This commit is contained in:
Gael Guennebaud 2010-07-15 09:54:31 +02:00
commit bfbe61454e
11 changed files with 131 additions and 185 deletions

View File

@ -315,6 +315,7 @@ template<typename T> inline T* ei_construct_elements_of_array(T *ptr, size_t siz
template<typename T> inline void ei_destruct_elements_of_array(T *ptr, size_t size)
{
// always destruct an array starting from the end.
if(ptr)
while(size) ptr[--size].~T();
}

View File

@ -65,7 +65,7 @@ void MatrixBase<Derived>::makeHouseholder(
EIGEN_STATIC_ASSERT_VECTOR_ONLY(EssentialPart)
VectorBlock<Derived, EssentialPart::SizeAtCompileTime> tail(derived(), 1, size()-1);
RealScalar tailSqNorm = size()==1 ? 0 : tail.squaredNorm();
RealScalar tailSqNorm = size()==1 ? RealScalar(0) : tail.squaredNorm();
Scalar c0 = coeff(0);
if(tailSqNorm == RealScalar(0) && ei_imag(c0)==RealScalar(0))

View File

@ -43,7 +43,7 @@ also have the same \c Scalar type, as Eigen doesn't do automatic type promotion.
Example: \include tut_arithmetic_add_sub.cpp
</td>
<td>
Output: \include tut_arithmetic_add_sub.out
Output: \verbinclude tut_arithmetic_add_sub.out
</td></tr></table>
\section TutorialArithmeticScalarMulDiv Scalar multiplication and division
@ -59,7 +59,7 @@ Multiplication and division by a scalar is very simple too. The operators at han
Example: \include tut_arithmetic_scalar_mul_div.cpp
</td>
<td>
Output: \include tut_arithmetic_scalar_mul_div.out
Output: \verbinclude tut_arithmetic_scalar_mul_div.out
</td></tr></table>
@ -93,7 +93,7 @@ The transpose \f$ a^T \f$, conjugate \f$ \bar{a} \f$, and adjoint (i.e., conjuga
Example: \include tut_arithmetic_transpose_conjugate.cpp
</td>
<td>
Output: \include tut_arithmetic_transpose_conjugate.out
Output: \verbinclude tut_arithmetic_transpose_conjugate.out
</td></tr></table>
For real matrices, \c conjugate() is a no-operation, and so \c adjoint() is 100% equivalent to \c transpose().
@ -103,7 +103,7 @@ As for basic arithmetic operators, \c transpose() and \c adjoint() simply return
Example: \include tut_arithmetic_transpose_aliasing.cpp
</td>
<td>
Output: \include tut_arithmetic_transpose_aliasing.out
Output: \verbinclude tut_arithmetic_transpose_aliasing.out
</td></tr></table>
This is the so-called \ref TopicAliasing "aliasing issue". In "debug mode", i.e., when \ref TopicAssertions "assertions" have not been disabled, such common pitfalls are automatically detected.
@ -112,7 +112,7 @@ For \em in-place transposition, as for instance in <tt>a = a.transpose()</tt>, s
Example: \include tut_arithmetic_transpose_inplace.cpp
</td>
<td>
Output: \include tut_arithmetic_transpose_inplace.out
Output: \verbinclude tut_arithmetic_transpose_inplace.out
</td></tr></table>
There is also the \link MatrixBase::adjointInPlace() adjointInPlace()\endlink function for complex matrices.
@ -129,7 +129,7 @@ two operators:
Example: \include tut_arithmetic_matrix_mul.cpp
</td>
<td>
Output: \include tut_arithmetic_matrix_mul.out
Output: \verbinclude tut_arithmetic_matrix_mul.out
</td></tr></table>
Note: if you read the above paragraph on expression templates and are worried that doing \c m=m*m might cause
@ -154,7 +154,7 @@ The above-discussed \c operator* cannot be used to compute dot and cross product
Example: \include tut_arithmetic_dot_cross.cpp
</td>
<td>
Output: \include tut_arithmetic_dot_cross.out
Output: \verbinclude tut_arithmetic_dot_cross.out
</td></tr></table>
Remember that cross product is only for vectors of size 3. Dot product is for vectors of any sizes.
@ -168,7 +168,7 @@ Eigen also provides some reduction operations to reduce a given matrix or vector
Example: \include tut_arithmetic_redux_basic.cpp
</td>
<td>
Output: \include tut_arithmetic_redux_basic.out
Output: \verbinclude tut_arithmetic_redux_basic.out
</td></tr></table>
The \em trace of a matrix, as returned by the function \link MatrixBase::trace() trace()\endlink, is the sum of the diagonal coefficients and can also be computed as efficiently using <tt>a.diagonal().sum()</tt>, as we will see later on.
@ -179,7 +179,7 @@ There also exist variants of the \c minCoeff and \c maxCoeff functions returning
Example: \include tut_arithmetic_redux_minmax.cpp
</td>
<td>
Output: \include tut_arithmetic_redux_minmax.out
Output: \verbinclude tut_arithmetic_redux_minmax.out
</td></tr></table>

View File

@ -13,21 +13,22 @@ provided that you let your compiler optimize.
\b Table \b of \b contents
- \ref TutorialBlockOperationsUsing
- \ref TutorialBlockOperationsSyntax
- \ref TutorialBlockOperationsSyntaxColumnRows
- \ref TutorialBlockOperationsSyntaxCorners
- \ref TutorialBlockOperationsSyntaxVectors
\section TutorialBlockOperationsUsing Using block operations
The most general block operation in Eigen is called \link DenseBase::block() .block() \endlink.
This function returns a block of size <tt>(p,q)</tt> whose origin is at <tt>(i,j)</tt> by using
the following syntax:
This function returns a block of size <tt>(p,q)</tt> whose origin is at <tt>(i,j)</tt>.
There are two versions, whose syntax is as follows:
<table class="tutorial_code" align="center">
<tr><td align="center">\b Block \b operation</td>
<td align="center">Default \b version</td>
<tr><td align="center">\b %Block \b operation</td>
<td align="center">Default version</td>
<td align="center">Optimized version when the<br>size is known at compile time</td></tr>
<tr><td>Block of size <tt>(p,q)</tt>, starting at <tt>(i,j)</tt></td>
<tr><td>%Block of size <tt>(p,q)</tt>, starting at <tt>(i,j)</tt></td>
<td>\code
matrix.block(i,j,p,q);\endcode </td>
<td>\code
@ -35,7 +36,15 @@ matrix.block<p,q>(i,j);\endcode </td>
</tr>
</table>
Therefore, if we want to print the values of a block inside a matrix we can simply write:
The default version is a method which takes four arguments. It can always be used. The optimized version
takes two template arguments (the size of the block) and two normal arguments (the position of the block).
It can only be used if the size of the block is known at compile time, but it may be faster than the
non-optimized version, especially if the size of the block is small. Both versions can be used on fixed-size
and dynamic-size matrices and arrays.
The following program uses the default and optimized versions to print the values of several blocks inside a
matrix.
<table class="tutorial_code"><tr><td>
\include Tutorial_BlockOperations_print_block.cpp
</td>
@ -44,10 +53,15 @@ Output:
\verbinclude Tutorial_BlockOperations_print_block.out
</td></tr></table>
In the above example the \link DenseBase::block() .block() \endlink function was employed
to read the values inside matrix \p m . However, blocks can also be used as lvalues, meaning that you can
assign to a block.
In the previous example the \link DenseBase::block() .block() \endlink function was employed
to read the values inside matrix \p m . Blocks can also be used to perform operations and
assignments within matrices or arrays of different size:
This is illustrated in the following example, which uses arrays instead of matrices. The coefficients of the
5-by-5 array \c n are first all set to 0.6, but then the 3-by-3 block in the middle is set to the values in
\c m . The penultimate line shows that blocks can be combined with matrices and arrays to create more complex
expressions. Blocks of an array are an array expression, and thus the multiplication here is coefficient-wise
multiplication.
<table class="tutorial_code"><tr><td>
\include Tutorial_BlockOperations_block_assignment.cpp
@ -57,55 +71,38 @@ Output:
\verbinclude Tutorial_BlockOperations_block_assignment.out
</td></tr></table>
The \link DenseBase::block() .block() \endlink method is used for general block operations, but there are
other methods for special cases. These are described in the rest of this page.
Blocks can also be combined with matrices and arrays to create more complex expressions:
\code
MatrixXf m(3,3), n(2,2);
MatrixXf p(3,3);
\section TutorialBlockOperationsSyntaxColumnRows Columns and rows
m.block(0,0,2,2) = m.block(0,0,2,2) * n + p.block(1,1,2,2);
\endcode
It is important to point out that \link DenseBase::block() .block() \endlink is the
general case for a block operation but there are many other useful block operations,
as described in the next section.
\section TutorialBlockOperationsSyntax Block operation syntax
The following tables show a summary of Eigen's block operations and how they are applied to
fixed- and dynamic-sized Eigen objects.
\subsection TutorialBlockOperationsSyntaxColumnRows Columns and rows
Other extremely useful block operations are \link DenseBase::col() .col() \endlink and
\link DenseBase::row() .row() \endlink which provide access to a
specific row or column. This is a special case in the sense that the syntax for fixed- and
dynamic-sized objects is exactly the same:
Individual columns and rows are special cases of blocks. Eigen provides methods to easily access them:
\link DenseBase::col() .col() \endlink and \link DenseBase::row() .row()\endlink. There is no syntax variant
for an optimized version.
<table class="tutorial_code" align="center">
<tr><td align="center">\b Block \b operation</td>
<tr><td align="center">\b %Block \b operation</td>
<td align="center">Default version</td>
<td align="center">Optimized version when the<br>size is known at compile time</td></tr>
<tr><td>i<sup>th</sup> row
\link DenseBase::row() * \endlink</td>
<td>\code
MatrixXf m;
std::cout << m.row(i);\endcode </td>
matrix.row(i);\endcode </td>
<td>\code
Matrix3f m;
std::cout << m.row(i);\endcode </td>
matrix.row(i);\endcode </td>
</tr>
<tr><td>j<sup>th</sup> column
\link DenseBase::col() * \endlink</td>
<td>\code
MatrixXf m;
std::cout << m.col(j);\endcode </td>
matrix.col(j);\endcode </td>
<td>\code
Matrix3f m;
std::cout << m.col(j);\endcode </td>
matrix.col(j);\endcode </td>
</tr>
</table>
A simple example demonstrating these feature follows:
The argument for \p col() and \p row() is the index of the column or row to be accessed, starting at
0. Therefore, \p col(0) will access the first column and \p col(1) the second one.
<table class="tutorial_code"><tr><td>
C++ code:
@ -113,94 +110,83 @@ C++ code:
</td>
<td>
Output:
\include Tutorial_BlockOperations_colrow.out
\verbinclude Tutorial_BlockOperations_colrow.out
</td></tr></table>
\b NOTE: the argument for \p col() and \p row() is the index of the column or row to be accessed,
starting at 0. Therefore, \p col(0) will access the first column and \p col(1) the second one.
\section TutorialBlockOperationsSyntaxCorners Corner-related operations
Eigen also provides special methods for blocks that are flushed against one of the corners or sides of a
matrix or array. For instance, \link DenseBase::topLeftCorner() .topLeftCorner() \endlink can be used to refer
to a block in the top-left corner of a matrix. Use <tt>matrix.topLeftCorner(p,q)</tt> to access the block
consisting of the coefficients <tt>matrix(i,j)</tt> with \c i &lt; \c p and \c j &lt; \c q. As an other
example, blocks consisting of whole rows flushed against the top side of the matrix can be accessed by
\link DenseBase::topRows() .topRows() \endlink.
The different possibilities are summarized in the following table:
\subsection TutorialBlockOperationsSyntaxCorners Corner-related operations
<table class="tutorial_code" align="center">
<tr><td align="center">\b Block \b operation</td>
<tr><td align="center">\b %Block \b operation</td>
<td align="center">Default version</td>
<td align="center">Optimized version when the<br>size is known at compile time</td></tr>
<tr><td>Top-left p by q block \link DenseBase::topLeftCorner() * \endlink</td>
<td>\code
MatrixXf m;
std::cout << m.topLeftCorner(p,q);\endcode </td>
matrix.topLeftCorner(p,q);\endcode </td>
<td>\code
Matrix3f m;
std::cout << m.topLeftCorner<p,q>();\endcode </td>
matrix.topLeftCorner<p,q>();\endcode </td>
</tr>
<tr><td>Bottom-left p by q block
\link DenseBase::bottomLeftCorner() * \endlink</td>
<td>\code
MatrixXf m;
std::cout << m.bottomLeftCorner(p,q);\endcode </td>
matrix.bottomLeftCorner(p,q);\endcode </td>
<td>\code
Matrix3f m;
std::cout << m.bottomLeftCorner<p,q>();\endcode </td>
matrix.bottomLeftCorner<p,q>();\endcode </td>
</tr>
<tr><td>Top-right p by q block
\link DenseBase::topRightCorner() * \endlink</td>
<td>\code
MatrixXf m;
std::cout << m.topRightCorner(p,q);\endcode </td>
matrix.topRightCorner(p,q);\endcode </td>
<td>\code
Matrix3f m;
std::cout << m.topRightCorner<p,q>();\endcode </td>
matrix.topRightCorner<p,q>();\endcode </td>
</tr>
<tr><td>Bottom-right p by q block
\link DenseBase::bottomRightCorner() * \endlink</td>
<td>\code
MatrixXf m;
std::cout << m.bottomRightCorner(p,q);\endcode </td>
matrix.bottomRightCorner(p,q);\endcode </td>
<td>\code
Matrix3f m;
std::cout << m.bottomRightCorner<p,q>();\endcode </td>
matrix.bottomRightCorner<p,q>();\endcode </td>
</tr>
<tr><td>Block containing the first q rows
<tr><td>%Block containing the first q rows
\link DenseBase::topRows() * \endlink</td>
<td>\code
MatrixXf m;
std::cout << m.topRows(q);\endcode </td>
matrix.topRows(q);\endcode </td>
<td>\code
Matrix3f m;
std::cout << m.topRows<q>();\endcode </td>
matrix.topRows<q>();\endcode </td>
</tr>
<tr><td>Block containing the last q rows
<tr><td>%Block containing the last q rows
\link DenseBase::bottomRows() * \endlink</td>
<td>\code
MatrixXf m;
std::cout << m.bottomRows(q);\endcode </td>
matrix.bottomRows(q);\endcode </td>
<td>\code
Matrix3f m;
std::cout << m.bottomRows<q>();\endcode </td>
matrix.bottomRows<q>();\endcode </td>
</tr>
<tr><td>Block containing the first p columns
<tr><td>%Block containing the first p columns
\link DenseBase::leftCols() * \endlink</td>
<td>\code
MatrixXf m;
std::cout << m.leftCols(p);\endcode </td>
matrix.leftCols(p);\endcode </td>
<td>\code
Matrix3f m;
std::cout << m.leftCols<p>();\endcode </td>
matrix.leftCols<p>();\endcode </td>
</tr>
<tr><td>Block containing the last q columns
<tr><td>%Block containing the last q columns
\link DenseBase::rightCols() * \endlink</td>
<td>\code
MatrixXf m;
std::cout << m.rightCols(q);\endcode </td>
matrix.rightCols(q);\endcode </td>
<td>\code
Matrix3f m;
std::cout << m.rightCols<q>();\endcode </td>
matrix.rightCols<q>();\endcode </td>
</tr>
</table>
Here is a simple example showing the power of the operations presented above:
Here is a simple example illustrating the use of the operations presented above:
<table class="tutorial_code"><tr><td>
C++ code:
@ -208,49 +194,38 @@ C++ code:
</td>
<td>
Output:
\include Tutorial_BlockOperations_corner.out
\verbinclude Tutorial_BlockOperations_corner.out
</td></tr></table>
\section TutorialBlockOperationsSyntaxVectors Block operations for vectors
\subsection TutorialBlockOperationsSyntaxVectors Block operations for vectors
Eigen also provides a set of block operations designed specifically for vectors:
Eigen also provides a set of block operations designed specifically for vectors and one-dimensional arrays:
<table class="tutorial_code" align="center">
<tr><td align="center">\b Block \b operation</td>
<tr><td align="center">\b %Block \b operation</td>
<td align="center">Default version</td>
<td align="center">Optimized version when the<br>size is known at compile time</td></tr>
<tr><td>Block containing the first \p n elements
<tr><td>%Block containing the first \p n elements
\link DenseBase::head() * \endlink</td>
<td>\code
VectorXf v;
std::cout << v.head(n);\endcode </td>
vector.head(n);\endcode </td>
<td>\code
Vector3f v;
std::cout << v.head<n>();\endcode </td>
vector.head<n>();\endcode </td>
</tr>
<tr><td>Block containing the last \p n elements
<tr><td>%Block containing the last \p n elements
\link DenseBase::tail() * \endlink</td>
<td>\code
VectorXf v;
std::cout << v.tail(n);\endcode </td>
vector.tail(n);\endcode </td>
<td>\code
Vector3f m;
std::cout << v.tail<n>();\endcode </td>
vector.tail<n>();\endcode </td>
</tr>
<tr><td>Block containing \p n elements, starting at position \p i
<tr><td>%Block containing \p n elements, starting at position \p i
\link DenseBase::segment() * \endlink</td>
<td>\code
VectorXf v;
std::cout << v.segment(i,n);\endcode </td>
vector.segment(i,n);\endcode </td>
<td>\code
Vector3f m;
std::cout << v.segment<n>(i);\endcode </td>
vector.segment<n>(i);\endcode </td>
</tr>
</table>
@ -262,7 +237,7 @@ C++ code:
</td>
<td>
Output:
\include Tutorial_BlockOperations_vector.out
\verbinclude Tutorial_BlockOperations_vector.out
</td></tr></table>
\li \b Next: \ref TutorialAdvancedInitialization

View File

@ -30,7 +30,7 @@ which returns the addition of all the coefficients inside a given matrix or arra
Example: \include tut_arithmetic_redux_basic.cpp
</td>
<td>
Output: \include tut_arithmetic_redux_basic.out
Output: \verbinclude tut_arithmetic_redux_basic.out
</td></tr></table>
The \em trace of a matrix, as returned by the function \c trace(), is the sum of the diagonal coefficients and can also be computed as efficiently using <tt>a.diagonal().sum()</tt>, as we will see later on.

View File

@ -6,26 +6,13 @@ using namespace Eigen;
int main()
{
MatrixXf m(3,3), n(2,2);
Array33f m;
m << 1,2,3,
4,5,6,
7,8,9;
// assignment through a block operation,
// block as rvalue
n = m.block(0,0,2,2);
//print n
Array<float,5,5> n = Array<float,5,5>::Constant(0.6);
n.block(1,1,3,3) = m;
cout << "n = " << endl << n << endl << endl;
n << 1,1,
1,1;
// block as lvalue
m.block(0,0,2,2) = n;
//print m
cout << "m = " << endl << m << endl;
Array33f res = n.block(0,0,3,3) * m;
cout << "res =" << endl << res << endl;
}

View File

@ -1,15 +1,14 @@
#include <Eigen/Dense>
#include <iostream>
using namespace Eigen;
int main()
{
MatrixXf m(3,3);
Eigen::MatrixXf m(3,3);
m << 1,2,3,
4,5,6,
7,8,9;
std::cout << "2nd Row: "
<< m.row(1) << std::endl;
std::cout << "2nd Row: " << m.row(1) << std::endl;
m.col(0) += m.col(2);
std::cout << "m after adding third column to first:\n";
std::cout << m << std::endl;
}

View File

@ -2,26 +2,16 @@
#include <iostream>
using namespace std;
using namespace Eigen;
int main()
{
MatrixXf m(4,4);
Eigen::Matrix4f m;
m << 1, 2, 3, 4,
5, 6, 7, 8,
9, 10,11,12,
13,14,15,16;
//print first two columns
cout << "-- leftCols(2) --" << endl
<< m.leftCols(2) << endl << endl;
//print last two rows
cout << "-- bottomRows(2) --" << endl
<< m.bottomRows(2) << endl << endl;
//print top-left 2x3 corner
cout << "-- topLeftCorner(2,3) --" << endl
<< m.topLeftCorner(2,3) << endl;
cout << "m.leftCols(2) =" << endl << m.leftCols(2) << endl << endl;
cout << "m.bottomRows<2>() =" << endl << m.bottomRows<2>() << endl << endl;
m.topLeftCorner(1,3) = m.bottomRightCorner(3,1).transpose();
cout << "After assignment, m = " << endl << m << endl;
}

View File

@ -1,14 +1,18 @@
#include <Eigen/Dense>
#include <iostream>
using namespace Eigen;
int main()
{
MatrixXf m(3,3);
m << 1,2,3,
4,5,6,
7,8,9;
std::cout << m.block(0,0,2,2) << std::endl;
Eigen::MatrixXf m(4,4);
m << 1, 2, 3, 4,
5, 6, 7, 8,
9,10,11,12,
13,14,15,16;
std::cout << "Block in the middle" << std::endl;
std::cout << m.block<2,2>(1,1) << std::endl << std::endl;
for (int i = 1; i < 4; ++i)
{
std::cout << "Block of size " << i << std::endl;
std::cout << m.block(0,0,i,i) << std::endl << std::endl;
}
}

View File

@ -2,23 +2,13 @@
#include <iostream>
using namespace std;
using namespace Eigen;
int main()
{
VectorXf v(6);
Eigen::ArrayXf v(6);
v << 1, 2, 3, 4, 5, 6;
//print first three elements
cout << "-- head(3) --" << endl
<< v.head(3) << endl << endl;
//print last three elements
cout << "-- tail(3) --" << endl
<< v.tail(3) << endl << endl;
//print between 2nd and 5th elem. inclusive
cout << "-- segment(1,4) --" << endl
<< v.segment(1,4) << endl;
cout << "v.head(3) =" << endl << v.head(3) << endl << endl;
cout << "v.tail<3>() = " << endl << v.tail<3>() << endl << endl;
v.segment(1,4) *= 2;
cout << "after 'v.segment(1,4) *= 2', v =" << endl << v << endl;
}

View File

@ -282,7 +282,7 @@ namespace Eigen
namespace Eigen {
template<typename T> inline typename NumTraits<T>::Real test_precision() { return T(0); }
template<typename T> inline typename NumTraits<T>::Real test_precision() { return NumTraits<T>::dummy_precision(); }
template<> inline float test_precision<float>() { return 1e-3f; }
template<> inline double test_precision<double>() { return 1e-6; }
template<> inline float test_precision<std::complex<float> >() { return test_precision<float>(); }