Made the blocking computation aware of the l3 cache

Also optimized the blocking parameters to take into account the number of threads used for a computation
This commit is contained in:
Benoit Steiner 2014-10-15 15:32:59 -07:00
parent dba55041ab
commit bfdd9f3ac9
13 changed files with 117 additions and 79 deletions

View File

@ -96,7 +96,7 @@ struct triangular_solver_selector<Lhs,Rhs,Side,Mode,NoUnrolling,Dynamic>
typedef internal::gemm_blocking_space<(Rhs::Flags&RowMajorBit) ? RowMajor : ColMajor,Scalar,Scalar, typedef internal::gemm_blocking_space<(Rhs::Flags&RowMajorBit) ? RowMajor : ColMajor,Scalar,Scalar,
Rhs::MaxRowsAtCompileTime, Rhs::MaxColsAtCompileTime, Lhs::MaxRowsAtCompileTime,4> BlockingType; Rhs::MaxRowsAtCompileTime, Rhs::MaxColsAtCompileTime, Lhs::MaxRowsAtCompileTime,4> BlockingType;
BlockingType blocking(rhs.rows(), rhs.cols(), size); BlockingType blocking(rhs.rows(), rhs.cols(), size, 1, false);
triangular_solve_matrix<Scalar,Index,Side,Mode,LhsProductTraits::NeedToConjugate,(int(Lhs::Flags) & RowMajorBit) ? RowMajor : ColMajor, triangular_solve_matrix<Scalar,Index,Side,Mode,LhsProductTraits::NeedToConjugate,(int(Lhs::Flags) & RowMajorBit) ? RowMajor : ColMajor,
(Rhs::Flags&RowMajorBit) ? RowMajor : ColMajor> (Rhs::Flags&RowMajorBit) ? RowMajor : ColMajor>

View File

@ -26,28 +26,37 @@ inline std::ptrdiff_t manage_caching_sizes_helper(std::ptrdiff_t a, std::ptrdiff
} }
/** \internal */ /** \internal */
inline void manage_caching_sizes(Action action, std::ptrdiff_t* l1=0, std::ptrdiff_t* l2=0) inline void manage_caching_sizes(Action action, std::ptrdiff_t* l1, std::ptrdiff_t* l2, std::ptrdiff_t* l3)
{ {
static std::ptrdiff_t m_l1CacheSize = 0; static bool m_cache_sizes_initialized = false;
static std::ptrdiff_t m_l2CacheSize = 0; static std::ptrdiff_t m_l1CacheSize = 32*1024;
if(m_l2CacheSize==0) static std::ptrdiff_t m_l2CacheSize = 256*1024;
static std::ptrdiff_t m_l3CacheSize = 2*1024*1024;
if(!m_cache_sizes_initialized)
{ {
m_l1CacheSize = manage_caching_sizes_helper(queryL1CacheSize(),8 * 1024); int l1CacheSize, l2CacheSize, l3CacheSize;
m_l2CacheSize = manage_caching_sizes_helper(queryTopLevelCacheSize(),1*1024*1024); queryCacheSizes(l1CacheSize, l2CacheSize, l3CacheSize);
m_l1CacheSize = manage_caching_sizes_helper(l1CacheSize, 8*1024);
m_l2CacheSize = manage_caching_sizes_helper(l2CacheSize, 256*1024);
m_l3CacheSize = manage_caching_sizes_helper(l3CacheSize, 8*1024*1024);
m_cache_sizes_initialized = true;
} }
if(action==SetAction) if(action==SetAction)
{ {
// set the cpu cache size and cache all block sizes from a global cache size in byte // set the cpu cache size and cache all block sizes from a global cache size in byte
eigen_internal_assert(l1!=0 && l2!=0); eigen_internal_assert(l1!=0 && l2!=0);
m_l1CacheSize = *l1; m_l1CacheSize = *l1;
m_l2CacheSize = *l2; m_l2CacheSize = *l2;
m_l3CacheSize = *l3;
} }
else if(action==GetAction) else if(action==GetAction)
{ {
eigen_internal_assert(l1!=0 && l2!=0); eigen_internal_assert(l1!=0 && l2!=0);
*l1 = m_l1CacheSize; *l1 = m_l1CacheSize;
*l2 = m_l2CacheSize; *l2 = m_l2CacheSize;
*l3 = m_l3CacheSize;
} }
else else
{ {
@ -70,10 +79,11 @@ inline void manage_caching_sizes(Action action, std::ptrdiff_t* l1=0, std::ptrdi
* - the number of scalars that fit into a packet (when vectorization is enabled). * - the number of scalars that fit into a packet (when vectorization is enabled).
* *
* \sa setCpuCacheSizes */ * \sa setCpuCacheSizes */
#define CEIL(a, b) ((a)+(b)-1)/(b)
template<typename LhsScalar, typename RhsScalar, int KcFactor, typename SizeType> template<typename LhsScalar, typename RhsScalar, int KcFactor, typename SizeType>
void computeProductBlockingSizes(SizeType& k, SizeType& m, SizeType& n) void computeProductBlockingSizes(SizeType& k, SizeType& m, SizeType& n, int num_threads)
{ {
EIGEN_UNUSED_VARIABLE(n);
// Explanations: // Explanations:
// Let's recall the product algorithms form kc x nc horizontal panels B' on the rhs and // Let's recall the product algorithms form kc x nc horizontal panels B' on the rhs and
// mc x kc blocks A' on the lhs. A' has to fit into L2 cache. Moreover, B' is processed // mc x kc blocks A' on the lhs. A' has to fit into L2 cache. Moreover, B' is processed
@ -81,43 +91,71 @@ void computeProductBlockingSizes(SizeType& k, SizeType& m, SizeType& n)
// at the register level. For vectorization purpose, these small vertical panels are unpacked, // at the register level. For vectorization purpose, these small vertical panels are unpacked,
// e.g., each coefficient is replicated to fit a packet. This small vertical panel has to // e.g., each coefficient is replicated to fit a packet. This small vertical panel has to
// stay in L1 cache. // stay in L1 cache.
std::ptrdiff_t l1, l2; std::ptrdiff_t l1, l2, l3;
manage_caching_sizes(GetAction, &l1, &l2, &l3);
typedef gebp_traits<LhsScalar,RhsScalar> Traits; if (num_threads > 1) {
enum { typedef gebp_traits<LhsScalar,RhsScalar> Traits;
kdiv = KcFactor * 2 * Traits::nr typedef typename Traits::ResScalar ResScalar;
* Traits::RhsProgress * sizeof(RhsScalar), enum {
mr = gebp_traits<LhsScalar,RhsScalar>::mr, kdiv = KcFactor * (Traits::mr * sizeof(LhsScalar) + Traits::nr * sizeof(RhsScalar)),
mr_mask = (0xffffffff/mr)*mr ksub = Traits::mr * Traits::nr * sizeof(ResScalar),
}; k_mask = (0xffffffff/8)*8,
manage_caching_sizes(GetAction, &l1, &l2); mr = Traits::mr,
mr_mask = (0xffffffff/mr)*mr,
// k = std::min<SizeType>(k, l1/kdiv); nr = Traits::nr,
// SizeType _m = k>0 ? l2/(4 * sizeof(LhsScalar) * k) : 0; nr_mask = (0xffffffff/nr)*nr
// if(_m<m) m = _m & mr_mask; };
SizeType k_cache = (l1-ksub)/kdiv;
// In unit tests we do not want to use extra large matrices, if (k_cache < k) {
// so we reduce the block size to check the blocking strategy is not flawed k = k_cache & k_mask;
eigen_assert(k > 0);
}
SizeType n_cache = (l2-l1) / (nr * sizeof(RhsScalar) * k);
SizeType n_per_thread = CEIL(n, num_threads);
if (n_cache <= n_per_thread) {
// Don't exceed the capacity of the l2 cache.
eigen_assert(n_cache >= static_cast<SizeType>(nr));
n = n_cache & nr_mask;
eigen_assert(n > 0);
} else {
n = (std::min<SizeType>)(n, (n_per_thread + nr - 1) & nr_mask);
}
if (l3 > l2) {
// l3 is shared between all cores, so we'll give each thread its own chunk of l3.
SizeType m_cache = (l3-l2) / (sizeof(LhsScalar) * k * num_threads);
SizeType m_per_thread = CEIL(m, num_threads);
if(m_cache < m_per_thread && m_cache >= static_cast<SizeType>(mr)) {
m = m_cache & mr_mask;
eigen_assert(m > 0);
} else {
m = (std::min<SizeType>)(m, (m_per_thread + mr - 1) & mr_mask);
}
}
}
else {
// In unit tests we do not want to use extra large matrices,
// so we reduce the block size to check the blocking strategy is not flawed
#ifndef EIGEN_DEBUG_SMALL_PRODUCT_BLOCKS #ifndef EIGEN_DEBUG_SMALL_PRODUCT_BLOCKS
// k = std::min<SizeType>(k,240); k = std::min<SizeType>(k,sizeof(LhsScalar)<=4 ? 360 : 240);
// n = std::min<SizeType>(n,3840/sizeof(RhsScalar)); n = std::min<SizeType>(n,3840/sizeof(RhsScalar));
// m = std::min<SizeType>(m,3840/sizeof(RhsScalar)); m = std::min<SizeType>(m,3840/sizeof(RhsScalar));
k = std::min<SizeType>(k,sizeof(LhsScalar)<=4 ? 360 : 240);
n = std::min<SizeType>(n,3840/sizeof(RhsScalar));
m = std::min<SizeType>(m,3840/sizeof(RhsScalar));
#else #else
k = std::min<SizeType>(k,24); k = std::min<SizeType>(k,24);
n = std::min<SizeType>(n,384/sizeof(RhsScalar)); n = std::min<SizeType>(n,384/sizeof(RhsScalar));
m = std::min<SizeType>(m,384/sizeof(RhsScalar)); m = std::min<SizeType>(m,384/sizeof(RhsScalar));
#endif #endif
}
} }
template<typename LhsScalar, typename RhsScalar, typename SizeType> template<typename LhsScalar, typename RhsScalar, typename SizeType>
inline void computeProductBlockingSizes(SizeType& k, SizeType& m, SizeType& n) inline void computeProductBlockingSizes(SizeType& k, SizeType& m, SizeType& n, int num_threads)
{ {
computeProductBlockingSizes<LhsScalar,RhsScalar,1>(k, m, n); computeProductBlockingSizes<LhsScalar,RhsScalar,1>(k, m, n, num_threads);
} }
#ifdef EIGEN_HAS_FUSE_CJMADD #ifdef EIGEN_HAS_FUSE_CJMADD
@ -1846,8 +1884,8 @@ EIGEN_DONT_INLINE void gemm_pack_rhs<Scalar, Index, DataMapper, nr, RowMajor, Co
* \sa setCpuCacheSize */ * \sa setCpuCacheSize */
inline std::ptrdiff_t l1CacheSize() inline std::ptrdiff_t l1CacheSize()
{ {
std::ptrdiff_t l1, l2; std::ptrdiff_t l1, l2, l3;
internal::manage_caching_sizes(GetAction, &l1, &l2); internal::manage_caching_sizes(GetAction, &l1, &l2, &l3);
return l1; return l1;
} }
@ -1855,8 +1893,8 @@ inline std::ptrdiff_t l1CacheSize()
* \sa setCpuCacheSize */ * \sa setCpuCacheSize */
inline std::ptrdiff_t l2CacheSize() inline std::ptrdiff_t l2CacheSize()
{ {
std::ptrdiff_t l1, l2; std::ptrdiff_t l1, l2, l3;
internal::manage_caching_sizes(GetAction, &l1, &l2); internal::manage_caching_sizes(GetAction, &l1, &l2, &l3);
return l2; return l2;
} }
@ -1865,9 +1903,9 @@ inline std::ptrdiff_t l2CacheSize()
* for the algorithms working per blocks. * for the algorithms working per blocks.
* *
* \sa computeProductBlockingSizes */ * \sa computeProductBlockingSizes */
inline void setCpuCacheSizes(std::ptrdiff_t l1, std::ptrdiff_t l2) inline void setCpuCacheSizes(std::ptrdiff_t l1, std::ptrdiff_t l2, std::ptrdiff_t l3)
{ {
internal::manage_caching_sizes(SetAction, &l1, &l2); internal::manage_caching_sizes(SetAction, &l1, &l2, &l3);
} }
} // end namespace Eigen } // end namespace Eigen

View File

@ -299,7 +299,7 @@ class gemm_blocking_space<StorageOrder,_LhsScalar,_RhsScalar,MaxRows, MaxCols, M
public: public:
gemm_blocking_space(DenseIndex /*rows*/, DenseIndex /*cols*/, DenseIndex /*depth*/, bool /*full_rows*/ = false) gemm_blocking_space(DenseIndex /*rows*/, DenseIndex /*cols*/, DenseIndex /*depth*/, int /*num_threads*/, bool /*full_rows = false*/)
{ {
this->m_mc = ActualRows; this->m_mc = ActualRows;
this->m_nc = ActualCols; this->m_nc = ActualCols;
@ -331,21 +331,21 @@ class gemm_blocking_space<StorageOrder,_LhsScalar,_RhsScalar,MaxRows, MaxCols, M
public: public:
gemm_blocking_space(DenseIndex rows, DenseIndex cols, DenseIndex depth, bool full_rows = false) gemm_blocking_space(DenseIndex rows, DenseIndex cols, DenseIndex depth, int num_threads, bool l3_blocking)
{ {
this->m_mc = Transpose ? cols : rows; this->m_mc = Transpose ? cols : rows;
this->m_nc = Transpose ? rows : cols; this->m_nc = Transpose ? rows : cols;
this->m_kc = depth; this->m_kc = depth;
if(full_rows) if(l3_blocking)
{
computeProductBlockingSizes<LhsScalar,RhsScalar,KcFactor>(this->m_kc, this->m_mc, this->m_nc, num_threads);
}
else // no l3 blocking
{ {
DenseIndex m = this->m_mc; DenseIndex m = this->m_mc;
computeProductBlockingSizes<LhsScalar,RhsScalar,KcFactor>(this->m_kc, m, this->m_nc);
}
else // full columns
{
DenseIndex n = this->m_nc; DenseIndex n = this->m_nc;
computeProductBlockingSizes<LhsScalar,RhsScalar,KcFactor>(this->m_kc, this->m_mc, n); computeProductBlockingSizes<LhsScalar,RhsScalar,KcFactor>(this->m_kc, m, n, num_threads);
} }
m_sizeA = this->m_mc * this->m_kc; m_sizeA = this->m_mc * this->m_kc;
@ -451,7 +451,7 @@ class GeneralProduct<Lhs, Rhs, GemmProduct>
(Dest::Flags&RowMajorBit) ? RowMajor : ColMajor>, (Dest::Flags&RowMajorBit) ? RowMajor : ColMajor>,
_ActualLhsType, _ActualRhsType, Dest, BlockingType> GemmFunctor; _ActualLhsType, _ActualRhsType, Dest, BlockingType> GemmFunctor;
BlockingType blocking(dst.rows(), dst.cols(), lhs.cols(), true); BlockingType blocking(dst.rows(), dst.cols(), lhs.cols(), 1, true);
internal::parallelize_gemm<(Dest::MaxRowsAtCompileTime>32 || Dest::MaxRowsAtCompileTime==Dynamic)>(GemmFunctor(lhs, rhs, dst, actualAlpha, blocking), this->rows(), this->cols(), Dest::Flags&RowMajorBit); internal::parallelize_gemm<(Dest::MaxRowsAtCompileTime>32 || Dest::MaxRowsAtCompileTime==Dynamic)>(GemmFunctor(lhs, rhs, dst, actualAlpha, blocking), this->rows(), this->cols(), Dest::Flags&RowMajorBit);
} }

View File

@ -72,7 +72,7 @@ struct general_matrix_matrix_triangular_product<Index,LhsScalar,LhsStorageOrder,
Index kc = depth; // cache block size along the K direction Index kc = depth; // cache block size along the K direction
Index mc = size; // cache block size along the M direction Index mc = size; // cache block size along the M direction
Index nc = size; // cache block size along the N direction Index nc = size; // cache block size along the N direction
computeProductBlockingSizes<LhsScalar,RhsScalar>(kc, mc, nc); computeProductBlockingSizes<LhsScalar,RhsScalar>(kc, mc, nc, 1);
// !!! mc must be a multiple of nr: // !!! mc must be a multiple of nr:
if(mc > Traits::nr) if(mc > Traits::nr)
mc = (mc/Traits::nr)*Traits::nr; mc = (mc/Traits::nr)*Traits::nr;

View File

@ -49,8 +49,8 @@ inline void initParallel()
{ {
int nbt; int nbt;
internal::manage_multi_threading(GetAction, &nbt); internal::manage_multi_threading(GetAction, &nbt);
std::ptrdiff_t l1, l2; std::ptrdiff_t l1, l2, l3;
internal::manage_caching_sizes(GetAction, &l1, &l2); internal::manage_caching_sizes(GetAction, &l1, &l2, &l3);
} }
/** \returns the max number of threads reserved for Eigen /** \returns the max number of threads reserved for Eigen

View File

@ -343,7 +343,7 @@ EIGEN_DONT_INLINE void product_selfadjoint_matrix<Scalar,Index,LhsStorageOrder,t
Index kc = size; // cache block size along the K direction Index kc = size; // cache block size along the K direction
Index mc = rows; // cache block size along the M direction Index mc = rows; // cache block size along the M direction
Index nc = cols; // cache block size along the N direction Index nc = cols; // cache block size along the N direction
computeProductBlockingSizes<Scalar,Scalar>(kc, mc, nc); computeProductBlockingSizes<Scalar,Scalar>(kc, mc, nc, 1);
// kc must smaller than mc // kc must smaller than mc
kc = (std::min)(kc,mc); kc = (std::min)(kc,mc);
@ -432,10 +432,10 @@ EIGEN_DONT_INLINE void product_selfadjoint_matrix<Scalar,Index,LhsStorageOrder,f
LhsMapper lhs(_lhs,lhsStride); LhsMapper lhs(_lhs,lhsStride);
ResMapper res(_res,resStride); ResMapper res(_res,resStride);
Index kc = size; // cache block size along the K direction Index kc = size; // cache block size along the K direction
Index mc = rows; // cache block size along the M direction Index mc = rows; // cache block size along the M direction
Index nc = cols; // cache block size along the N direction Index nc = cols; // cache block size along the N direction
computeProductBlockingSizes<Scalar,Scalar>(kc, mc, nc); computeProductBlockingSizes<Scalar,Scalar>(kc, mc, nc, 1);
std::size_t sizeB = kc*cols; std::size_t sizeB = kc*cols;
ei_declare_aligned_stack_constructed_variable(Scalar, blockA, kc*mc, 0); ei_declare_aligned_stack_constructed_variable(Scalar, blockA, kc*mc, 0);
ei_declare_aligned_stack_constructed_variable(Scalar, allocatedBlockB, sizeB, 0); ei_declare_aligned_stack_constructed_variable(Scalar, allocatedBlockB, sizeB, 0);

View File

@ -412,7 +412,7 @@ struct TriangularProduct<Mode,LhsIsTriangular,Lhs,false,Rhs,false>
Index stripedDepth = LhsIsTriangular ? ((!IsLower) ? lhs.cols() : (std::min)(lhs.cols(),lhs.rows())) Index stripedDepth = LhsIsTriangular ? ((!IsLower) ? lhs.cols() : (std::min)(lhs.cols(),lhs.rows()))
: ((IsLower) ? rhs.rows() : (std::min)(rhs.rows(),rhs.cols())); : ((IsLower) ? rhs.rows() : (std::min)(rhs.rows(),rhs.cols()));
BlockingType blocking(stripedRows, stripedCols, stripedDepth); BlockingType blocking(stripedRows, stripedCols, stripedDepth, 1, false);
internal::product_triangular_matrix_matrix<Scalar, Index, internal::product_triangular_matrix_matrix<Scalar, Index,
Mode, LhsIsTriangular, Mode, LhsIsTriangular,

View File

@ -81,8 +81,8 @@ EIGEN_DONT_INLINE void triangular_solve_matrix<Scalar,Index,OnTheLeft,Mode,Conju
// the goal here is to subdivise the Rhs panels such that we keep some cache // the goal here is to subdivise the Rhs panels such that we keep some cache
// coherence when accessing the rhs elements // coherence when accessing the rhs elements
std::ptrdiff_t l1, l2; std::ptrdiff_t l1, l2, l3;
manage_caching_sizes(GetAction, &l1, &l2); manage_caching_sizes(GetAction, &l1, &l2, &l3);
Index subcols = cols>0 ? l2/(4 * sizeof(Scalar) * otherStride) : 0; Index subcols = cols>0 ? l2/(4 * sizeof(Scalar) * otherStride) : 0;
subcols = std::max<Index>((subcols/Traits::nr)*Traits::nr, Traits::nr); subcols = std::max<Index>((subcols/Traits::nr)*Traits::nr, Traits::nr);

View File

@ -56,7 +56,7 @@ int EIGEN_BLAS_FUNC(gemm)(char *opa, char *opb, int *m, int *n, int *k, RealScal
else matrix(c, *m, *n, *ldc) *= beta; else matrix(c, *m, *n, *ldc) *= beta;
} }
internal::gemm_blocking_space<ColMajor,Scalar,Scalar,Dynamic,Dynamic,Dynamic> blocking(*m,*n,*k,true); internal::gemm_blocking_space<ColMajor,Scalar,Scalar,Dynamic,Dynamic,Dynamic> blocking(*m,*n,*k,1,true);
int code = OP(*opa) | (OP(*opb) << 2); int code = OP(*opa) | (OP(*opb) << 2);
func[code](*m, *n, *k, a, *lda, b, *ldb, c, *ldc, alpha, blocking, 0); func[code](*m, *n, *k, a, *lda, b, *ldb, c, *ldc, alpha, blocking, 0);
@ -131,12 +131,12 @@ int EIGEN_BLAS_FUNC(trsm)(char *side, char *uplo, char *opa, char *diag, int *m,
if(SIDE(*side)==LEFT) if(SIDE(*side)==LEFT)
{ {
internal::gemm_blocking_space<ColMajor,Scalar,Scalar,Dynamic,Dynamic,Dynamic,4> blocking(*m,*n,*m); internal::gemm_blocking_space<ColMajor,Scalar,Scalar,Dynamic,Dynamic,Dynamic,4> blocking(*m,*n,*m,1,false);
func[code](*m, *n, a, *lda, b, *ldb, blocking); func[code](*m, *n, a, *lda, b, *ldb, blocking);
} }
else else
{ {
internal::gemm_blocking_space<ColMajor,Scalar,Scalar,Dynamic,Dynamic,Dynamic,4> blocking(*m,*n,*n); internal::gemm_blocking_space<ColMajor,Scalar,Scalar,Dynamic,Dynamic,Dynamic,4> blocking(*m,*n,*n,1,false);
func[code](*n, *m, a, *lda, b, *ldb, blocking); func[code](*n, *m, a, *lda, b, *ldb, blocking);
} }
@ -222,12 +222,12 @@ int EIGEN_BLAS_FUNC(trmm)(char *side, char *uplo, char *opa, char *diag, int *m,
if(SIDE(*side)==LEFT) if(SIDE(*side)==LEFT)
{ {
internal::gemm_blocking_space<ColMajor,Scalar,Scalar,Dynamic,Dynamic,Dynamic,4> blocking(*m,*n,*m); internal::gemm_blocking_space<ColMajor,Scalar,Scalar,Dynamic,Dynamic,Dynamic,4> blocking(*m,*n,*m,1,false);
func[code](*m, *n, *m, a, *lda, tmp.data(), tmp.outerStride(), b, *ldb, alpha, blocking); func[code](*m, *n, *m, a, *lda, tmp.data(), tmp.outerStride(), b, *ldb, alpha, blocking);
} }
else else
{ {
internal::gemm_blocking_space<ColMajor,Scalar,Scalar,Dynamic,Dynamic,Dynamic,4> blocking(*m,*n,*n); internal::gemm_blocking_space<ColMajor,Scalar,Scalar,Dynamic,Dynamic,Dynamic,4> blocking(*m,*n,*n,1,false);
func[code](*m, *n, *n, tmp.data(), tmp.outerStride(), a, *lda, b, *ldb, alpha, blocking); func[code](*m, *n, *n, tmp.data(), tmp.outerStride(), a, *lda, b, *ldb, alpha, blocking);
} }
return 1; return 1;
@ -577,7 +577,7 @@ int EIGEN_BLAS_FUNC(her2k)(char *uplo, char *op, int *n, int *k, RealScalar *pal
else if(*n<0) info = 3; else if(*n<0) info = 3;
else if(*k<0) info = 4; else if(*k<0) info = 4;
else if(*lda<std::max(1,(OP(*op)==NOTR)?*n:*k)) info = 7; else if(*lda<std::max(1,(OP(*op)==NOTR)?*n:*k)) info = 7;
else if(*lda<std::max(1,(OP(*op)==NOTR)?*n:*k)) info = 9; else if(*ldb<std::max(1,(OP(*op)==NOTR)?*n:*k)) info = 9;
else if(*ldc<std::max(1,*n)) info = 12; else if(*ldc<std::max(1,*n)) info = 12;
if(info) if(info)
return xerbla_(SCALAR_SUFFIX_UP"HER2K",&info,6); return xerbla_(SCALAR_SUFFIX_UP"HER2K",&info,6);

View File

@ -39,15 +39,16 @@ void test_product_large()
// check the functions to setup blocking sizes compile and do not segfault // check the functions to setup blocking sizes compile and do not segfault
// FIXME check they do what they are supposed to do !! // FIXME check they do what they are supposed to do !!
std::ptrdiff_t l1 = internal::random<int>(10000,20000); std::ptrdiff_t l1 = internal::random<int>(10000,20000);
std::ptrdiff_t l2 = internal::random<int>(1000000,2000000); std::ptrdiff_t l2 = internal::random<int>(100000,200000);
setCpuCacheSizes(l1,l2); std::ptrdiff_t l3 = internal::random<int>(1000000,2000000);
setCpuCacheSizes(l1,l2,l3);
VERIFY(l1==l1CacheSize()); VERIFY(l1==l1CacheSize());
VERIFY(l2==l2CacheSize()); VERIFY(l2==l2CacheSize());
std::ptrdiff_t k1 = internal::random<int>(10,100)*16; std::ptrdiff_t k1 = internal::random<int>(10,100)*16;
std::ptrdiff_t m1 = internal::random<int>(10,100)*16; std::ptrdiff_t m1 = internal::random<int>(10,100)*16;
std::ptrdiff_t n1 = internal::random<int>(10,100)*16; std::ptrdiff_t n1 = internal::random<int>(10,100)*16;
// only makes sure it compiles fine // only makes sure it compiles fine
internal::computeProductBlockingSizes<float,float>(k1,m1,n1); internal::computeProductBlockingSizes<float,float>(k1,m1,n1,1);
} }
{ {

View File

@ -55,7 +55,7 @@
#include "unsupported/Eigen/CXX11/src/Tensor/TensorConcatenation.h" #include "unsupported/Eigen/CXX11/src/Tensor/TensorConcatenation.h"
#include "unsupported/Eigen/CXX11/src/Tensor/TensorContraction.h" #include "unsupported/Eigen/CXX11/src/Tensor/TensorContraction.h"
#include "unsupported/Eigen/CXX11/src/Tensor/TensorContractionCuda.h" #include "unsupported/Eigen/CXX11/src/Tensor/TensorContractionCuda.h"
//#include "unsupported/Eigen/CXX11/src/Tensor/TensorContractionThreadPool.h" #include "unsupported/Eigen/CXX11/src/Tensor/TensorContractionThreadPool.h"
#include "unsupported/Eigen/CXX11/src/Tensor/TensorConvolution.h" #include "unsupported/Eigen/CXX11/src/Tensor/TensorConvolution.h"
#include "unsupported/Eigen/CXX11/src/Tensor/TensorPatch.h" #include "unsupported/Eigen/CXX11/src/Tensor/TensorPatch.h"
#include "unsupported/Eigen/CXX11/src/Tensor/TensorBroadcasting.h" #include "unsupported/Eigen/CXX11/src/Tensor/TensorBroadcasting.h"

View File

@ -766,7 +766,7 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
typedef typename internal::gemm_blocking_space<ColMajor, LhsScalar, RhsScalar, Dynamic, Dynamic, Dynamic> BlockingType; typedef typename internal::gemm_blocking_space<ColMajor, LhsScalar, RhsScalar, Dynamic, Dynamic, Dynamic> BlockingType;
// Sizes of the blocks to load in cache. See the Goto paper for details. // Sizes of the blocks to load in cache. See the Goto paper for details.
BlockingType blocking(m, n, k, true); BlockingType blocking(m, n, k, 1, true);
const Index kc = blocking.kc(); const Index kc = blocking.kc();
const Index mc = (std::min)(m, blocking.mc()); const Index mc = (std::min)(m, blocking.mc());
const Index nc = (std::min)(n, blocking.nc()); const Index nc = (std::min)(n, blocking.nc());

View File

@ -152,7 +152,7 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
Index mc = m; Index mc = m;
Index nc = n; Index nc = n;
Index kc = k; Index kc = k;
internal::computeProductBlockingSizes<LhsScalar,RhsScalar,1>(kc, mc, nc/*, num_threads*/); internal::computeProductBlockingSizes<LhsScalar,RhsScalar,1>(kc, mc, nc, num_threads);
eigen_assert(mc <= m); eigen_assert(mc <= m);
eigen_assert(nc <= n); eigen_assert(nc <= n);
eigen_assert(kc <= k); eigen_assert(kc <= k);
@ -197,9 +197,10 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
// this should really be numBlockAs * n_blocks; // this should really be numBlockAs * n_blocks;
const Index num_kernel_promises = num_threads * n_blocks; const Index num_kernel_promises = num_threads * n_blocks;
Promise p; std::vector<Promise> kernel_promises(num_kernel_promises);
p.set_value(); for (int i = 0; i < kernel_promises.size(); ++i) {
std::vector<Promise> kernel_promises(num_kernel_promises, p); kernel_promises[i].set_value();
}
for (Index k_block_idx = 0; k_block_idx < k_blocks; k_block_idx++) { for (Index k_block_idx = 0; k_block_idx < k_blocks; k_block_idx++) {
const Index k_start = k_block_idx * kc; const Index k_start = k_block_idx * kc;
@ -275,8 +276,7 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
need_to_pack, // need_to_pack need_to_pack, // need_to_pack
}; };
typedef decltype(Self::packRhsAndKernel<packRKArg, RhsPacker, GebpKernel>) Func; this->m_device.enqueueNoFuture(&Self::packRhsAndKernel<packRKArg, RhsPacker, GebpKernel>, arg);
this->m_device.enqueueNoFuture<Func, packRKArg>(&Self::packRhsAndKernel<packRKArg, RhsPacker, GebpKernel>, arg);
} }
} }
} }
@ -338,7 +338,6 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
actual_mc, arg.kc, arg.nc, 1.0, -1, -1, 0, 0); actual_mc, arg.kc, arg.nc, 1.0, -1, -1, 0, 0);
const Index set_idx = blockAId * arg.n_blocks + arg.n_block_idx; const Index set_idx = blockAId * arg.n_blocks + arg.n_block_idx;
eigen_assert(!(*arg.kernel_promises)[set_idx].ready());
(*arg.kernel_promises)[set_idx].set_value(); (*arg.kernel_promises)[set_idx].set_value();
} }
} }