mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-08-12 03:39:01 +08:00
reduce local variables so that we can split algorithms
This commit is contained in:
parent
be368c33bb
commit
baec4f39ab
@ -59,6 +59,21 @@ public:
|
||||
int njev;
|
||||
private:
|
||||
const FunctorType &functor;
|
||||
int n;
|
||||
Scalar sum;
|
||||
bool sing;
|
||||
int iter;
|
||||
Scalar temp;
|
||||
Scalar delta;
|
||||
bool jeval;
|
||||
int ncsuc;
|
||||
Scalar ratio;
|
||||
Scalar fnorm;
|
||||
Scalar pnorm, xnorm, fnorm1;
|
||||
int nslow1, nslow2;
|
||||
int ncfail;
|
||||
Scalar actred, prered;
|
||||
Matrix< Scalar, Dynamic, 1 > wa1, wa2, wa3, wa4;
|
||||
};
|
||||
|
||||
|
||||
@ -70,7 +85,7 @@ HybridNonLinearSolver<FunctorType,Scalar>::solve(
|
||||
const Scalar tol
|
||||
)
|
||||
{
|
||||
const int n = x.size();
|
||||
n = x.size();
|
||||
Parameters parameters;
|
||||
|
||||
/* check the input parameters for errors. */
|
||||
@ -99,9 +114,9 @@ HybridNonLinearSolver<FunctorType,Scalar>::solve(
|
||||
const int mode
|
||||
)
|
||||
{
|
||||
const int n = x.size();
|
||||
Matrix< Scalar, Dynamic, 1 > wa1(n), wa2(n), wa3(n), wa4(n);
|
||||
n = x.size();
|
||||
|
||||
wa1.resize(n); wa2.resize(n); wa3.resize(n); wa4.resize(n);
|
||||
fvec.resize(n);
|
||||
qtf.resize(n);
|
||||
R.resize( (n*(n+1))/2);
|
||||
@ -111,22 +126,6 @@ HybridNonLinearSolver<FunctorType,Scalar>::solve(
|
||||
diag.resize(n);
|
||||
assert( (mode!=2 || diag.size()==n) || "When using mode==2, the caller must provide a valid 'diag'");
|
||||
|
||||
/* Local variables */
|
||||
int i, j, l, iwa[1];
|
||||
Scalar sum;
|
||||
bool sing;
|
||||
int iter;
|
||||
Scalar temp;
|
||||
Scalar delta;
|
||||
bool jeval;
|
||||
int ncsuc;
|
||||
Scalar ratio;
|
||||
Scalar fnorm;
|
||||
Scalar pnorm, xnorm, fnorm1;
|
||||
int nslow1, nslow2;
|
||||
int ncfail;
|
||||
Scalar actred, prered;
|
||||
|
||||
/* Function Body */
|
||||
nfev = 0;
|
||||
njev = 0;
|
||||
@ -136,7 +135,7 @@ HybridNonLinearSolver<FunctorType,Scalar>::solve(
|
||||
if (n <= 0 || parameters.xtol < 0. || parameters.maxfev <= 0 || parameters.factor <= 0. )
|
||||
return ImproperInputParameters;
|
||||
if (mode == 2)
|
||||
for (j = 0; j < n; ++j)
|
||||
for (int j = 0; j < n; ++j)
|
||||
if (diag[j] <= 0.)
|
||||
return ImproperInputParameters;
|
||||
|
||||
@ -159,6 +158,7 @@ HybridNonLinearSolver<FunctorType,Scalar>::solve(
|
||||
/* beginning of the outer loop. */
|
||||
|
||||
while (true) {
|
||||
int i, j, l, iwa[1];
|
||||
jeval = true;
|
||||
|
||||
/* calculate the jacobian matrix. */
|
||||
@ -380,7 +380,7 @@ HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiff(
|
||||
const Scalar tol
|
||||
)
|
||||
{
|
||||
const int n = x.size();
|
||||
n = x.size();
|
||||
Parameters parameters;
|
||||
|
||||
/* check the input parameters for errors. */
|
||||
@ -412,12 +412,12 @@ HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiff(
|
||||
const Scalar epsfcn
|
||||
)
|
||||
{
|
||||
const int n = x.size();
|
||||
Matrix< Scalar, Dynamic, 1 > wa1(n), wa2(n), wa3(n), wa4(n);
|
||||
|
||||
n = x.size();
|
||||
|
||||
if (nb_of_subdiagonals<0) nb_of_subdiagonals = n-1;
|
||||
if (nb_of_superdiagonals<0) nb_of_superdiagonals = n-1;
|
||||
|
||||
wa1.resize(n); wa2.resize(n); wa3.resize(n); wa4.resize(n);
|
||||
qtf.resize(n);
|
||||
R.resize( (n*(n+1))/2);
|
||||
fjac.resize(n, n);
|
||||
@ -426,22 +426,7 @@ HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiff(
|
||||
diag.resize(n);
|
||||
assert( (mode!=2 || diag.size()==n) || "When using mode==2, the caller must provide a valid 'diag'");
|
||||
|
||||
/* Local variables */
|
||||
int i, j, l, iwa[1];
|
||||
Scalar sum;
|
||||
bool sing;
|
||||
int iter;
|
||||
Scalar temp;
|
||||
int msum;
|
||||
Scalar delta;
|
||||
bool jeval;
|
||||
int ncsuc;
|
||||
Scalar ratio;
|
||||
Scalar fnorm;
|
||||
Scalar pnorm, xnorm, fnorm1;
|
||||
int nslow1, nslow2;
|
||||
int ncfail;
|
||||
Scalar actred, prered;
|
||||
|
||||
/* Function Body */
|
||||
|
||||
@ -452,7 +437,7 @@ HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiff(
|
||||
if (n <= 0 || parameters.xtol < 0. || parameters.maxfev <= 0 || nb_of_subdiagonals < 0 || nb_of_superdiagonals < 0 || parameters.factor <= 0. )
|
||||
return ImproperInputParameters;
|
||||
if (mode == 2)
|
||||
for (j = 0; j < n; ++j)
|
||||
for (int j = 0; j < n; ++j)
|
||||
if (diag[j] <= 0.)
|
||||
return ImproperInputParameters;
|
||||
|
||||
@ -481,6 +466,7 @@ HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiff(
|
||||
/* beginning of the outer loop. */
|
||||
|
||||
while (true) {
|
||||
int i, j, l, iwa[1];
|
||||
jeval = true;
|
||||
|
||||
/* calculate the jacobian matrix. */
|
||||
|
@ -77,6 +77,17 @@ public:
|
||||
int njev;
|
||||
private:
|
||||
const FunctorType &functor;
|
||||
int n;
|
||||
int m;
|
||||
Matrix< Scalar, Dynamic, 1 > wa1, wa2, wa3, wa4;
|
||||
|
||||
Scalar par, sum;
|
||||
int iter;
|
||||
Scalar temp, temp1, temp2;
|
||||
Scalar delta;
|
||||
Scalar ratio;
|
||||
Scalar fnorm, gnorm;
|
||||
Scalar pnorm, xnorm, fnorm1, actred, dirder, prered;
|
||||
};
|
||||
|
||||
template<typename FunctorType, typename Scalar>
|
||||
@ -86,8 +97,8 @@ LevenbergMarquardt<FunctorType,Scalar>::minimize(
|
||||
const Scalar tol
|
||||
)
|
||||
{
|
||||
const int n = x.size();
|
||||
const int m = functor.nbOfFunctions();
|
||||
n = x.size();
|
||||
m = functor.nbOfFunctions();
|
||||
Parameters parameters;
|
||||
|
||||
/* check the input parameters for errors. */
|
||||
@ -115,10 +126,11 @@ LevenbergMarquardt<FunctorType,Scalar>::minimize(
|
||||
const int mode
|
||||
)
|
||||
{
|
||||
const int n = x.size();
|
||||
const int m = functor.nbOfFunctions();
|
||||
Matrix< Scalar, Dynamic, 1 > wa1(n), wa2(n), wa3(n), wa4;
|
||||
n = x.size();
|
||||
m = functor.nbOfFunctions();
|
||||
|
||||
wa1.resize(n); wa2.resize(n); wa3.resize(n);
|
||||
wa4.resize(m);
|
||||
fvec.resize(m);
|
||||
ipvt.resize(n);
|
||||
fjac.resize(m, n);
|
||||
@ -127,16 +139,6 @@ LevenbergMarquardt<FunctorType,Scalar>::minimize(
|
||||
assert( (mode!=2 || diag.size()==n) || "When using mode==2, the caller must provide a valid 'diag'");
|
||||
qtf.resize(n);
|
||||
|
||||
/* Local variables */
|
||||
int i, j, l;
|
||||
Scalar par, sum;
|
||||
int iter;
|
||||
Scalar temp, temp1, temp2;
|
||||
Scalar delta;
|
||||
Scalar ratio;
|
||||
Scalar fnorm, gnorm;
|
||||
Scalar pnorm, xnorm, fnorm1, actred, dirder, prered;
|
||||
|
||||
/* Function Body */
|
||||
nfev = 0;
|
||||
njev = 0;
|
||||
@ -147,7 +149,7 @@ LevenbergMarquardt<FunctorType,Scalar>::minimize(
|
||||
return ImproperInputParameters;
|
||||
|
||||
if (mode == 2)
|
||||
for (j = 0; j < n; ++j)
|
||||
for (int j = 0; j < n; ++j)
|
||||
if (diag[j] <= 0.)
|
||||
return ImproperInputParameters;
|
||||
|
||||
@ -167,6 +169,7 @@ LevenbergMarquardt<FunctorType,Scalar>::minimize(
|
||||
/* beginning of the outer loop. */
|
||||
|
||||
while (true) {
|
||||
int i, j, l;
|
||||
|
||||
/* calculate the jacobian matrix. */
|
||||
|
||||
@ -349,7 +352,6 @@ LevenbergMarquardt<FunctorType,Scalar>::minimize(
|
||||
} while (ratio < Scalar(1e-4));
|
||||
/* end of the outer loop. */
|
||||
}
|
||||
assert(false); // should never be reached
|
||||
}
|
||||
|
||||
|
||||
@ -360,8 +362,8 @@ LevenbergMarquardt<FunctorType,Scalar>::minimizeNumericalDiff(
|
||||
const Scalar tol
|
||||
)
|
||||
{
|
||||
const int n = x.size();
|
||||
const int m = functor.nbOfFunctions();
|
||||
n = x.size();
|
||||
m = functor.nbOfFunctions();
|
||||
Parameters parameters;
|
||||
|
||||
/* check the input parameters for errors. */
|
||||
@ -389,10 +391,11 @@ LevenbergMarquardt<FunctorType,Scalar>::minimizeNumericalDiff(
|
||||
const Scalar epsfcn
|
||||
)
|
||||
{
|
||||
const int n = x.size();
|
||||
const int m = functor.nbOfFunctions();
|
||||
Matrix< Scalar, Dynamic, 1 > wa1(n), wa2(n), wa3(n), wa4(m);
|
||||
n = x.size();
|
||||
m = functor.nbOfFunctions();
|
||||
|
||||
wa1.resize(n); wa2.resize(n); wa3.resize(n);
|
||||
wa4.resize(m);
|
||||
fvec.resize(m);
|
||||
ipvt.resize(n);
|
||||
fjac.resize(m, n);
|
||||
@ -401,16 +404,6 @@ LevenbergMarquardt<FunctorType,Scalar>::minimizeNumericalDiff(
|
||||
assert( (mode!=2 || diag.size()==n) || "When using mode==2, the caller must provide a valid 'diag'");
|
||||
qtf.resize(n);
|
||||
|
||||
/* Local variables */
|
||||
int i, j, l;
|
||||
Scalar par, sum;
|
||||
int iter;
|
||||
Scalar temp, temp1, temp2;
|
||||
Scalar delta;
|
||||
Scalar ratio;
|
||||
Scalar fnorm, gnorm;
|
||||
Scalar pnorm, xnorm, fnorm1, actred, dirder, prered;
|
||||
|
||||
/* Function Body */
|
||||
nfev = 0;
|
||||
|
||||
@ -419,7 +412,7 @@ LevenbergMarquardt<FunctorType,Scalar>::minimizeNumericalDiff(
|
||||
if (n <= 0 || m < n || parameters.ftol < 0. || parameters.xtol < 0. || parameters.gtol < 0. || parameters.maxfev <= 0 || parameters.factor <= 0.)
|
||||
return ImproperInputParameters;
|
||||
if (mode == 2)
|
||||
for (j = 0; j < n; ++j)
|
||||
for (int j = 0; j < n; ++j)
|
||||
if (diag[j] <= 0.)
|
||||
return ImproperInputParameters;
|
||||
|
||||
@ -439,6 +432,7 @@ LevenbergMarquardt<FunctorType,Scalar>::minimizeNumericalDiff(
|
||||
/* beginning of the outer loop. */
|
||||
|
||||
while (true) {
|
||||
int i, j, l;
|
||||
|
||||
/* calculate the jacobian matrix. */
|
||||
|
||||
@ -633,8 +627,8 @@ LevenbergMarquardt<FunctorType,Scalar>::minimizeOptimumStorage(
|
||||
const Scalar tol
|
||||
)
|
||||
{
|
||||
const int n = x.size();
|
||||
const int m = functor.nbOfFunctions();
|
||||
n = x.size();
|
||||
m = functor.nbOfFunctions();
|
||||
Matrix< Scalar, Dynamic, Dynamic > fjac(m, n);
|
||||
VectorXi ipvt;
|
||||
Parameters parameters;
|
||||
@ -663,10 +657,11 @@ LevenbergMarquardt<FunctorType,Scalar>::minimizeOptimumStorage(
|
||||
const int mode
|
||||
)
|
||||
{
|
||||
const int n = x.size();
|
||||
const int m = functor.nbOfFunctions();
|
||||
Matrix< Scalar, Dynamic, 1 > wa1(n), wa2(n), wa3(n), wa4(m);
|
||||
n = x.size();
|
||||
m = functor.nbOfFunctions();
|
||||
|
||||
wa1.resize(n); wa2.resize(n); wa3.resize(n);
|
||||
wa4.resize(m);
|
||||
fvec.resize(m);
|
||||
ipvt.resize(n);
|
||||
fjac.resize(m, n);
|
||||
@ -676,15 +671,7 @@ LevenbergMarquardt<FunctorType,Scalar>::minimizeOptimumStorage(
|
||||
qtf.resize(n);
|
||||
|
||||
/* Local variables */
|
||||
int i, j, l;
|
||||
Scalar par, sum;
|
||||
int iter;
|
||||
bool sing;
|
||||
Scalar temp, temp1, temp2;
|
||||
Scalar delta;
|
||||
Scalar ratio;
|
||||
Scalar fnorm, gnorm;
|
||||
Scalar pnorm, xnorm, fnorm1, actred, dirder, prered;
|
||||
|
||||
/* Function Body */
|
||||
nfev = 0;
|
||||
@ -696,7 +683,7 @@ LevenbergMarquardt<FunctorType,Scalar>::minimizeOptimumStorage(
|
||||
return ImproperInputParameters;
|
||||
|
||||
if (mode == 2)
|
||||
for (j = 0; j < n; ++j)
|
||||
for (int j = 0; j < n; ++j)
|
||||
if (diag[j] <= 0.)
|
||||
return ImproperInputParameters;
|
||||
|
||||
@ -716,6 +703,7 @@ LevenbergMarquardt<FunctorType,Scalar>::minimizeOptimumStorage(
|
||||
/* beginning of the outer loop. */
|
||||
|
||||
while (true) {
|
||||
int i, j, l;
|
||||
|
||||
/* compute the qr factorization of the jacobian matrix */
|
||||
/* calculated one row at a time, while simultaneously */
|
||||
|
Loading…
x
Reference in New Issue
Block a user