||||
|
{
|
||||||
|
return computeInternal(matrix, computeEigenvectors, false, 0);
|
||||||
|
}
|
||||||
|
|
||||||
|
/** \brief Computes eigendecomposition with specified maximum number of iterations.
|
||||||
|
*
|
||||||
|
* \param[in] matrix Square matrix whose eigendecomposition is to be computed.
|
||||||
|
* \param[in] computeEigenvectors If true, both the eigenvectors and the
|
||||||
|
* eigenvalues are computed; if false, only the eigenvalues are
|
||||||
|
* computed.
|
||||||
|
* \param[in] maxIter Maximum number of iterations.
|
||||||
|
* \returns Reference to \c *this
|
||||||
|
*
|
||||||
|
* This method provides the same functionality as compute(const MatrixType&, bool) but it also allows the
|
||||||
|
* user to specify the maximum number of iterations to be used when computing the Schur decomposition.
|
||||||
|
*/
|
||||||
|
EigenSolver& compute(const MatrixType& matrix, bool computeEigenvectors, Index maxIter)
|
||||||
|
{
|
||||||
|
return computeInternal(matrix, computeEigenvectors, true, maxIter);
|
||||||
|
}
|
||||||
|
|
||||||
ComputationInfo info() const
|
ComputationInfo info() const
|
||||||
{
|
{
|
||||||
@ -283,6 +303,8 @@ template<typename _MatrixType> class EigenSolver
|
|||||||
|
|
||||||
private:
|
private:
|
||||||
void doComputeEigenvectors();
|
void doComputeEigenvectors();
|
||||||
|
EigenSolver& computeInternal(const MatrixType& matrix, bool computeEigenvectors,
|
||||||
|
bool maxIterSpecified, Index maxIter);
|
||||||
|
|
||||||
protected:
|
protected:
|
||||||
MatrixType m_eivec;
|
MatrixType m_eivec;
|
||||||
@ -348,12 +370,18 @@ typename EigenSolver<MatrixType>::EigenvectorsType EigenSolver<MatrixType>::eige
|
|||||||
}
|
}
|
||||||
|
|
||||||
template<typename MatrixType>
|
template<typename MatrixType>
|
||||||
EigenSolver<MatrixType>& EigenSolver<MatrixType>::compute(const MatrixType& matrix, bool computeEigenvectors)
|
EigenSolver<MatrixType>&
|
||||||
|
EigenSolver<MatrixType>::computeInternal(const MatrixType& matrix, bool computeEigenvectors,
|
||||||
|
bool maxIterSpecified, Index maxIter)
|
||||||
{
|
{
|
||||||
assert(matrix.cols() == matrix.rows());
|
assert(matrix.cols() == matrix.rows());
|
||||||
|
|
||||||
// Reduce to real Schur form.
|
// Reduce to real Schur form.
|
||||||
m_realSchur.compute(matrix, computeEigenvectors);
|
if (maxIterSpecified)
|
||||||
|
m_realSchur.compute(matrix, computeEigenvectors, maxIter);
|
||||||
|
else
|
||||||
|
m_realSchur.compute(matrix, computeEigenvectors);
|
||||||
|
|
||||||
if (m_realSchur.info() == Success)
|
if (m_realSchur.info() == Success)
|
||||||
{
|
{
|
||||||
m_matT = m_realSchur.matrixT();
|
m_matT = m_realSchur.matrixT();
|
||||||
|
@ -2,7 +2,7 @@
|
|||||||
// for linear algebra.
|
// for linear algebra.
|
||||||
//
|
//
|
||||||
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||||
// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
|
// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
|
||||||
//
|
//
|
||||||
// This Source Code Form is subject to the terms of the Mozilla
|
// This Source Code Form is subject to the terms of the Mozilla
|
||||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||||
@ -160,8 +160,27 @@ template<typename _MatrixType> class RealSchur
|
|||||||
*
|
*
|
||||||
* Example: \include RealSchur_compute.cpp
|
* Example: \include RealSchur_compute.cpp
|
||||||
* Output: \verbinclude RealSchur_compute.out
|
* Output: \verbinclude RealSchur_compute.out
|
||||||
|
*
|
||||||
|
* \sa compute(const MatrixType&, bool, Index)
|
||||||
*/
|
*/
|
||||||
RealSchur& compute(const MatrixType& matrix, bool computeU = true);
|
RealSchur& compute(const MatrixType& matrix, bool computeU = true)
|
||||||
|
{
|
||||||
|
return compute(matrix, computeU, m_maxIterations * matrix.rows());
|
||||||
|
}
|
||||||
|
|
||||||
|
/** \brief Computes Schur decomposition with specified maximum number of iterations.
|
||||||
|
*
|
||||||
|
* \param[in] matrix Square matrix whose Schur decomposition is to be computed.
|
||||||
|
* \param[in] computeU If true, both T and U are computed; if false, only T is computed.
|
||||||
|
* \param[in] maxIter Maximum number of iterations.
|
||||||
|
*
|
||||||
|
* \returns Reference to \c *this
|
||||||
|
*
|
||||||
|
* This method provides the same functionality as compute(const MatrixType&, bool) but it also allows the
|
||||||
|
* user to specify the maximum number of QR iterations to be used. The maximum number of iterations for
|
||||||
|
* compute(const MatrixType&, bool) is #m_maxIterations times the size of the matrix.
|
||||||
|
*/
|
||||||
|
RealSchur& compute(const MatrixType& matrix, bool computeU, Index maxIter);
|
||||||
|
|
||||||
/** \brief Reports whether previous computation was successful.
|
/** \brief Reports whether previous computation was successful.
|
||||||
*
|
*
|
||||||
@ -175,7 +194,8 @@ template<typename _MatrixType> class RealSchur
|
|||||||
|
|
||||||
/** \brief Maximum number of iterations.
|
/** \brief Maximum number of iterations.
|
||||||
*
|
*
|
||||||
* Maximum number of iterations allowed for an eigenvalue to converge.
|
* If not otherwise specified, the maximum number of iterations is this number times the size of the
|
||||||
|
* matrix. It is currently set to 40.
|
||||||
*/
|
*/
|
||||||
static const int m_maxIterations = 40;
|
static const int m_maxIterations = 40;
|
||||||
|
|
||||||
@ -201,7 +221,7 @@ template<typename _MatrixType> class RealSchur
|
|||||||
|
|
||||||
|
|
||||||
template<typename MatrixType>
|
template<typename MatrixType>
|
||||||
RealSchur<MatrixType>& RealSchur<MatrixType>::compute(const MatrixType& matrix, bool computeU)
|
RealSchur<MatrixType>& RealSchur<MatrixType>::compute(const MatrixType& matrix, bool computeU, Index maxIter)
|
||||||
{
|
{
|
||||||
assert(matrix.cols() == matrix.rows());
|
assert(matrix.cols() == matrix.rows());
|
||||||
|
|
||||||
@ -253,14 +273,14 @@ RealSchur<MatrixType>& RealSchur<MatrixType>::compute(const MatrixType& matrix,
|
|||||||
computeShift(iu, iter, exshift, shiftInfo);
|
computeShift(iu, iter, exshift, shiftInfo);
|
||||||
iter = iter + 1;
|
iter = iter + 1;
|
||||||
totalIter = totalIter + 1;
|
totalIter = totalIter + 1;
|
||||||
if (totalIter > m_maxIterations * matrix.cols()) break;
|
if (totalIter > maxIter) break;
|
||||||
Index im;
|
Index im;
|
||||||
initFrancisQRStep(il, iu, shiftInfo, im, firstHouseholderVector);
|
initFrancisQRStep(il, iu, shiftInfo, im, firstHouseholderVector);
|
||||||
performFrancisQRStep(il, im, iu, computeU, firstHouseholderVector, workspace);
|
performFrancisQRStep(il, im, iu, computeU, firstHouseholderVector, workspace);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
if(totalIter <= m_maxIterations * matrix.cols())
|
if(totalIter <= maxIter)
|
||||||
m_info = Success;
|
m_info = Success;
|
||||||
else
|
else
|
||||||
m_info = NoConvergence;
|
m_info = NoConvergence;
|
||||||
|
@ -59,6 +59,16 @@ template<typename MatrixType> void eigensolver(const MatrixType& m)
|
|||||||
// another algorithm so results may differ slightly
|
// another algorithm so results may differ slightly
|
||||||
verify_is_approx_upto_permutation(a.eigenvalues(), ei1.eigenvalues());
|
verify_is_approx_upto_permutation(a.eigenvalues(), ei1.eigenvalues());
|
||||||
|
|
||||||
|
ComplexEigenSolver<MatrixType> ei2;
|
||||||
|
ei2.compute(a, true, ComplexSchur<MatrixType>::m_maxIterations * rows);
|
||||||
|
VERIFY_IS_EQUAL(ei2.info(), Success);
|
||||||
|
VERIFY_IS_EQUAL(ei2.eigenvectors(), ei1.eigenvectors());
|
||||||
|
VERIFY_IS_EQUAL(ei2.eigenvalues(), ei1.eigenvalues());
|
||||||
|
if (rows > 2) {
|
||||||
|
ei2.compute(a, true, 1);
|
||||||
|
VERIFY_IS_EQUAL(ei2.info(), NoConvergence);
|
||||||
|
}
|
||||||
|
|
||||||
ComplexEigenSolver<MatrixType> eiNoEivecs(a, false);
|
ComplexEigenSolver<MatrixType> eiNoEivecs(a, false);
|
||||||
VERIFY_IS_EQUAL(eiNoEivecs.info(), Success);
|
VERIFY_IS_EQUAL(eiNoEivecs.info(), Success);
|
||||||
VERIFY_IS_APPROX(ei1.eigenvalues(), eiNoEivecs.eigenvalues());
|
VERIFY_IS_APPROX(ei1.eigenvalues(), eiNoEivecs.eigenvalues());
|
||||||
|
@ -2,7 +2,7 @@
|
|||||||
// for linear algebra.
|
// for linear algebra.
|
||||||
//
|
//
|
||||||
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||||
// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
|
// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
|
||||||
//
|
//
|
||||||
// This Source Code Form is subject to the terms of the Mozilla
|
// This Source Code Form is subject to the terms of the Mozilla
|
||||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||||
@ -45,6 +45,16 @@ template<typename MatrixType> void eigensolver(const MatrixType& m)
|
|||||||
VERIFY_IS_APPROX(ei1.eigenvectors().colwise().norm(), RealVectorType::Ones(rows).transpose());
|
VERIFY_IS_APPROX(ei1.eigenvectors().colwise().norm(), RealVectorType::Ones(rows).transpose());
|
||||||
VERIFY_IS_APPROX(a.eigenvalues(), ei1.eigenvalues());
|
VERIFY_IS_APPROX(a.eigenvalues(), ei1.eigenvalues());
|
||||||
|
|
||||||
|
EigenSolver<MatrixType> ei2;
|
||||||
|
ei2.compute(a, true, RealSchur<MatrixType>::m_maxIterations * rows);
|
||||||
|
VERIFY_IS_EQUAL(ei2.info(), Success);
|
||||||
|
VERIFY_IS_EQUAL(ei2.eigenvectors(), ei1.eigenvectors());
|
||||||
|
VERIFY_IS_EQUAL(ei2.eigenvalues(), ei1.eigenvalues());
|
||||||
|
if (rows > 2) {
|
||||||
|
ei2.compute(a, true, 1);
|
||||||
|
VERIFY_IS_EQUAL(ei2.info(), NoConvergence);
|
||||||
|
}
|
||||||
|
|
||||||
EigenSolver<MatrixType> eiNoEivecs(a, false);
|
EigenSolver<MatrixType> eiNoEivecs(a, false);
|
||||||
VERIFY_IS_EQUAL(eiNoEivecs.info(), Success);
|
VERIFY_IS_EQUAL(eiNoEivecs.info(), Success);
|
||||||
VERIFY_IS_APPROX(ei1.eigenvalues(), eiNoEivecs.eigenvalues());
|
VERIFY_IS_APPROX(ei1.eigenvalues(), eiNoEivecs.eigenvalues());
|
||||||
|
@ -1,7 +1,7 @@
|
|||||||
// This file is part of Eigen, a lightweight C++ template library
|
// This file is part of Eigen, a lightweight C++ template library
|
||||||
// for linear algebra.
|
// for linear algebra.
|
||||||
//
|
//
|
||||||
// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
|
// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
|
||||||
//
|
//
|
||||||
// This Source Code Form is subject to the terms of the Mozilla
|
// This Source Code Form is subject to the terms of the Mozilla
|
||||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||||
@ -47,6 +47,22 @@ template<typename MatrixType> void schur(int size = MatrixType::ColsAtCompileTim
|
|||||||
VERIFY_IS_EQUAL(cs1.matrixT(), cs2.matrixT());
|
VERIFY_IS_EQUAL(cs1.matrixT(), cs2.matrixT());
|
||||||
VERIFY_IS_EQUAL(cs1.matrixU(), cs2.matrixU());
|
VERIFY_IS_EQUAL(cs1.matrixU(), cs2.matrixU());
|
||||||
|
|
||||||
|
// Test maximum number of iterations
|
||||||
|
ComplexSchur<MatrixType> cs3;
|
||||||
|
cs3.compute(A, true, ComplexSchur<MatrixType>::m_maxIterations * size);
|
||||||
|
VERIFY_IS_EQUAL(cs3.info(), Success);
|
||||||
|
VERIFY_IS_EQUAL(cs3.matrixT(), cs1.matrixT());
|
||||||
|
VERIFY_IS_EQUAL(cs3.matrixU(), cs1.matrixU());
|
||||||
|
cs3.compute(A, true, 1);
|
||||||
|
VERIFY_IS_EQUAL(cs3.info(), size > 1 ? NoConvergence : Success);
|
||||||
|
|
||||||
|
MatrixType Atriangular = A;
|
||||||
|
Atriangular.template triangularView<StrictlyLower>().setZero();
|
||||||
|
cs3.compute(Atriangular, true, 1); // triangular matrices do not need any iterations
|
||||||
|
VERIFY_IS_EQUAL(cs3.info(), Success);
|
||||||
|
VERIFY_IS_EQUAL(cs3.matrixT(), Atriangular.template cast<ComplexScalar>());
|
||||||
|
VERIFY_IS_EQUAL(cs3.matrixU(), ComplexMatrixType::Identity(size, size));
|
||||||
|
|
||||||
// Test computation of only T, not U
|
// Test computation of only T, not U
|
||||||
ComplexSchur<MatrixType> csOnlyT(A, false);
|
ComplexSchur<MatrixType> csOnlyT(A, false);
|
||||||
VERIFY_IS_EQUAL(csOnlyT.info(), Success);
|
VERIFY_IS_EQUAL(csOnlyT.info(), Success);
|
||||||
|
@ -1,7 +1,7 @@
|
|||||||
// This file is part of Eigen, a lightweight C++ template library
|
// This file is part of Eigen, a lightweight C++ template library
|
||||||
// for linear algebra.
|
// for linear algebra.
|
||||||
//
|
//
|
||||||
// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
|
// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
|
||||||
//
|
//
|
||||||
// This Source Code Form is subject to the terms of the Mozilla
|
// This Source Code Form is subject to the terms of the Mozilla
|
||||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||||
@ -66,6 +66,24 @@ template<typename MatrixType> void schur(int size = MatrixType::ColsAtCompileTim
|
|||||||
VERIFY_IS_EQUAL(rs1.matrixT(), rs2.matrixT());
|
VERIFY_IS_EQUAL(rs1.matrixT(), rs2.matrixT());
|
||||||
VERIFY_IS_EQUAL(rs1.matrixU(), rs2.matrixU());
|
VERIFY_IS_EQUAL(rs1.matrixU(), rs2.matrixU());
|
||||||
|
|
||||||
|
// Test maximum number of iterations
|
||||||
|
RealSchur<MatrixType> rs3;
|
||||||
|
rs3.compute(A, true, RealSchur<MatrixType>::m_maxIterations * size);
|
||||||
|
VERIFY_IS_EQUAL(rs3.info(), Success);
|
||||||
|
VERIFY_IS_EQUAL(rs3.matrixT(), rs1.matrixT());
|
||||||
|
VERIFY_IS_EQUAL(rs3.matrixU(), rs1.matrixU());
|
||||||
|
if (size > 2) {
|
||||||
|
rs3.compute(A, true, 1);
|
||||||
|
VERIFY_IS_EQUAL(rs3.info(), NoConvergence);
|
||||||
|
}
|
||||||
|
|
||||||
|
MatrixType Atriangular = A;
|
||||||
|
Atriangular.template triangularView<StrictlyLower>().setZero();
|
||||||
|
rs3.compute(Atriangular, true, 1); // triangular matrices do not need any iterations
|
||||||
|
VERIFY_IS_EQUAL(rs3.info(), Success);
|
||||||
|
VERIFY_IS_EQUAL(rs3.matrixT(), Atriangular);
|
||||||
|
VERIFY_IS_EQUAL(rs3.matrixU(), MatrixType::Identity(size, size));
|
||||||
|
|
||||||
// Test computation of only T, not U
|
// Test computation of only T, not U
|
||||||
RealSchur<MatrixType> rsOnlyT(A, false);
|
RealSchur<MatrixType> rsOnlyT(A, false);
|
||||||
VERIFY_IS_EQUAL(rsOnlyT.info(), Success);
|
VERIFY_IS_EQUAL(rsOnlyT.info(), Success);
|
||||||
|
Loading…
x
Reference in New Issue
Block a user