Split code for (quasi)triangular matrices from MatrixSquareRoot.

This way, (quasi)triangular matrices can avoid the costly Schur decomposition.
This commit is contained in:
Jitse Niesen 2011-08-25 07:42:21 +01:00
parent 8ddd1e390b
commit c01ed935dd

View File

@ -26,76 +26,71 @@
#define EIGEN_MATRIX_SQUARE_ROOT
/** \ingroup MatrixFunctions_Module
* \brief Class for computing matrix square roots.
* \tparam MatrixType type of the argument of the matrix square root,
* expected to be an instantiation of the Matrix class template.
* \brief Class for computing matrix square roots of upper quasi-triangular matrices.
* \tparam MatrixType type of the argument of the matrix square root,
* expected to be an instantiation of the Matrix class template.
*
* This class computes the square root of the upper quasi-triangular
* matrix stored in the upper Hessenberg part of the matrix passed to
* the constructor.
*
* \sa MatrixSquareRoot, MatrixSquareRootTriangular
*/
template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex>
class MatrixSquareRoot
{
template <typename MatrixType>
class MatrixSquareRootQuasiTriangular
{
public:
/** \brief Constructor.
*
* \param[in] A matrix whose square root is to be computed.
* \param[in] A upper quasi-triangular matrix whose square root
* is to be computed.
*
* The class stores a reference to \p A, so it should not be
* changed (or destroyed) before compute() is called.
*/
MatrixSquareRoot(const MatrixType& A);
MatrixSquareRootQuasiTriangular(const MatrixType& A)
: m_A(A)
{
eigen_assert(A.rows() == A.cols());
}
/** \brief Compute the matrix square root
*
* \param[out] result square root of \p A, as specified in the constructor.
*
* See MatrixBase::sqrt() for details on how this computation
* is implemented.
* Only the upper Hessenberg part of \p result is updated, the
* rest is not touched. See MatrixBase::sqrt() for details on
* how this computation is implemented.
*/
template <typename ResultType>
void compute(ResultType &result);
};
// ********** Partial specialization for real matrices **********
template <typename MatrixType>
class MatrixSquareRoot<MatrixType, 0>
{
public:
MatrixSquareRoot(const MatrixType& A)
: m_A(A)
{
eigen_assert(A.rows() == A.cols());
}
template <typename ResultType> void compute(ResultType &result);
private:
typedef typename MatrixType::Index Index;
typedef typename MatrixType::Scalar Scalar;
void computeDiagonalPartOfSqrt(MatrixType& sqrtT, const MatrixType& T);
void computeOffDiagonalPartOfSqrt(MatrixType& sqrtT, const MatrixType& T);
void compute2x2diagonalBlock(MatrixType& sqrtT, const MatrixType& T, typename MatrixType::Index i);
void compute1x1offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
typename MatrixType::Index i, typename MatrixType::Index j);
void compute1x2offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
typename MatrixType::Index i, typename MatrixType::Index j);
void compute2x1offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
typename MatrixType::Index i, typename MatrixType::Index j);
void compute2x2offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
typename MatrixType::Index i, typename MatrixType::Index j);
template <typename ResultType> void compute(ResultType &result);
template <typename SmallMatrixType>
static void solveAuxiliaryEquation(SmallMatrixType& X, const SmallMatrixType& A,
const SmallMatrixType& B, const SmallMatrixType& C);
private:
typedef typename MatrixType::Index Index;
typedef typename MatrixType::Scalar Scalar;
void computeDiagonalPartOfSqrt(MatrixType& sqrtT, const MatrixType& T);
void computeOffDiagonalPartOfSqrt(MatrixType& sqrtT, const MatrixType& T);
void compute2x2diagonalBlock(MatrixType& sqrtT, const MatrixType& T, typename MatrixType::Index i);
void compute1x1offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
typename MatrixType::Index i, typename MatrixType::Index j);
void compute1x2offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
typename MatrixType::Index i, typename MatrixType::Index j);
void compute2x1offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
typename MatrixType::Index i, typename MatrixType::Index j);
void compute2x2offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
typename MatrixType::Index i, typename MatrixType::Index j);
template <typename SmallMatrixType>
static void solveAuxiliaryEquation(SmallMatrixType& X, const SmallMatrixType& A,
const SmallMatrixType& B, const SmallMatrixType& C);
const MatrixType& m_A;
const MatrixType& m_A;
};
template <typename MatrixType>
template <typename ResultType>
void MatrixSquareRoot<MatrixType, 0>::compute(ResultType &result)
void MatrixSquareRootQuasiTriangular<MatrixType>::compute(ResultType &result)
{
// Compute Schur decomposition of m_A
const RealSchur<MatrixType> schurOfA(m_A);
@ -114,7 +109,8 @@ void MatrixSquareRoot<MatrixType, 0>::compute(ResultType &result)
// pre: T is quasi-upper-triangular and sqrtT is a zero matrix of the same size
// post: the diagonal blocks of sqrtT are the square roots of the diagonal blocks of T
template <typename MatrixType>
void MatrixSquareRoot<MatrixType, 0>::computeDiagonalPartOfSqrt(MatrixType& sqrtT, const MatrixType& T)
void MatrixSquareRootQuasiTriangular<MatrixType>::computeDiagonalPartOfSqrt(MatrixType& sqrtT,
const MatrixType& T)
{
const Index size = m_A.rows();
for (Index i = 0; i < size; i++) {
@ -132,7 +128,8 @@ void MatrixSquareRoot<MatrixType, 0>::computeDiagonalPartOfSqrt(MatrixType& sqrt
// pre: T is quasi-upper-triangular and diagonal blocks of sqrtT are square root of diagonal blocks of T.
// post: sqrtT is the square root of T.
template <typename MatrixType>
void MatrixSquareRoot<MatrixType, 0>::computeOffDiagonalPartOfSqrt(MatrixType& sqrtT, const MatrixType& T)
void MatrixSquareRootQuasiTriangular<MatrixType>::computeOffDiagonalPartOfSqrt(MatrixType& sqrtT,
const MatrixType& T)
{
const Index size = m_A.rows();
for (Index j = 1; j < size; j++) {
@ -158,9 +155,8 @@ void MatrixSquareRoot<MatrixType, 0>::computeOffDiagonalPartOfSqrt(MatrixType& s
// pre: T.block(i,i,2,2) has complex conjugate eigenvalues
// post: sqrtT.block(i,i,2,2) is square root of T.block(i,i,2,2)
template <typename MatrixType>
void MatrixSquareRoot<MatrixType, 0>::compute2x2diagonalBlock(MatrixType& sqrtT,
const MatrixType& T,
typename MatrixType::Index i)
void MatrixSquareRootQuasiTriangular<MatrixType>
::compute2x2diagonalBlock(MatrixType& sqrtT, const MatrixType& T, typename MatrixType::Index i)
{
// TODO: This case (2-by-2 blocks with complex conjugate eigenvalues) is probably hidden somewhere
// in EigenSolver. If we expose it, we could call it directly from here.
@ -174,10 +170,9 @@ void MatrixSquareRoot<MatrixType, 0>::compute2x2diagonalBlock(MatrixType& sqrtT,
// all blocks of sqrtT to left of and below (i,j) are correct
// post: sqrtT(i,j) has the correct value
template <typename MatrixType>
void MatrixSquareRoot<MatrixType, 0>::compute1x1offDiagonalBlock(MatrixType& sqrtT,
const MatrixType& T,
typename MatrixType::Index i,
typename MatrixType::Index j)
void MatrixSquareRootQuasiTriangular<MatrixType>
::compute1x1offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
typename MatrixType::Index i, typename MatrixType::Index j)
{
Scalar tmp = (sqrtT.row(i).segment(i+1,j-i-1) * sqrtT.col(j).segment(i+1,j-i-1)).value();
sqrtT.coeffRef(i,j) = (T.coeff(i,j) - tmp) / (sqrtT.coeff(i,i) + sqrtT.coeff(j,j));
@ -185,10 +180,9 @@ void MatrixSquareRoot<MatrixType, 0>::compute1x1offDiagonalBlock(MatrixType& sqr
// similar to compute1x1offDiagonalBlock()
template <typename MatrixType>
void MatrixSquareRoot<MatrixType, 0>::compute1x2offDiagonalBlock(MatrixType& sqrtT,
const MatrixType& T,
typename MatrixType::Index i,
typename MatrixType::Index j)
void MatrixSquareRootQuasiTriangular<MatrixType>
::compute1x2offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
typename MatrixType::Index i, typename MatrixType::Index j)
{
Matrix<Scalar,1,2> rhs = T.template block<1,2>(i,j);
if (j-i > 1)
@ -200,10 +194,9 @@ void MatrixSquareRoot<MatrixType, 0>::compute1x2offDiagonalBlock(MatrixType& sqr
// similar to compute1x1offDiagonalBlock()
template <typename MatrixType>
void MatrixSquareRoot<MatrixType, 0>::compute2x1offDiagonalBlock(MatrixType& sqrtT,
const MatrixType& T,
typename MatrixType::Index i,
typename MatrixType::Index j)
void MatrixSquareRootQuasiTriangular<MatrixType>
::compute2x1offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
typename MatrixType::Index i, typename MatrixType::Index j)
{
Matrix<Scalar,2,1> rhs = T.template block<2,1>(i,j);
if (j-i > 2)
@ -215,10 +208,9 @@ void MatrixSquareRoot<MatrixType, 0>::compute2x1offDiagonalBlock(MatrixType& sqr
// similar to compute1x1offDiagonalBlock()
template <typename MatrixType>
void MatrixSquareRoot<MatrixType, 0>::compute2x2offDiagonalBlock(MatrixType& sqrtT,
const MatrixType& T,
typename MatrixType::Index i,
typename MatrixType::Index j)
void MatrixSquareRootQuasiTriangular<MatrixType>
::compute2x2offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
typename MatrixType::Index i, typename MatrixType::Index j)
{
Matrix<Scalar,2,2> A = sqrtT.template block<2,2>(i,i);
Matrix<Scalar,2,2> B = sqrtT.template block<2,2>(j,j);
@ -233,10 +225,9 @@ void MatrixSquareRoot<MatrixType, 0>::compute2x2offDiagonalBlock(MatrixType& sqr
// solves the equation A X + X B = C where all matrices are 2-by-2
template <typename MatrixType>
template <typename SmallMatrixType>
void MatrixSquareRoot<MatrixType, 0>::solveAuxiliaryEquation(SmallMatrixType& X,
const SmallMatrixType& A,
const SmallMatrixType& B,
const SmallMatrixType& C)
void MatrixSquareRootQuasiTriangular<MatrixType>
::solveAuxiliaryEquation(SmallMatrixType& X, const SmallMatrixType& A,
const SmallMatrixType& B, const SmallMatrixType& C)
{
EIGEN_STATIC_ASSERT((internal::is_same<SmallMatrixType, Matrix<Scalar,2,2> >::value),
EIGEN_INTERNAL_ERROR_PLEASE_FILE_A_BUG_REPORT);
@ -270,18 +261,37 @@ void MatrixSquareRoot<MatrixType, 0>::solveAuxiliaryEquation(SmallMatrixType& X,
X.coeffRef(1,1) = result.coeff(3);
}
// ********** Partial specialization for complex matrices **********
/** \ingroup MatrixFunctions_Module
* \brief Class for computing matrix square roots of upper triangular matrices.
* \tparam MatrixType type of the argument of the matrix square root,
* expected to be an instantiation of the Matrix class template.
*
* This class computes the square root of the upper triangular matrix
* stored in the upper triangular part (including the diagonal) of
* the matrix passed to the constructor.
*
* \sa MatrixSquareRoot, MatrixSquareRootQuasiTriangular
*/
template <typename MatrixType>
class MatrixSquareRoot<MatrixType, 1>
class MatrixSquareRootTriangular
{
public:
MatrixSquareRoot(const MatrixType& A)
MatrixSquareRootTriangular(const MatrixType& A)
: m_A(A)
{
eigen_assert(A.rows() == A.cols());
}
/** \brief Compute the matrix square root
*
* \param[out] result square root of \p A, as specified in the constructor.
*
* Only the upper triangular part (including the diagonal) of
* \p result is updated, the rest is not touched. See
* MatrixBase::sqrt() for details on how this computation is
* implemented.
*/
template <typename ResultType> void compute(ResultType &result);
private:
@ -290,7 +300,7 @@ class MatrixSquareRoot<MatrixType, 1>
template <typename MatrixType>
template <typename ResultType>
void MatrixSquareRoot<MatrixType, 1>::compute(ResultType &result)
void MatrixSquareRootTriangular<MatrixType>::compute(ResultType &result)
{
// Compute Schur decomposition of m_A
const ComplexSchur<MatrixType> schurOfA(m_A);
@ -320,6 +330,107 @@ void MatrixSquareRoot<MatrixType, 1>::compute(ResultType &result)
result.noalias() = tmp * U.adjoint();
}
/** \ingroup MatrixFunctions_Module
* \brief Class for computing matrix square roots of general matrices.
* \tparam MatrixType type of the argument of the matrix square root,
* expected to be an instantiation of the Matrix class template.
*
* \sa MatrixSquareRootTriangular, MatrixSquareRootQuasiTriangular, MatrixBase::sqrt()
*/
template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex>
class MatrixSquareRoot
{
public:
/** \brief Constructor.
*
* \param[in] A matrix whose square root is to be computed.
*
* The class stores a reference to \p A, so it should not be
* changed (or destroyed) before compute() is called.
*/
MatrixSquareRoot(const MatrixType& A);
/** \brief Compute the matrix square root
*
* \param[out] result square root of \p A, as specified in the constructor.
*
* See MatrixBase::sqrt() for details on how this computation is
* implemented.
*/
template <typename ResultType> void compute(ResultType &result);
};
// ********** Partial specialization for real matrices **********
template <typename MatrixType>
class MatrixSquareRoot<MatrixType, 0>
{
public:
MatrixSquareRoot(const MatrixType& A)
: m_A(A)
{
eigen_assert(A.rows() == A.cols());
}
template <typename ResultType> void compute(ResultType &result)
{
// Compute Schur decomposition of m_A
const RealSchur<MatrixType> schurOfA(m_A);
const MatrixType& T = schurOfA.matrixT();
const MatrixType& U = schurOfA.matrixU();
// Compute square root of T
MatrixSquareRootQuasiTriangular<MatrixType> tmp(T);
MatrixType sqrtT = MatrixType::Zero(m_A.rows(), m_A.rows());
tmp.compute(sqrtT);
// Compute square root of m_A
result = U * sqrtT * U.adjoint();
}
private:
const MatrixType& m_A;
};
// ********** Partial specialization for complex matrices **********
template <typename MatrixType>
class MatrixSquareRoot<MatrixType, 1>
{
public:
MatrixSquareRoot(const MatrixType& A)
: m_A(A)
{
eigen_assert(A.rows() == A.cols());
}
template <typename ResultType> void compute(ResultType &result)
{
// Compute Schur decomposition of m_A
const ComplexSchur<MatrixType> schurOfA(m_A);
const MatrixType& T = schurOfA.matrixT();
const MatrixType& U = schurOfA.matrixU();
// Compute square root of T
MatrixSquareRootTriangular<MatrixType> tmp(T);
MatrixType sqrtT = MatrixType::Zero(m_A.rows(), m_A.rows());
tmp.compute(sqrtT);
// Compute square root of m_A
result = U * sqrtT * U.adjoint();
}
private:
const MatrixType& m_A;
};
/** \ingroup MatrixFunctions_Module
*
* \brief Proxy for the matrix square root of some matrix (expression).