mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-09-24 07:13:16 +08:00
Add test for matrix power.
Use Christoph Hertzberg's suggestion to use exponent laws.
This commit is contained in:
parent
b55d260ada
commit
bfaa7f4ffe
@ -33,6 +33,7 @@ endif()
|
||||
|
||||
ei_add_test(matrix_exponential)
|
||||
ei_add_test(matrix_function)
|
||||
ei_add_test(matrix_power)
|
||||
ei_add_test(matrix_square_root)
|
||||
ei_add_test(alignedvector3)
|
||||
ei_add_test(FFT)
|
||||
|
@ -7,8 +7,7 @@
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#include "main.h"
|
||||
#include <unsupported/Eigen/MatrixFunctions>
|
||||
#include "matrix_functions.h"
|
||||
|
||||
double binom(int n, int k)
|
||||
{
|
||||
@ -18,12 +17,6 @@ double binom(int n, int k)
|
||||
return res;
|
||||
}
|
||||
|
||||
template <typename Derived, typename OtherDerived>
|
||||
double relerr(const MatrixBase<Derived>& A, const MatrixBase<OtherDerived>& B)
|
||||
{
|
||||
return std::sqrt((A - B).cwiseAbs2().sum() / (std::min)(A.cwiseAbs2().sum(), B.cwiseAbs2().sum()));
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
T expfn(T x, int)
|
||||
{
|
||||
@ -109,8 +102,7 @@ void randomTest(const MatrixType& m, double tol)
|
||||
*/
|
||||
typename MatrixType::Index rows = m.rows();
|
||||
typename MatrixType::Index cols = m.cols();
|
||||
MatrixType m1(rows, cols), m2(rows, cols), m3(rows, cols),
|
||||
identity = MatrixType::Identity(rows, rows);
|
||||
MatrixType m1(rows, cols), m2(rows, cols), identity = MatrixType::Identity(rows, cols);
|
||||
|
||||
typedef typename NumTraits<typename internal::traits<MatrixType>::Scalar>::Real RealScalar;
|
||||
|
||||
|
47
unsupported/test/matrix_functions.h
Normal file
47
unsupported/test/matrix_functions.h
Normal file
@ -0,0 +1,47 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009-2011 Jitse Niesen <jitse@maths.leeds.ac.uk>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#include "main.h"
|
||||
#include <unsupported/Eigen/MatrixFunctions>
|
||||
|
||||
template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex>
|
||||
struct generateTestMatrix;
|
||||
|
||||
// for real matrices, make sure none of the eigenvalues are negative
|
||||
template <typename MatrixType>
|
||||
struct generateTestMatrix<MatrixType,0>
|
||||
{
|
||||
static void run(MatrixType& result, typename MatrixType::Index size)
|
||||
{
|
||||
MatrixType mat = MatrixType::Random(size, size);
|
||||
EigenSolver<MatrixType> es(mat);
|
||||
typename EigenSolver<MatrixType>::EigenvalueType eivals = es.eigenvalues();
|
||||
for (typename MatrixType::Index i = 0; i < size; ++i) {
|
||||
if (eivals(i).imag() == 0 && eivals(i).real() < 0)
|
||||
eivals(i) = -eivals(i);
|
||||
}
|
||||
result = (es.eigenvectors() * eivals.asDiagonal() * es.eigenvectors().inverse()).real();
|
||||
}
|
||||
};
|
||||
|
||||
// for complex matrices, any matrix is fine
|
||||
template <typename MatrixType>
|
||||
struct generateTestMatrix<MatrixType,1>
|
||||
{
|
||||
static void run(MatrixType& result, typename MatrixType::Index size)
|
||||
{
|
||||
result = MatrixType::Random(size, size);
|
||||
}
|
||||
};
|
||||
|
||||
template <typename Derived, typename OtherDerived>
|
||||
double relerr(const MatrixBase<Derived>& A, const MatrixBase<OtherDerived>& B)
|
||||
{
|
||||
return std::sqrt((A - B).cwiseAbs2().sum() / (std::min)(A.cwiseAbs2().sum(), B.cwiseAbs2().sum()));
|
||||
}
|
104
unsupported/test/matrix_power.cpp
Normal file
104
unsupported/test/matrix_power.cpp
Normal file
@ -0,0 +1,104 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2012 Chen-Pang He <jdh8@ms63.hinet.net>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#include "matrix_functions.h"
|
||||
|
||||
template <typename T>
|
||||
void test2dRotation(double tol)
|
||||
{
|
||||
Matrix<T,2,2> A, B, C;
|
||||
T angle, c, s;
|
||||
|
||||
A << 0, 1, -1, 0;
|
||||
for (int i = 0; i <= 20; i++) {
|
||||
angle = pow(10, (i-10) / 5.);
|
||||
c = std::cos(angle);
|
||||
s = std::sin(angle);
|
||||
B << c, s, -s, c;
|
||||
|
||||
C = A.pow(std::ldexp(angle, 1) / M_PI);
|
||||
std::cout << "test2dRotation: i = " << i << " error powerm = " << relerr(C, B) << "\n";
|
||||
VERIFY(C.isApprox(B, T(tol)));
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void test2dHyperbolicRotation(double tol)
|
||||
{
|
||||
Matrix<std::complex<T>,2,2> A, B, C;
|
||||
T angle, ch = std::cosh(1);
|
||||
std::complex<T> ish(0, std::sinh(1));
|
||||
|
||||
A << ch, ish, -ish, ch;
|
||||
for (int i = 0; i <= 20; i++) {
|
||||
angle = std::ldexp(T(i-10), -1);
|
||||
ch = std::cosh(angle);
|
||||
ish = std::complex<T>(0, std::sinh(angle));
|
||||
B << ch, ish, -ish, ch;
|
||||
|
||||
C = A.pow(angle);
|
||||
std::cout << "test2dHyperbolicRotation: i = " << i << " error powerm = " << relerr(C, B) << "\n";
|
||||
VERIFY(C.isApprox(B, T(tol)));
|
||||
}
|
||||
}
|
||||
|
||||
template <typename MatrixType>
|
||||
void testExponentLaws(const MatrixType& m, double tol)
|
||||
{
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
|
||||
typename MatrixType::Index rows = m.rows();
|
||||
typename MatrixType::Index cols = m.cols();
|
||||
MatrixType m1, m1x, m1y, m2, m3;
|
||||
RealScalar x = internal::random<RealScalar>(), y = internal::random<RealScalar>();
|
||||
double err[3];
|
||||
|
||||
for(int i = 0; i < g_repeat; i++) {
|
||||
generateTestMatrix<MatrixType>::run(m1, m.rows());
|
||||
m1x = m1.pow(x);
|
||||
m1y = m1.pow(y);
|
||||
|
||||
m2 = m1.pow(x + y);
|
||||
m3 = m1x * m1y;
|
||||
err[0] = relerr(m2, m3);
|
||||
VERIFY(m2.isApprox(m3, static_cast<RealScalar>(tol)));
|
||||
|
||||
m2 = m1.pow(x * y);
|
||||
m3 = m1x.pow(y);
|
||||
err[1] = relerr(m2, m3);
|
||||
VERIFY(m2.isApprox(m3, static_cast<RealScalar>(tol)));
|
||||
|
||||
m2 = (std::abs(x) * m1).pow(y);
|
||||
m3 = std::pow(std::abs(x), y) * m1y;
|
||||
err[2] = relerr(m2, m3);
|
||||
VERIFY(m2.isApprox(m3, static_cast<RealScalar>(tol)));
|
||||
|
||||
std::cout << "testExponentLaws: error powerm = " << err[0] << " " << err[1] << " " << err[2] << "\n";
|
||||
}
|
||||
}
|
||||
|
||||
void test_matrix_power()
|
||||
{
|
||||
CALL_SUBTEST_2(test2dRotation<double>(1e-13));
|
||||
CALL_SUBTEST_1(test2dRotation<float>(2e-5)); // was 1e-5, relaxed for clang 2.8 / linux / x86-64
|
||||
CALL_SUBTEST_8(test2dRotation<long double>(1e-13));
|
||||
CALL_SUBTEST_2(test2dHyperbolicRotation<double>(1e-14));
|
||||
CALL_SUBTEST_1(test2dHyperbolicRotation<float>(1e-5));
|
||||
CALL_SUBTEST_8(test2dHyperbolicRotation<long double>(1e-14));
|
||||
CALL_SUBTEST_2(testExponentLaws(Matrix2d(), 1e-13));
|
||||
CALL_SUBTEST_7(testExponentLaws(Matrix<double,3,3,RowMajor>(), 1e-13));
|
||||
CALL_SUBTEST_3(testExponentLaws(Matrix4cd(), 1e-13));
|
||||
CALL_SUBTEST_4(testExponentLaws(MatrixXd(8,8), 1e-13));
|
||||
CALL_SUBTEST_1(testExponentLaws(Matrix2f(), 1e-4));
|
||||
CALL_SUBTEST_5(testExponentLaws(Matrix3cf(), 1e-4));
|
||||
CALL_SUBTEST_1(testExponentLaws(Matrix4f(), 1e-4));
|
||||
CALL_SUBTEST_6(testExponentLaws(MatrixXf(8,8), 1e-4));
|
||||
CALL_SUBTEST_9(testExponentLaws(Matrix<long double,Dynamic,Dynamic>(7,7), 1e-13));
|
||||
}
|
@ -7,38 +7,7 @@
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#include "main.h"
|
||||
#include <unsupported/Eigen/MatrixFunctions>
|
||||
|
||||
template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex>
|
||||
struct generateTestMatrix;
|
||||
|
||||
// for real matrices, make sure none of the eigenvalues are negative
|
||||
template <typename MatrixType>
|
||||
struct generateTestMatrix<MatrixType,0>
|
||||
{
|
||||
static void run(MatrixType& result, typename MatrixType::Index size)
|
||||
{
|
||||
MatrixType mat = MatrixType::Random(size, size);
|
||||
EigenSolver<MatrixType> es(mat);
|
||||
typename EigenSolver<MatrixType>::EigenvalueType eivals = es.eigenvalues();
|
||||
for (typename MatrixType::Index i = 0; i < size; ++i) {
|
||||
if (eivals(i).imag() == 0 && eivals(i).real() < 0)
|
||||
eivals(i) = -eivals(i);
|
||||
}
|
||||
result = (es.eigenvectors() * eivals.asDiagonal() * es.eigenvectors().inverse()).real();
|
||||
}
|
||||
};
|
||||
|
||||
// for complex matrices, any matrix is fine
|
||||
template <typename MatrixType>
|
||||
struct generateTestMatrix<MatrixType,1>
|
||||
{
|
||||
static void run(MatrixType& result, typename MatrixType::Index size)
|
||||
{
|
||||
result = MatrixType::Random(size, size);
|
||||
}
|
||||
};
|
||||
#include "matrix_functions.h"
|
||||
|
||||
template<typename MatrixType>
|
||||
void testMatrixSqrt(const MatrixType& m)
|
||||
|
Loading…
x
Reference in New Issue
Block a user