mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-06-04 18:54:00 +08:00
Merge with upstream eigen/default
This commit is contained in:
commit
c144bb355b
@ -10,7 +10,7 @@
|
||||
#ifndef EIGEN_CHOLMODSUPPORT_H
|
||||
#define EIGEN_CHOLMODSUPPORT_H
|
||||
|
||||
namespace Eigen {
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
@ -79,12 +79,12 @@ cholmod_sparse viewAsCholmod(Ref<SparseMatrix<_Scalar,_Options,_StorageIndex> >
|
||||
|
||||
res.dtype = 0;
|
||||
res.stype = -1;
|
||||
|
||||
|
||||
if (internal::is_same<_StorageIndex,int>::value)
|
||||
{
|
||||
res.itype = CHOLMOD_INT;
|
||||
}
|
||||
else if (internal::is_same<_StorageIndex,long>::value)
|
||||
else if (internal::is_same<_StorageIndex,SuiteSparse_long>::value)
|
||||
{
|
||||
res.itype = CHOLMOD_LONG;
|
||||
}
|
||||
@ -95,9 +95,9 @@ cholmod_sparse viewAsCholmod(Ref<SparseMatrix<_Scalar,_Options,_StorageIndex> >
|
||||
|
||||
// setup res.xtype
|
||||
internal::cholmod_configure_matrix<_Scalar>::run(res);
|
||||
|
||||
|
||||
res.stype = 0;
|
||||
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
@ -121,7 +121,7 @@ template<typename _Scalar, int _Options, typename _Index, unsigned int UpLo>
|
||||
cholmod_sparse viewAsCholmod(const SparseSelfAdjointView<const SparseMatrix<_Scalar,_Options,_Index>, UpLo>& mat)
|
||||
{
|
||||
cholmod_sparse res = viewAsCholmod(Ref<SparseMatrix<_Scalar,_Options,_Index> >(mat.matrix().const_cast_derived()));
|
||||
|
||||
|
||||
if(UpLo==Upper) res.stype = 1;
|
||||
if(UpLo==Lower) res.stype = -1;
|
||||
// swap stype for rowmajor matrices (only works for real matrices)
|
||||
@ -168,11 +168,11 @@ namespace internal {
|
||||
|
||||
#define EIGEN_CHOLMOD_SPECIALIZE0(ret, name) \
|
||||
template<typename _StorageIndex> inline ret cm_ ## name (cholmod_common &Common) { return cholmod_ ## name (&Common); } \
|
||||
template<> inline ret cm_ ## name<long> (cholmod_common &Common) { return cholmod_l_ ## name (&Common); }
|
||||
template<> inline ret cm_ ## name<SuiteSparse_long> (cholmod_common &Common) { return cholmod_l_ ## name (&Common); }
|
||||
|
||||
#define EIGEN_CHOLMOD_SPECIALIZE1(ret, name, t1, a1) \
|
||||
template<typename _StorageIndex> inline ret cm_ ## name (t1& a1, cholmod_common &Common) { return cholmod_ ## name (&a1, &Common); } \
|
||||
template<> inline ret cm_ ## name<long> (t1& a1, cholmod_common &Common) { return cholmod_l_ ## name (&a1, &Common); }
|
||||
template<> inline ret cm_ ## name<SuiteSparse_long> (t1& a1, cholmod_common &Common) { return cholmod_l_ ## name (&a1, &Common); }
|
||||
|
||||
EIGEN_CHOLMOD_SPECIALIZE0(int, start)
|
||||
EIGEN_CHOLMOD_SPECIALIZE0(int, finish)
|
||||
@ -184,15 +184,15 @@ EIGEN_CHOLMOD_SPECIALIZE1(int, free_sparse, cholmod_sparse*, A)
|
||||
EIGEN_CHOLMOD_SPECIALIZE1(cholmod_factor*, analyze, cholmod_sparse, A)
|
||||
|
||||
template<typename _StorageIndex> inline cholmod_dense* cm_solve (int sys, cholmod_factor& L, cholmod_dense& B, cholmod_common &Common) { return cholmod_solve (sys, &L, &B, &Common); }
|
||||
template<> inline cholmod_dense* cm_solve<long> (int sys, cholmod_factor& L, cholmod_dense& B, cholmod_common &Common) { return cholmod_l_solve (sys, &L, &B, &Common); }
|
||||
template<> inline cholmod_dense* cm_solve<SuiteSparse_long> (int sys, cholmod_factor& L, cholmod_dense& B, cholmod_common &Common) { return cholmod_l_solve (sys, &L, &B, &Common); }
|
||||
|
||||
template<typename _StorageIndex> inline cholmod_sparse* cm_spsolve (int sys, cholmod_factor& L, cholmod_sparse& B, cholmod_common &Common) { return cholmod_spsolve (sys, &L, &B, &Common); }
|
||||
template<> inline cholmod_sparse* cm_spsolve<long> (int sys, cholmod_factor& L, cholmod_sparse& B, cholmod_common &Common) { return cholmod_l_spsolve (sys, &L, &B, &Common); }
|
||||
template<> inline cholmod_sparse* cm_spsolve<SuiteSparse_long> (int sys, cholmod_factor& L, cholmod_sparse& B, cholmod_common &Common) { return cholmod_l_spsolve (sys, &L, &B, &Common); }
|
||||
|
||||
template<typename _StorageIndex>
|
||||
inline int cm_factorize_p (cholmod_sparse* A, double beta[2], _StorageIndex* fset, std::size_t fsize, cholmod_factor* L, cholmod_common &Common) { return cholmod_factorize_p (A, beta, fset, fsize, L, &Common); }
|
||||
template<>
|
||||
inline int cm_factorize_p<long> (cholmod_sparse* A, double beta[2], long* fset, std::size_t fsize, cholmod_factor* L, cholmod_common &Common) { return cholmod_l_factorize_p (A, beta, fset, fsize, L, &Common); }
|
||||
inline int cm_factorize_p<SuiteSparse_long> (cholmod_sparse* A, double beta[2], SuiteSparse_long* fset, std::size_t fsize, cholmod_factor* L, cholmod_common &Common) { return cholmod_l_factorize_p (A, beta, fset, fsize, L, &Common); }
|
||||
|
||||
#undef EIGEN_CHOLMOD_SPECIALIZE0
|
||||
#undef EIGEN_CHOLMOD_SPECIALIZE1
|
||||
@ -254,10 +254,10 @@ class CholmodBase : public SparseSolverBase<Derived>
|
||||
internal::cm_free_factor<StorageIndex>(m_cholmodFactor, m_cholmod);
|
||||
internal::cm_finish<StorageIndex>(m_cholmod);
|
||||
}
|
||||
|
||||
|
||||
inline StorageIndex cols() const { return internal::convert_index<StorageIndex, Index>(m_cholmodFactor->n); }
|
||||
inline StorageIndex rows() const { return internal::convert_index<StorageIndex, Index>(m_cholmodFactor->n); }
|
||||
|
||||
|
||||
/** \brief Reports whether previous computation was successful.
|
||||
*
|
||||
* \returns \c Success if computation was successful,
|
||||
@ -276,11 +276,11 @@ class CholmodBase : public SparseSolverBase<Derived>
|
||||
factorize(matrix);
|
||||
return derived();
|
||||
}
|
||||
|
||||
|
||||
/** Performs a symbolic decomposition on the sparsity pattern of \a matrix.
|
||||
*
|
||||
* This function is particularly useful when solving for several problems having the same structure.
|
||||
*
|
||||
*
|
||||
* \sa factorize()
|
||||
*/
|
||||
void analyzePattern(const MatrixType& matrix)
|
||||
@ -292,13 +292,13 @@ class CholmodBase : public SparseSolverBase<Derived>
|
||||
}
|
||||
cholmod_sparse A = viewAsCholmod(matrix.template selfadjointView<UpLo>());
|
||||
m_cholmodFactor = internal::cm_analyze<StorageIndex>(A, m_cholmod);
|
||||
|
||||
|
||||
this->m_isInitialized = true;
|
||||
this->m_info = Success;
|
||||
m_analysisIsOk = true;
|
||||
m_factorizationIsOk = false;
|
||||
}
|
||||
|
||||
|
||||
/** Performs a numeric decomposition of \a matrix
|
||||
*
|
||||
* The given matrix must have the same sparsity pattern as the matrix on which the symbolic decomposition has been performed.
|
||||
@ -315,11 +315,11 @@ class CholmodBase : public SparseSolverBase<Derived>
|
||||
this->m_info = (m_cholmodFactor->minor == m_cholmodFactor->n ? Success : NumericalIssue);
|
||||
m_factorizationIsOk = true;
|
||||
}
|
||||
|
||||
|
||||
/** Returns a reference to the Cholmod's configuration structure to get a full control over the performed operations.
|
||||
* See the Cholmod user guide for details. */
|
||||
cholmod_common& cholmod() { return m_cholmod; }
|
||||
|
||||
|
||||
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
||||
/** \internal */
|
||||
template<typename Rhs,typename Dest>
|
||||
@ -329,7 +329,7 @@ class CholmodBase : public SparseSolverBase<Derived>
|
||||
const Index size = m_cholmodFactor->n;
|
||||
EIGEN_UNUSED_VARIABLE(size);
|
||||
eigen_assert(size==b.rows());
|
||||
|
||||
|
||||
// Cholmod needs column-major storage without inner-stride, which corresponds to the default behavior of Ref.
|
||||
Ref<const Matrix<typename Rhs::Scalar,Dynamic,Dynamic,ColMajor> > b_ref(b.derived());
|
||||
|
||||
@ -345,7 +345,7 @@ class CholmodBase : public SparseSolverBase<Derived>
|
||||
dest = Matrix<Scalar,Dest::RowsAtCompileTime,Dest::ColsAtCompileTime>::Map(reinterpret_cast<Scalar*>(x_cd->x),b.rows(),b.cols());
|
||||
internal::cm_free_dense<StorageIndex>(x_cd, m_cholmod);
|
||||
}
|
||||
|
||||
|
||||
/** \internal */
|
||||
template<typename RhsDerived, typename DestDerived>
|
||||
void _solve_impl(const SparseMatrixBase<RhsDerived> &b, SparseMatrixBase<DestDerived> &dest) const
|
||||
@ -370,8 +370,8 @@ class CholmodBase : public SparseSolverBase<Derived>
|
||||
internal::cm_free_sparse<StorageIndex>(x_cs, m_cholmod);
|
||||
}
|
||||
#endif // EIGEN_PARSED_BY_DOXYGEN
|
||||
|
||||
|
||||
|
||||
|
||||
/** Sets the shift parameter that will be used to adjust the diagonal coefficients during the numerical factorization.
|
||||
*
|
||||
* During the numerical factorization, an offset term is added to the diagonal coefficients:\n
|
||||
@ -386,7 +386,7 @@ class CholmodBase : public SparseSolverBase<Derived>
|
||||
m_shiftOffset[0] = double(offset);
|
||||
return derived();
|
||||
}
|
||||
|
||||
|
||||
/** \returns the determinant of the underlying matrix from the current factorization */
|
||||
Scalar determinant() const
|
||||
{
|
||||
@ -441,7 +441,7 @@ class CholmodBase : public SparseSolverBase<Derived>
|
||||
template<typename Stream>
|
||||
void dumpMemory(Stream& /*s*/)
|
||||
{}
|
||||
|
||||
|
||||
protected:
|
||||
mutable cholmod_common m_cholmod;
|
||||
cholmod_factor* m_cholmodFactor;
|
||||
@ -478,11 +478,11 @@ class CholmodSimplicialLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimpl
|
||||
{
|
||||
typedef CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLLT> Base;
|
||||
using Base::m_cholmod;
|
||||
|
||||
|
||||
public:
|
||||
|
||||
|
||||
typedef _MatrixType MatrixType;
|
||||
|
||||
|
||||
CholmodSimplicialLLT() : Base() { init(); }
|
||||
|
||||
CholmodSimplicialLLT(const MatrixType& matrix) : Base()
|
||||
@ -529,11 +529,11 @@ class CholmodSimplicialLDLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimp
|
||||
{
|
||||
typedef CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLDLT> Base;
|
||||
using Base::m_cholmod;
|
||||
|
||||
|
||||
public:
|
||||
|
||||
|
||||
typedef _MatrixType MatrixType;
|
||||
|
||||
|
||||
CholmodSimplicialLDLT() : Base() { init(); }
|
||||
|
||||
CholmodSimplicialLDLT(const MatrixType& matrix) : Base()
|
||||
@ -578,11 +578,11 @@ class CholmodSupernodalLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSuper
|
||||
{
|
||||
typedef CholmodBase<_MatrixType, _UpLo, CholmodSupernodalLLT> Base;
|
||||
using Base::m_cholmod;
|
||||
|
||||
|
||||
public:
|
||||
|
||||
|
||||
typedef _MatrixType MatrixType;
|
||||
|
||||
|
||||
CholmodSupernodalLLT() : Base() { init(); }
|
||||
|
||||
CholmodSupernodalLLT(const MatrixType& matrix) : Base()
|
||||
@ -629,11 +629,11 @@ class CholmodDecomposition : public CholmodBase<_MatrixType, _UpLo, CholmodDecom
|
||||
{
|
||||
typedef CholmodBase<_MatrixType, _UpLo, CholmodDecomposition> Base;
|
||||
using Base::m_cholmod;
|
||||
|
||||
|
||||
public:
|
||||
|
||||
|
||||
typedef _MatrixType MatrixType;
|
||||
|
||||
|
||||
CholmodDecomposition() : Base() { init(); }
|
||||
|
||||
CholmodDecomposition(const MatrixType& matrix) : Base()
|
||||
@ -643,7 +643,7 @@ class CholmodDecomposition : public CholmodBase<_MatrixType, _UpLo, CholmodDecom
|
||||
}
|
||||
|
||||
~CholmodDecomposition() {}
|
||||
|
||||
|
||||
void setMode(CholmodMode mode)
|
||||
{
|
||||
switch(mode)
|
||||
|
@ -66,6 +66,7 @@ namespace Eigen
|
||||
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(sinh,scalar_sinh_op,hyperbolic sine,\sa ArrayBase::sinh)
|
||||
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(cosh,scalar_cosh_op,hyperbolic cosine,\sa ArrayBase::cosh)
|
||||
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(tanh,scalar_tanh_op,hyperbolic tangent,\sa ArrayBase::tanh)
|
||||
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(logistic,scalar_logistic_op,logistic function,\sa ArrayBase::logistic)
|
||||
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(lgamma,scalar_lgamma_op,natural logarithm of the gamma function,\sa ArrayBase::lgamma)
|
||||
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(digamma,scalar_digamma_op,derivative of lgamma,\sa ArrayBase::digamma)
|
||||
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(erf,scalar_erf_op,error function,\sa ArrayBase::erf)
|
||||
@ -89,7 +90,7 @@ namespace Eigen
|
||||
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(isinf,scalar_isinf_op,infinite value test,\sa Eigen::isnan DOXCOMMA Eigen::isfinite DOXCOMMA ArrayBase::isinf)
|
||||
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(isfinite,scalar_isfinite_op,finite value test,\sa Eigen::isinf DOXCOMMA Eigen::isnan DOXCOMMA ArrayBase::isfinite)
|
||||
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(sign,scalar_sign_op,sign (or 0),\sa ArrayBase::sign)
|
||||
|
||||
|
||||
/** \returns an expression of the coefficient-wise power of \a x to the given constant \a exponent.
|
||||
*
|
||||
* \tparam ScalarExponent is the scalar type of \a exponent. It must be compatible with the scalar type of the given expression (\c Derived::Scalar).
|
||||
@ -124,21 +125,21 @@ namespace Eigen
|
||||
*
|
||||
* Example: \include Cwise_array_power_array.cpp
|
||||
* Output: \verbinclude Cwise_array_power_array.out
|
||||
*
|
||||
*
|
||||
* \sa ArrayBase::pow()
|
||||
*
|
||||
* \relates ArrayBase
|
||||
*/
|
||||
template<typename Derived,typename ExponentDerived>
|
||||
inline const Eigen::CwiseBinaryOp<Eigen::internal::scalar_pow_op<typename Derived::Scalar, typename ExponentDerived::Scalar>, const Derived, const ExponentDerived>
|
||||
pow(const Eigen::ArrayBase<Derived>& x, const Eigen::ArrayBase<ExponentDerived>& exponents)
|
||||
pow(const Eigen::ArrayBase<Derived>& x, const Eigen::ArrayBase<ExponentDerived>& exponents)
|
||||
{
|
||||
return Eigen::CwiseBinaryOp<Eigen::internal::scalar_pow_op<typename Derived::Scalar, typename ExponentDerived::Scalar>, const Derived, const ExponentDerived>(
|
||||
x.derived(),
|
||||
exponents.derived()
|
||||
);
|
||||
}
|
||||
|
||||
|
||||
/** \returns an expression of the coefficient-wise power of the scalar \a x to the given array of \a exponents.
|
||||
*
|
||||
* This function computes the coefficient-wise power between a scalar and an array of exponents.
|
||||
@ -147,7 +148,7 @@ namespace Eigen
|
||||
*
|
||||
* Example: \include Cwise_scalar_power_array.cpp
|
||||
* Output: \verbinclude Cwise_scalar_power_array.out
|
||||
*
|
||||
*
|
||||
* \sa ArrayBase::pow()
|
||||
*
|
||||
* \relates ArrayBase
|
||||
|
@ -43,6 +43,7 @@ template<typename Derived> class MapBase<Derived, ReadOnlyAccessors>
|
||||
enum {
|
||||
RowsAtCompileTime = internal::traits<Derived>::RowsAtCompileTime,
|
||||
ColsAtCompileTime = internal::traits<Derived>::ColsAtCompileTime,
|
||||
InnerStrideAtCompileTime = internal::traits<Derived>::InnerStrideAtCompileTime,
|
||||
SizeAtCompileTime = Base::SizeAtCompileTime
|
||||
};
|
||||
|
||||
@ -187,8 +188,11 @@ template<typename Derived> class MapBase<Derived, ReadOnlyAccessors>
|
||||
void checkSanity(typename internal::enable_if<(internal::traits<T>::Alignment>0),void*>::type = 0) const
|
||||
{
|
||||
#if EIGEN_MAX_ALIGN_BYTES>0
|
||||
// innerStride() is not set yet when this function is called, so we optimistically assume the lowest plausible value:
|
||||
const Index minInnerStride = InnerStrideAtCompileTime == Dynamic ? 1 : Index(InnerStrideAtCompileTime);
|
||||
EIGEN_ONLY_USED_FOR_DEBUG(minInnerStride);
|
||||
eigen_assert(( ((internal::UIntPtr(m_data) % internal::traits<Derived>::Alignment) == 0)
|
||||
|| (cols() * rows() * innerStride() * sizeof(Scalar)) < internal::traits<Derived>::Alignment ) && "data is not aligned");
|
||||
|| (cols() * rows() * minInnerStride * sizeof(Scalar)) < internal::traits<Derived>::Alignment ) && "data is not aligned");
|
||||
#endif
|
||||
}
|
||||
|
||||
|
@ -634,13 +634,13 @@ template<> EIGEN_STRONG_INLINE Packet8d preverse(const Packet8d& a)
|
||||
template<> EIGEN_STRONG_INLINE Packet16f pabs(const Packet16f& a)
|
||||
{
|
||||
// _mm512_abs_ps intrinsic not found, so hack around it
|
||||
return (__m512)_mm512_and_si512((__m512i)a, _mm512_set1_epi32(0x7fffffff));
|
||||
return _mm512_castsi512_ps(_mm512_and_si512(_mm512_castps_si512(a), _mm512_set1_epi32(0x7fffffff)));
|
||||
}
|
||||
template <>
|
||||
EIGEN_STRONG_INLINE Packet8d pabs(const Packet8d& a) {
|
||||
// _mm512_abs_ps intrinsic not found, so hack around it
|
||||
return (__m512d)_mm512_and_si512((__m512i)a,
|
||||
_mm512_set1_epi64(0x7fffffffffffffff));
|
||||
return _mm512_castsi512_pd(_mm512_and_si512(_mm512_castpd_si512(a),
|
||||
_mm512_set1_epi64(0x7fffffffffffffff)));
|
||||
}
|
||||
|
||||
#ifdef EIGEN_VECTORIZE_AVX512DQ
|
||||
|
@ -701,7 +701,7 @@ template<typename Scalar> struct scalar_isnan_op {
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const {
|
||||
#if defined(__SYCL_DEVICE_ONLY__)
|
||||
return numext::isnan(a);
|
||||
#else
|
||||
#else
|
||||
return (numext::isnan)(a);
|
||||
#endif
|
||||
}
|
||||
@ -815,7 +815,7 @@ struct scalar_sign_op<Scalar,true> {
|
||||
template<typename Scalar>
|
||||
struct functor_traits<scalar_sign_op<Scalar> >
|
||||
{ enum {
|
||||
Cost =
|
||||
Cost =
|
||||
NumTraits<Scalar>::IsComplex
|
||||
? ( 8*NumTraits<Scalar>::MulCost ) // roughly
|
||||
: ( 3*NumTraits<Scalar>::AddCost),
|
||||
@ -823,6 +823,34 @@ struct functor_traits<scalar_sign_op<Scalar> >
|
||||
};
|
||||
};
|
||||
|
||||
/** \internal
|
||||
* \brief Template functor to compute the logistic function of a scalar
|
||||
* \sa class CwiseUnaryOp, ArrayBase::logistic()
|
||||
*/
|
||||
template <typename T>
|
||||
struct scalar_logistic_op {
|
||||
EIGEN_EMPTY_STRUCT_CTOR(scalar_logistic_op)
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T operator()(const T& x) const {
|
||||
const T one = T(1);
|
||||
return one / (one + numext::exp(-x));
|
||||
}
|
||||
|
||||
template <typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
Packet packetOp(const Packet& x) const {
|
||||
const Packet one = pset1<Packet>(T(1));
|
||||
return pdiv(one, padd(one, pexp(pnegate(x))));
|
||||
}
|
||||
};
|
||||
template <typename T>
|
||||
struct functor_traits<scalar_logistic_op<T> > {
|
||||
enum {
|
||||
Cost = NumTraits<T>::AddCost * 2 + NumTraits<T>::MulCost * 6,
|
||||
PacketAccess = packet_traits<T>::HasAdd && packet_traits<T>::HasDiv &&
|
||||
packet_traits<T>::HasNegate && packet_traits<T>::HasExp
|
||||
};
|
||||
};
|
||||
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
} // end namespace Eigen
|
||||
|
@ -405,7 +405,7 @@ template<typename T> struct plain_matrix_type_row_major
|
||||
typedef Matrix<typename traits<T>::Scalar,
|
||||
Rows,
|
||||
Cols,
|
||||
(MaxCols==1&&MaxRows!=1) ? RowMajor : ColMajor,
|
||||
(MaxCols==1&&MaxRows!=1) ? ColMajor : RowMajor,
|
||||
MaxRows,
|
||||
MaxCols
|
||||
> type;
|
||||
|
@ -297,8 +297,8 @@ SluMatrix asSluMatrix(MatrixType& mat)
|
||||
template<typename Scalar, int Flags, typename Index>
|
||||
MappedSparseMatrix<Scalar,Flags,Index> map_superlu(SluMatrix& sluMat)
|
||||
{
|
||||
eigen_assert((Flags&RowMajor)==RowMajor && sluMat.Stype == SLU_NR
|
||||
|| (Flags&ColMajor)==ColMajor && sluMat.Stype == SLU_NC);
|
||||
eigen_assert(((Flags&RowMajor)==RowMajor && sluMat.Stype == SLU_NR)
|
||||
|| ((Flags&ColMajor)==ColMajor && sluMat.Stype == SLU_NC));
|
||||
|
||||
Index outerSize = (Flags&RowMajor)==RowMajor ? sluMat.ncol : sluMat.nrow;
|
||||
|
||||
|
@ -21,6 +21,7 @@ typedef CwiseUnaryOp<internal::scalar_acos_op<Scalar>, const Derived> AcosReturn
|
||||
typedef CwiseUnaryOp<internal::scalar_asin_op<Scalar>, const Derived> AsinReturnType;
|
||||
typedef CwiseUnaryOp<internal::scalar_atan_op<Scalar>, const Derived> AtanReturnType;
|
||||
typedef CwiseUnaryOp<internal::scalar_tanh_op<Scalar>, const Derived> TanhReturnType;
|
||||
typedef CwiseUnaryOp<internal::scalar_logistic_op<Scalar>, const Derived> LogisticReturnType;
|
||||
typedef CwiseUnaryOp<internal::scalar_sinh_op<Scalar>, const Derived> SinhReturnType;
|
||||
typedef CwiseUnaryOp<internal::scalar_cosh_op<Scalar>, const Derived> CoshReturnType;
|
||||
typedef CwiseUnaryOp<internal::scalar_square_op<Scalar>, const Derived> SquareReturnType;
|
||||
@ -335,6 +336,15 @@ cosh() const
|
||||
return CoshReturnType(derived());
|
||||
}
|
||||
|
||||
/** \returns an expression of the coefficient-wise logistic of *this.
|
||||
*/
|
||||
EIGEN_DEVICE_FUNC
|
||||
inline const LogisticReturnType
|
||||
logistic() const
|
||||
{
|
||||
return LogisticReturnType(derived());
|
||||
}
|
||||
|
||||
/** \returns an expression of the coefficient-wise inverse of *this.
|
||||
*
|
||||
* Example: \include Cwise_inverse.cpp
|
||||
|
@ -1,7 +1,6 @@
|
||||
typedef Matrix<double,4,Dynamic> Matrix4Xd;
|
||||
Matrix4Xd M = Matrix4Xd::Random(4,5);
|
||||
Projective3d P(Matrix4d::Random());
|
||||
cout << "The matrix M is:" << endl << M << endl << endl;
|
||||
cout << "M.colwise().hnormalized():" << endl << M.colwise().hnormalized() << endl << endl;
|
||||
cout << "P*M:" << endl << P*M << endl << endl;
|
||||
cout << "(P*M).colwise().hnormalized():" << endl << (P*M).colwise().hnormalized() << endl << endl;
|
||||
cout << "(P*M).colwise().hnormalized():" << endl << (P*M).colwise().hnormalized() << endl << endl;
|
||||
|
@ -1,7 +1,6 @@
|
||||
typedef Matrix<double,3,Dynamic> Matrix3Xd;
|
||||
Matrix3Xd M = Matrix3Xd::Random(3,5);
|
||||
Projective3d P(Matrix4d::Random());
|
||||
cout << "The matrix M is:" << endl << M << endl << endl;
|
||||
cout << "M.colwise().homogeneous():" << endl << M.colwise().homogeneous() << endl << endl;
|
||||
cout << "P * M.colwise().homogeneous():" << endl << P * M.colwise().homogeneous() << endl << endl;
|
||||
cout << "P * M.colwise().homogeneous().hnormalized(): " << endl << (P * M.colwise().homogeneous()).colwise().hnormalized() << endl << endl;
|
||||
cout << "P * M.colwise().homogeneous().hnormalized(): " << endl << (P * M.colwise().homogeneous()).colwise().hnormalized() << endl << endl;
|
||||
|
@ -231,6 +231,7 @@ template<typename ArrayType> void array_real(const ArrayType& m)
|
||||
VERIFY_IS_APPROX(m1.sinh(), sinh(m1));
|
||||
VERIFY_IS_APPROX(m1.cosh(), cosh(m1));
|
||||
VERIFY_IS_APPROX(m1.tanh(), tanh(m1));
|
||||
VERIFY_IS_APPROX(m1.logistic(), logistic(m1));
|
||||
|
||||
VERIFY_IS_APPROX(m1.arg(), arg(m1));
|
||||
VERIFY_IS_APPROX(m1.round(), round(m1));
|
||||
@ -266,6 +267,7 @@ template<typename ArrayType> void array_real(const ArrayType& m)
|
||||
VERIFY_IS_APPROX(sinh(m1), 0.5*(exp(m1)-exp(-m1)));
|
||||
VERIFY_IS_APPROX(cosh(m1), 0.5*(exp(m1)+exp(-m1)));
|
||||
VERIFY_IS_APPROX(tanh(m1), (0.5*(exp(m1)-exp(-m1)))/(0.5*(exp(m1)+exp(-m1))));
|
||||
VERIFY_IS_APPROX(logistic(m1), (1.0/(1.0+exp(-m1))));
|
||||
VERIFY_IS_APPROX(arg(m1), ((m1<0).template cast<Scalar>())*std::acos(-1.0));
|
||||
VERIFY((round(m1) <= ceil(m1) && round(m1) >= floor(m1)).all());
|
||||
VERIFY((Eigen::isnan)((m1*0.0)/0.0).all());
|
||||
@ -345,6 +347,7 @@ template<typename ArrayType> void array_complex(const ArrayType& m)
|
||||
VERIFY_IS_APPROX(m1.sinh(), sinh(m1));
|
||||
VERIFY_IS_APPROX(m1.cosh(), cosh(m1));
|
||||
VERIFY_IS_APPROX(m1.tanh(), tanh(m1));
|
||||
VERIFY_IS_APPROX(m1.logistic(), logistic(m1));
|
||||
VERIFY_IS_APPROX(m1.arg(), arg(m1));
|
||||
VERIFY((m1.isNaN() == (Eigen::isnan)(m1)).all());
|
||||
VERIFY((m1.isInf() == (Eigen::isinf)(m1)).all());
|
||||
@ -368,6 +371,7 @@ template<typename ArrayType> void array_complex(const ArrayType& m)
|
||||
VERIFY_IS_APPROX(sinh(m1), 0.5*(exp(m1)-exp(-m1)));
|
||||
VERIFY_IS_APPROX(cosh(m1), 0.5*(exp(m1)+exp(-m1)));
|
||||
VERIFY_IS_APPROX(tanh(m1), (0.5*(exp(m1)-exp(-m1)))/(0.5*(exp(m1)+exp(-m1))));
|
||||
VERIFY_IS_APPROX(logistic(m1), (1.0/(1.0 + exp(-m1))));
|
||||
|
||||
for (Index i = 0; i < m.rows(); ++i)
|
||||
for (Index j = 0; j < m.cols(); ++j)
|
||||
|
@ -290,6 +290,8 @@ template<typename PlainObjectType> void check_const_correctness(const PlainObjec
|
||||
|
||||
// Regression for bug 1573
|
||||
struct MovableClass {
|
||||
// The following line is a workaround for gcc 4.7 and 4.8 (see bug 1573 comments).
|
||||
static_assert(std::is_nothrow_move_constructible<Quaternionf>::value,"");
|
||||
MovableClass() = default;
|
||||
MovableClass(const MovableClass&) = default;
|
||||
MovableClass(MovableClass&&) noexcept = default;
|
||||
|
@ -125,7 +125,7 @@ inline void on_temporary_creation(long int size) {
|
||||
if(nb_temporaries!=(N)) { std::cerr << "nb_temporaries == " << nb_temporaries << "\n"; }\
|
||||
VERIFY( (#XPR) && nb_temporaries==(N) ); \
|
||||
}
|
||||
|
||||
|
||||
#endif
|
||||
|
||||
#include "split_test_helper.h"
|
||||
@ -328,7 +328,7 @@ namespace Eigen
|
||||
#define VERIFY_RAISES_STATIC_ASSERT(a) \
|
||||
std::cout << "Can't VERIFY_RAISES_STATIC_ASSERT( " #a " ) with exceptions disabled\n";
|
||||
#endif
|
||||
|
||||
|
||||
#if !defined(__CUDACC__) && !defined(__HIPCC__) && !defined(__SYCL_DEVICE_ONLY__)
|
||||
#define EIGEN_USE_CUSTOM_ASSERT
|
||||
#endif
|
||||
@ -845,4 +845,4 @@ int main(int argc, char *argv[])
|
||||
#ifdef _MSC_VER
|
||||
// 4503 - decorated name length exceeded, name was truncated
|
||||
#pragma warning( disable : 4503)
|
||||
#endif
|
||||
#endif
|
||||
|
@ -102,7 +102,13 @@ EIGEN_DECLARE_TEST(meta)
|
||||
}
|
||||
|
||||
STATIC_CHECK(( !internal::is_convertible<MyInterface, MyImpl>::value ));
|
||||
#if (!EIGEN_COMP_GNUC_STRICT) || (EIGEN_GNUC_AT_LEAST(4,8))
|
||||
// GCC prior to 4.8 fails to compile this test:
|
||||
// error: cannot allocate an object of abstract type 'MyInterface'
|
||||
// In other word, it does not obey SFINAE.
|
||||
// Nevertheless, we don't really care about supporting abstract type as scalar type!
|
||||
STATIC_CHECK(( !internal::is_convertible<MyImpl, MyInterface>::value ));
|
||||
#endif
|
||||
STATIC_CHECK(( internal::is_convertible<MyImpl, const MyInterface&>::value ));
|
||||
{
|
||||
int i;
|
||||
|
@ -44,17 +44,27 @@
|
||||
#include <thread>
|
||||
#include <functional>
|
||||
#include <memory>
|
||||
|
||||
#include "src/util/CXX11Meta.h"
|
||||
#include "src/util/MaxSizeVector.h"
|
||||
|
||||
#include "src/ThreadPool/ThreadLocal.h"
|
||||
#ifndef EIGEN_THREAD_LOCAL
|
||||
// There are non-parenthesized calls to "max" in the <unordered_map> header,
|
||||
// which trigger a check in test/main.h causing compilation to fail.
|
||||
// We work around the check here by removing the check for max in
|
||||
// the case where we have to emulate thread_local.
|
||||
#ifdef max
|
||||
#undef max
|
||||
#endif
|
||||
#include <unordered_map>
|
||||
#endif
|
||||
#include "src/ThreadPool/ThreadYield.h"
|
||||
#include "src/ThreadPool/ThreadCancel.h"
|
||||
#include "src/ThreadPool/EventCount.h"
|
||||
#include "src/ThreadPool/RunQueue.h"
|
||||
#include "src/ThreadPool/ThreadPoolInterface.h"
|
||||
#include "src/ThreadPool/ThreadEnvironment.h"
|
||||
#include "src/ThreadPool/Barrier.h"
|
||||
#include "src/ThreadPool/NonBlockingThreadPool.h"
|
||||
|
||||
#endif
|
||||
@ -62,4 +72,3 @@
|
||||
#include <Eigen/src/Core/util/ReenableStupidWarnings.h>
|
||||
|
||||
#endif // EIGEN_CXX11_THREADPOOL_MODULE
|
||||
|
||||
|
@ -189,7 +189,7 @@ struct TensorEvaluator<const TensorAssignOp<LeftArgType, RightArgType>, Device>
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalBlock(TensorBlock* block) {
|
||||
if (TensorEvaluator<LeftArgType, Device>::RawAccess &&
|
||||
m_leftImpl.data() != nullptr) {
|
||||
m_leftImpl.data() != NULL) {
|
||||
TensorBlock left_block(block->first_coeff_index(), block->block_sizes(),
|
||||
block->tensor_strides(), block->tensor_strides(),
|
||||
m_leftImpl.data() + block->first_coeff_index());
|
||||
|
@ -200,9 +200,9 @@ class TensorBase<Derived, ReadOnlyAccessors>
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_sigmoid_op<Scalar>, const Derived>
|
||||
EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_logistic_op<Scalar>, const Derived>
|
||||
sigmoid() const {
|
||||
return unaryExpr(internal::scalar_sigmoid_op<Scalar>());
|
||||
return unaryExpr(internal::scalar_logistic_op<Scalar>());
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
|
@ -62,7 +62,7 @@ struct cond<RowMajor> {
|
||||
*/
|
||||
enum TensorBlockShapeType {
|
||||
kUniformAllDims,
|
||||
kSkewedInnerDims,
|
||||
kSkewedInnerDims
|
||||
};
|
||||
|
||||
struct TensorOpResourceRequirements {
|
||||
@ -73,7 +73,7 @@ struct TensorOpResourceRequirements {
|
||||
// expression tree (like reductions) to communicate resources
|
||||
// requirements based on local state (like the total number of reductions
|
||||
// to be computed).
|
||||
TensorOpResourceRequirements(internal::TensorBlockShapeType shape,
|
||||
TensorOpResourceRequirements(TensorBlockShapeType shape,
|
||||
const Index size)
|
||||
: block_shape(shape), block_total_size(size) {}
|
||||
};
|
||||
@ -90,9 +90,9 @@ EIGEN_STRONG_INLINE void MergeResourceRequirements(
|
||||
*block_shape = resources[0].block_shape;
|
||||
*block_total_size = resources[0].block_total_size;
|
||||
for (std::vector<TensorOpResourceRequirements>::size_type i = 1; i < resources.size(); ++i) {
|
||||
if (resources[i].block_shape == TensorBlockShapeType::kSkewedInnerDims &&
|
||||
*block_shape != TensorBlockShapeType::kSkewedInnerDims) {
|
||||
*block_shape = TensorBlockShapeType::kSkewedInnerDims;
|
||||
if (resources[i].block_shape == kSkewedInnerDims &&
|
||||
*block_shape != kSkewedInnerDims) {
|
||||
*block_shape = kSkewedInnerDims;
|
||||
}
|
||||
*block_total_size =
|
||||
numext::maxi(*block_total_size, resources[i].block_total_size);
|
||||
@ -152,11 +152,11 @@ struct TensorBlockCopyOp {
|
||||
const Scalar* src_base = &src_data[src_index];
|
||||
Scalar* dst_base = &dst_data[dst_index];
|
||||
|
||||
typedef const Eigen::Array<Scalar, Dynamic, 1> Src;
|
||||
typedef Eigen::Array<Scalar, Dynamic, 1> Dst;
|
||||
typedef const Array<Scalar, Dynamic, 1> Src;
|
||||
typedef Array<Scalar, Dynamic, 1> Dst;
|
||||
|
||||
typedef Eigen::Map<Src, 0, InnerStride<>> SrcMap;
|
||||
typedef Eigen::Map<Dst, 0, InnerStride<>> DstMap;
|
||||
typedef Map<Src, 0, InnerStride<> > SrcMap;
|
||||
typedef Map<Dst, 0, InnerStride<> > DstMap;
|
||||
|
||||
const SrcMap src(src_base, num_coeff_to_copy, InnerStride<>(src_stride));
|
||||
DstMap dst(dst_base, num_coeff_to_copy, InnerStride<>(dst_stride));
|
||||
@ -178,10 +178,8 @@ template <typename Scalar, typename StorageIndex, int NumDims, int Layout,
|
||||
bool BlockRead>
|
||||
class TensorBlockIO {
|
||||
public:
|
||||
typedef typename internal::TensorBlock<Scalar, StorageIndex, NumDims, Layout>
|
||||
TensorBlock;
|
||||
typedef typename internal::TensorBlockCopyOp<Scalar, StorageIndex>
|
||||
TensorBlockCopyOp;
|
||||
typedef TensorBlock<Scalar, StorageIndex, NumDims, Layout> Block;
|
||||
typedef TensorBlockCopyOp<Scalar, StorageIndex> BlockCopyOp;
|
||||
|
||||
protected:
|
||||
struct BlockIteratorState {
|
||||
@ -194,7 +192,7 @@ class TensorBlockIO {
|
||||
};
|
||||
|
||||
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Copy(
|
||||
const TensorBlock& block, StorageIndex first_coeff_index,
|
||||
const Block& block, StorageIndex first_coeff_index,
|
||||
const array<StorageIndex, NumDims>& tensor_to_block_dim_map,
|
||||
const array<StorageIndex, NumDims>& tensor_strides, const Scalar* src_data,
|
||||
Scalar* dst_data) {
|
||||
@ -214,11 +212,11 @@ class TensorBlockIO {
|
||||
num_size_one_inner_dims, NumDims - num_size_one_inner_dims - 1);
|
||||
const StorageIndex block_dim_for_tensor_stride1_dim =
|
||||
NumDims == 0 ? 1 : tensor_to_block_dim_map[tensor_stride1_dim];
|
||||
Index block_inner_dim_size =
|
||||
StorageIndex block_inner_dim_size =
|
||||
NumDims == 0 ? 1
|
||||
: block.block_sizes()[block_dim_for_tensor_stride1_dim];
|
||||
for (int i = num_size_one_inner_dims + 1; i < NumDims; ++i) {
|
||||
const int dim = cond<Layout>()(i, NumDims - i - 1);
|
||||
for (Index i = num_size_one_inner_dims + 1; i < NumDims; ++i) {
|
||||
const Index dim = cond<Layout>()(i, NumDims - i - 1);
|
||||
const StorageIndex block_stride =
|
||||
block.block_strides()[tensor_to_block_dim_map[dim]];
|
||||
if (block_inner_dim_size == block_stride &&
|
||||
@ -260,8 +258,8 @@ class TensorBlockIO {
|
||||
|
||||
// Initialize block iterator state. Squeeze away any dimension of size 1.
|
||||
int num_squeezed_dims = 0;
|
||||
for (int i = num_size_one_inner_dims; i < NumDims - 1; ++i) {
|
||||
const int dim = cond<Layout>()(i + 1, NumDims - i - 2);
|
||||
for (Index i = num_size_one_inner_dims; i < NumDims - 1; ++i) {
|
||||
const Index dim = cond<Layout>()(i + 1, NumDims - i - 2);
|
||||
const StorageIndex size = block.block_sizes()[tensor_to_block_dim_map[dim]];
|
||||
if (size == 1) {
|
||||
continue;
|
||||
@ -290,8 +288,8 @@ class TensorBlockIO {
|
||||
const StorageIndex block_total_size =
|
||||
NumDims == 0 ? 1 : block.block_sizes().TotalSize();
|
||||
for (StorageIndex i = 0; i < block_total_size; i += block_inner_dim_size) {
|
||||
TensorBlockCopyOp::Run(block_inner_dim_size, outputIndex, output_stride,
|
||||
dst_data, inputIndex, input_stride, src_data);
|
||||
BlockCopyOp::Run(block_inner_dim_size, outputIndex, output_stride,
|
||||
dst_data, inputIndex, input_stride, src_data);
|
||||
// Update index.
|
||||
for (int j = 0; j < num_squeezed_dims; ++j) {
|
||||
if (++block_iter_state[j].count < block_iter_state[j].size) {
|
||||
@ -320,13 +318,11 @@ template <typename Scalar, typename StorageIndex, int NumDims, int Layout>
|
||||
class TensorBlockReader : public TensorBlockIO<Scalar, StorageIndex, NumDims,
|
||||
Layout, /*BlockRead=*/true> {
|
||||
public:
|
||||
typedef typename internal::TensorBlock<Scalar, StorageIndex, NumDims, Layout>
|
||||
TensorBlock;
|
||||
typedef TensorBlockIO<Scalar, StorageIndex, NumDims, Layout, /*BlockRead=*/true>
|
||||
Base;
|
||||
typedef TensorBlock<Scalar, StorageIndex, NumDims, Layout> Block;
|
||||
typedef TensorBlockIO<Scalar, StorageIndex, NumDims, Layout, /*BlockRead=*/true> Base;
|
||||
|
||||
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Run(
|
||||
TensorBlock* block, const Scalar* src_data) {
|
||||
Block* block, const Scalar* src_data) {
|
||||
array<StorageIndex, NumDims> tensor_to_block_dim_map;
|
||||
for (int i = 0; i < NumDims; ++i) {
|
||||
tensor_to_block_dim_map[i] = i;
|
||||
@ -336,7 +332,7 @@ class TensorBlockReader : public TensorBlockIO<Scalar, StorageIndex, NumDims,
|
||||
}
|
||||
|
||||
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Run(
|
||||
TensorBlock* block, StorageIndex first_coeff_index,
|
||||
Block* block, StorageIndex first_coeff_index,
|
||||
const array<StorageIndex, NumDims>& tensor_to_block_dim_map,
|
||||
const array<StorageIndex, NumDims>& tensor_strides, const Scalar* src_data) {
|
||||
Base::Copy(*block, first_coeff_index, tensor_to_block_dim_map,
|
||||
@ -357,13 +353,11 @@ template <typename Scalar, typename StorageIndex, int NumDims, int Layout>
|
||||
class TensorBlockWriter : public TensorBlockIO<Scalar, StorageIndex, NumDims,
|
||||
Layout, /*BlockRead=*/false> {
|
||||
public:
|
||||
typedef typename internal::TensorBlock<Scalar, StorageIndex, NumDims, Layout>
|
||||
TensorBlock;
|
||||
typedef TensorBlockIO<Scalar, StorageIndex, NumDims, Layout, /*BlockRead=*/false>
|
||||
Base;
|
||||
typedef TensorBlock<Scalar, StorageIndex, NumDims, Layout> Block;
|
||||
typedef TensorBlockIO<Scalar, StorageIndex, NumDims, Layout, /*BlockRead=*/false> Base;
|
||||
|
||||
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Run(
|
||||
const TensorBlock& block, Scalar* dst_data) {
|
||||
const Block& block, Scalar* dst_data) {
|
||||
array<StorageIndex, NumDims> tensor_to_block_dim_map;
|
||||
for (int i = 0; i < NumDims; ++i) {
|
||||
tensor_to_block_dim_map[i] = i;
|
||||
@ -373,7 +367,7 @@ class TensorBlockWriter : public TensorBlockIO<Scalar, StorageIndex, NumDims,
|
||||
}
|
||||
|
||||
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Run(
|
||||
const TensorBlock& block, StorageIndex first_coeff_index,
|
||||
const Block& block, StorageIndex first_coeff_index,
|
||||
const array<StorageIndex, NumDims>& tensor_to_block_dim_map,
|
||||
const array<StorageIndex, NumDims>& tensor_strides, Scalar* dst_data) {
|
||||
Base::Copy(block, first_coeff_index, tensor_to_block_dim_map,
|
||||
@ -542,13 +536,13 @@ struct TensorBlockCwiseBinaryOp {
|
||||
const StorageIndex left_stride, const LeftScalar* left_data,
|
||||
const StorageIndex right_index, const StorageIndex right_stride,
|
||||
const RightScalar* right_data) {
|
||||
typedef const Eigen::Array<LeftScalar, Dynamic, 1> Lhs;
|
||||
typedef const Eigen::Array<RightScalar, Dynamic, 1> Rhs;
|
||||
typedef Eigen::Array<OutputScalar, Dynamic, 1> Out;
|
||||
typedef const Array<LeftScalar, Dynamic, 1> Lhs;
|
||||
typedef const Array<RightScalar, Dynamic, 1> Rhs;
|
||||
typedef Array<OutputScalar, Dynamic, 1> Out;
|
||||
|
||||
typedef Eigen::Map<Lhs, 0, InnerStride<>> LhsMap;
|
||||
typedef Eigen::Map<Rhs, 0, InnerStride<>> RhsMap;
|
||||
typedef Eigen::Map<Out, 0, InnerStride<>> OutMap;
|
||||
typedef Map<Lhs, 0, InnerStride<> > LhsMap;
|
||||
typedef Map<Rhs, 0, InnerStride<> > RhsMap;
|
||||
typedef Map<Out, 0, InnerStride<> > OutMap;
|
||||
|
||||
const LeftScalar* lhs_base = &left_data[left_index];
|
||||
const RightScalar* rhs_base = &right_data[right_index];
|
||||
@ -558,8 +552,7 @@ struct TensorBlockCwiseBinaryOp {
|
||||
const RhsMap rhs(rhs_base, num_coeff, InnerStride<>(right_stride));
|
||||
OutMap out(out_base, num_coeff, InnerStride<>(output_stride));
|
||||
|
||||
out =
|
||||
Eigen::CwiseBinaryOp<BinaryFunctor, LhsMap, RhsMap>(lhs, rhs, functor);
|
||||
out = CwiseBinaryOp<BinaryFunctor, LhsMap, RhsMap>(lhs, rhs, functor);
|
||||
}
|
||||
};
|
||||
|
||||
@ -575,8 +568,7 @@ struct TensorBlockCwiseBinaryOp {
|
||||
template <typename BinaryFunctor, typename StorageIndex, typename OutputScalar,
|
||||
int NumDims, int Layout>
|
||||
struct TensorBlockCwiseBinaryIO {
|
||||
typedef typename internal::TensorBlock<OutputScalar, StorageIndex, NumDims,
|
||||
Layout>::Dimensions Dimensions;
|
||||
typedef typename TensorBlock<OutputScalar, StorageIndex, NumDims, Layout>::Dimensions Dimensions;
|
||||
|
||||
struct BlockIteratorState {
|
||||
StorageIndex output_stride, output_span;
|
||||
@ -642,7 +634,7 @@ struct TensorBlockCwiseBinaryIO {
|
||||
if (size == 1) {
|
||||
continue;
|
||||
}
|
||||
auto& state = block_iter_state[num_squeezed_dims];
|
||||
BlockIteratorState& state = block_iter_state[num_squeezed_dims];
|
||||
state.output_stride = block_strides[dim];
|
||||
state.left_stride = left_strides[dim];
|
||||
state.right_stride = right_strides[dim];
|
||||
@ -664,7 +656,7 @@ struct TensorBlockCwiseBinaryIO {
|
||||
right_stride, right_data);
|
||||
// Update index.
|
||||
for (int j = 0; j < num_squeezed_dims; ++j) {
|
||||
auto& state = block_iter_state[j];
|
||||
BlockIteratorState& state = block_iter_state[j];
|
||||
if (++state.count < state.size) {
|
||||
output_index += state.output_stride;
|
||||
left_index += state.left_stride;
|
||||
@ -768,15 +760,14 @@ struct TensorBlockView {
|
||||
template <typename Scalar, typename StorageIndex, int NumDims, int Layout>
|
||||
class TensorBlockMapper {
|
||||
public:
|
||||
typedef typename internal::TensorBlock<Scalar, StorageIndex, NumDims, Layout>
|
||||
TensorBlock;
|
||||
typedef TensorBlock<Scalar, StorageIndex, NumDims, Layout> Block;
|
||||
typedef DSizes<StorageIndex, NumDims> Dimensions;
|
||||
|
||||
TensorBlockMapper(const Dimensions& dims,
|
||||
const TensorBlockShapeType block_shape,
|
||||
Index min_target_size)
|
||||
: m_dimensions(dims),
|
||||
m_block_dim_sizes(BlockDimensions(dims, block_shape, min_target_size)) {
|
||||
m_block_dim_sizes(BlockDimensions(dims, block_shape, internal::convert_index<StorageIndex>(min_target_size))) {
|
||||
// Calculate block counts by dimension and total block count.
|
||||
DSizes<StorageIndex, NumDims> block_count;
|
||||
for (Index i = 0; i < block_count.rank(); ++i) {
|
||||
@ -804,7 +795,7 @@ class TensorBlockMapper {
|
||||
}
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBlock
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Block
|
||||
GetBlockForIndex(StorageIndex block_index, Scalar* data) const {
|
||||
StorageIndex first_coeff_index = 0;
|
||||
DSizes<StorageIndex, NumDims> coords;
|
||||
@ -852,8 +843,7 @@ class TensorBlockMapper {
|
||||
}
|
||||
}
|
||||
|
||||
return TensorBlock(first_coeff_index, sizes, strides, m_tensor_strides,
|
||||
data);
|
||||
return Block(first_coeff_index, sizes, strides, m_tensor_strides, data);
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE StorageIndex total_block_count() const {
|
||||
@ -868,8 +858,8 @@ class TensorBlockMapper {
|
||||
private:
|
||||
static Dimensions BlockDimensions(const Dimensions& tensor_dims,
|
||||
const TensorBlockShapeType block_shape,
|
||||
Index min_target_size) {
|
||||
min_target_size = numext::maxi<Index>(1, min_target_size);
|
||||
StorageIndex min_target_size) {
|
||||
min_target_size = numext::maxi<StorageIndex>(1, min_target_size);
|
||||
|
||||
// If tensor fully fits into the target size, we'll treat it a single block.
|
||||
Dimensions block_dim_sizes = tensor_dims;
|
||||
@ -883,12 +873,12 @@ class TensorBlockMapper {
|
||||
block_dim_sizes[i] = 1;
|
||||
}
|
||||
} else if (block_dim_sizes.TotalSize() > min_target_size) {
|
||||
if (block_shape == TensorBlockShapeType::kUniformAllDims) {
|
||||
if (block_shape == kUniformAllDims) {
|
||||
// Tensor will not fit within 'min_target_size' budget: calculate tensor
|
||||
// block dimension sizes based on "square" dimension size target.
|
||||
const Index dim_size_target = static_cast<Index>(
|
||||
std::pow(static_cast<float>(min_target_size),
|
||||
1.0 / static_cast<float>(block_dim_sizes.rank())));
|
||||
const StorageIndex dim_size_target = internal::convert_index<StorageIndex>(
|
||||
std::pow(static_cast<float>(min_target_size),
|
||||
1.0f / static_cast<float>(block_dim_sizes.rank())));
|
||||
for (Index i = 0; i < block_dim_sizes.rank(); ++i) {
|
||||
// TODO(andydavis) Adjust the inner most 'block_dim_size' to make it
|
||||
// a multiple of the packet size. Note that reducing
|
||||
@ -913,7 +903,7 @@ class TensorBlockMapper {
|
||||
total_size = total_size_other_dims * block_dim_sizes[dim];
|
||||
}
|
||||
}
|
||||
} else if (block_shape == TensorBlockShapeType::kSkewedInnerDims) {
|
||||
} else if (block_shape == kSkewedInnerDims) {
|
||||
StorageIndex coeff_to_allocate = min_target_size;
|
||||
for (int i = 0; i < NumDims; ++i) {
|
||||
const int dim = cond<Layout>()(i, NumDims - i - 1);
|
||||
@ -929,8 +919,9 @@ class TensorBlockMapper {
|
||||
}
|
||||
}
|
||||
|
||||
eigen_assert(block_dim_sizes.TotalSize() >=
|
||||
numext::mini<Index>(min_target_size, tensor_dims.TotalSize()));
|
||||
eigen_assert(
|
||||
block_dim_sizes.TotalSize() >=
|
||||
numext::mini<Index>(min_target_size, tensor_dims.TotalSize()));
|
||||
|
||||
return block_dim_sizes;
|
||||
}
|
||||
@ -957,8 +948,7 @@ class TensorBlockMapper {
|
||||
template <typename Scalar, typename StorageIndex, int NumDims, int Layout>
|
||||
class TensorSliceBlockMapper {
|
||||
public:
|
||||
typedef typename internal::TensorBlock<Scalar, StorageIndex, NumDims, Layout>
|
||||
TensorBlock;
|
||||
typedef TensorBlock<Scalar, StorageIndex, NumDims, Layout> Block;
|
||||
typedef DSizes<StorageIndex, NumDims> Dimensions;
|
||||
|
||||
TensorSliceBlockMapper(const Dimensions& tensor_dims,
|
||||
@ -974,7 +964,7 @@ class TensorSliceBlockMapper {
|
||||
m_total_block_count(1) {
|
||||
// Calculate block counts by dimension and total block count.
|
||||
DSizes<StorageIndex, NumDims> block_count;
|
||||
for (size_t i = 0; i < block_count.rank(); ++i) {
|
||||
for (Index i = 0; i < block_count.rank(); ++i) {
|
||||
block_count[i] = divup(m_tensor_slice_extents[i], m_block_dim_sizes[i]);
|
||||
}
|
||||
m_total_block_count = array_prod(block_count);
|
||||
@ -999,7 +989,7 @@ class TensorSliceBlockMapper {
|
||||
}
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBlock
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Block
|
||||
GetBlockForIndex(StorageIndex block_index, Scalar* data) const {
|
||||
StorageIndex first_coeff_index = 0;
|
||||
DSizes<StorageIndex, NumDims> coords;
|
||||
@ -1056,8 +1046,7 @@ class TensorSliceBlockMapper {
|
||||
}
|
||||
}
|
||||
|
||||
return TensorBlock(first_coeff_index, sizes, strides, m_tensor_strides,
|
||||
data);
|
||||
return Block(first_coeff_index, sizes, strides, m_tensor_strides, data);
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE StorageIndex total_block_count() const {
|
||||
|
@ -105,7 +105,7 @@ struct TensorEvaluator<const TensorBroadcastingOp<Broadcast, ArgType>, Device>
|
||||
typedef typename XprType::CoeffReturnType CoeffReturnType;
|
||||
typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
|
||||
static const int PacketSize = PacketType<CoeffReturnType, Device>::size;
|
||||
bool isCopy= false, nByOne = false, oneByN = false;
|
||||
bool isCopy, nByOne, oneByN;
|
||||
|
||||
enum {
|
||||
IsAligned = true,
|
||||
@ -134,9 +134,10 @@ struct TensorEvaluator<const TensorBroadcastingOp<Broadcast, ArgType>, Device>
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op,
|
||||
const Device& device)
|
||||
: m_device(device),
|
||||
m_broadcast(op.broadcast()),
|
||||
m_impl(op.expression(), device) {
|
||||
: isCopy(false), nByOne(false), oneByN(false),
|
||||
m_device(device), m_broadcast(op.broadcast()), m_impl(op.expression(), device)
|
||||
{
|
||||
|
||||
// The broadcasting op doesn't change the rank of the tensor. One can't broadcast a scalar
|
||||
// and store the result in a scalar. Instead one should reshape the scalar into a a N-D
|
||||
// tensor with N >= 1 of 1 element first and then broadcast.
|
||||
|
@ -152,13 +152,7 @@ struct TensorContractionParams {
|
||||
// 1. Elementwise Relu transformation following Conv2D.
|
||||
// 2. AddBias to the Conv2D output channels dimension.
|
||||
//
|
||||
// See expected implementation in NoOpOutputKernel.
|
||||
struct OutputKernel {
|
||||
template <typename Index, typename Scalar>
|
||||
using OutputMapper = internal::blas_data_mapper<Scalar, Index, ColMajor>;
|
||||
};
|
||||
|
||||
// Output kernel that does absolutely nothing.
|
||||
// The NoOpOutputKernel implements an output kernel that does absolutely nothing.
|
||||
struct NoOpOutputKernel {
|
||||
/**
|
||||
* Tensor contraction evaluator calls this kernel after finishing each block
|
||||
@ -177,7 +171,7 @@ struct NoOpOutputKernel {
|
||||
*/
|
||||
template <typename Index, typename Scalar>
|
||||
EIGEN_ALWAYS_INLINE void operator()(
|
||||
const OutputKernel::OutputMapper<Index, Scalar>& /*output_mapper*/,
|
||||
const internal::blas_data_mapper<Scalar, Index, ColMajor>& /*output_mapper*/,
|
||||
const TensorContractionParams& /*params*/, Index /*i*/,
|
||||
Index /*j*/, Index /*num_rows*/, Index /*num_cols*/) const {}
|
||||
};
|
||||
@ -354,7 +348,7 @@ struct TensorContractionEvaluatorBase
|
||||
// dimensions and right non-contracting dimensions.
|
||||
m_lhs_inner_dim_contiguous = true;
|
||||
int dim_idx = 0;
|
||||
unsigned int nocontract_idx = 0;
|
||||
Index nocontract_idx = 0;
|
||||
|
||||
for (int i = 0; i < LDims; i++) {
|
||||
// find if we are contracting on index i of left tensor
|
||||
@ -667,7 +661,7 @@ struct TensorContractionEvaluatorBase
|
||||
|
||||
// call gebp (matrix kernel)
|
||||
// The parameters here are copied from Eigen's GEMM implementation
|
||||
const auto output_mapper = output.getSubMapper(i2, j2);
|
||||
const OutputMapper output_mapper = output.getSubMapper(i2, j2);
|
||||
gebp(output_mapper, blockA, blockB, actual_mc, actual_kc, actual_nc,
|
||||
Scalar(1), -1, -1, 0, 0);
|
||||
|
||||
|
@ -88,6 +88,7 @@ struct TensorEvaluator<const TensorCustomUnaryOp<CustomUnaryFunc, XprType>, Devi
|
||||
typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType;
|
||||
typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
|
||||
static const int PacketSize = PacketType<CoeffReturnType, Device>::size;
|
||||
typedef typename PointerType<CoeffReturnType, Device>::Type PointerT;
|
||||
|
||||
enum {
|
||||
IsAligned = false,
|
||||
@ -107,12 +108,12 @@ struct TensorEvaluator<const TensorCustomUnaryOp<CustomUnaryFunc, XprType>, Devi
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType* data) {
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(PointerT data) {
|
||||
if (data) {
|
||||
evalTo(data);
|
||||
return false;
|
||||
} else {
|
||||
m_result = static_cast<CoeffReturnType*>(
|
||||
m_result = static_cast<PointerT>(
|
||||
m_device.allocate_temp(dimensions().TotalSize() * sizeof(Scalar)));
|
||||
evalTo(m_result);
|
||||
return true;
|
||||
@ -140,23 +141,22 @@ struct TensorEvaluator<const TensorCustomUnaryOp<CustomUnaryFunc, XprType>, Devi
|
||||
return TensorOpCost(sizeof(CoeffReturnType), 0, 0, vectorized, PacketSize);
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC typename Eigen::internal::traits<XprType>::PointerType data() const { return m_result; }
|
||||
EIGEN_DEVICE_FUNC PointerT data() const { return m_result; }
|
||||
|
||||
#ifdef EIGEN_USE_SYCL
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Device& device() const { return m_device; }
|
||||
#endif
|
||||
|
||||
protected:
|
||||
EIGEN_DEVICE_FUNC void evalTo(Scalar* data) {
|
||||
TensorMap<Tensor<CoeffReturnType, NumDims, Layout, Index> > result(
|
||||
data, m_dimensions);
|
||||
EIGEN_DEVICE_FUNC void evalTo(PointerT data) {
|
||||
TensorMap<Tensor<CoeffReturnType, NumDims, Layout, Index> > result(data, m_dimensions);
|
||||
m_op.func().eval(m_op.expression(), result, m_device);
|
||||
}
|
||||
|
||||
Dimensions m_dimensions;
|
||||
const ArgType m_op;
|
||||
const Device& m_device;
|
||||
CoeffReturnType* m_result;
|
||||
PointerT m_result;
|
||||
};
|
||||
|
||||
|
||||
@ -251,6 +251,7 @@ struct TensorEvaluator<const TensorCustomBinaryOp<CustomBinaryFunc, LhsXprType,
|
||||
typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType;
|
||||
typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
|
||||
static const int PacketSize = PacketType<CoeffReturnType, Device>::size;
|
||||
typedef typename PointerType<CoeffReturnType, Device>::Type PointerT;
|
||||
|
||||
enum {
|
||||
IsAligned = false,
|
||||
@ -270,12 +271,12 @@ struct TensorEvaluator<const TensorCustomBinaryOp<CustomBinaryFunc, LhsXprType,
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType* data) {
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(PointerT data) {
|
||||
if (data) {
|
||||
evalTo(data);
|
||||
return false;
|
||||
} else {
|
||||
m_result = static_cast<Scalar *>(m_device.allocate_temp(dimensions().TotalSize() * sizeof(Scalar)));
|
||||
m_result = static_cast<PointerT>(m_device.allocate_temp(dimensions().TotalSize() * sizeof(CoeffReturnType)));
|
||||
evalTo(m_result);
|
||||
return true;
|
||||
}
|
||||
@ -302,22 +303,22 @@ struct TensorEvaluator<const TensorCustomBinaryOp<CustomBinaryFunc, LhsXprType,
|
||||
return TensorOpCost(sizeof(CoeffReturnType), 0, 0, vectorized, PacketSize);
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC typename internal::traits<XprType>::PointerType data() const { return m_result; }
|
||||
EIGEN_DEVICE_FUNC PointerT data() const { return m_result; }
|
||||
|
||||
#ifdef EIGEN_USE_SYCL
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Device& device() const { return m_device; }
|
||||
#endif
|
||||
|
||||
protected:
|
||||
EIGEN_DEVICE_FUNC void evalTo(Scalar* data) {
|
||||
TensorMap<Tensor<Scalar, NumDims, Layout> > result(data, m_dimensions);
|
||||
EIGEN_DEVICE_FUNC void evalTo(PointerT data) {
|
||||
TensorMap<Tensor<CoeffReturnType, NumDims, Layout> > result(data, m_dimensions);
|
||||
m_op.func().eval(m_op.lhsExpression(), m_op.rhsExpression(), result, m_device);
|
||||
}
|
||||
|
||||
Dimensions m_dimensions;
|
||||
const XprType m_op;
|
||||
const Device& m_device;
|
||||
CoeffReturnType* m_result;
|
||||
PointerT m_result;
|
||||
};
|
||||
|
||||
|
||||
|
@ -12,56 +12,6 @@
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
// Barrier is an object that allows one or more threads to wait until
|
||||
// Notify has been called a specified number of times.
|
||||
class Barrier {
|
||||
public:
|
||||
Barrier(unsigned int count) : state_(count << 1), notified_(false) {
|
||||
eigen_assert(((count << 1) >> 1) == count);
|
||||
}
|
||||
~Barrier() {
|
||||
eigen_assert((state_>>1) == 0);
|
||||
}
|
||||
|
||||
void Notify() {
|
||||
unsigned int v = state_.fetch_sub(2, std::memory_order_acq_rel) - 2;
|
||||
if (v != 1) {
|
||||
eigen_assert(((v + 2) & ~1) != 0);
|
||||
return; // either count has not dropped to 0, or waiter is not waiting
|
||||
}
|
||||
std::unique_lock<std::mutex> l(mu_);
|
||||
eigen_assert(!notified_);
|
||||
notified_ = true;
|
||||
cv_.notify_all();
|
||||
}
|
||||
|
||||
void Wait() {
|
||||
unsigned int v = state_.fetch_or(1, std::memory_order_acq_rel);
|
||||
if ((v >> 1) == 0) return;
|
||||
std::unique_lock<std::mutex> l(mu_);
|
||||
while (!notified_) {
|
||||
cv_.wait(l);
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
std::mutex mu_;
|
||||
std::condition_variable cv_;
|
||||
std::atomic<unsigned int> state_; // low bit is waiter flag
|
||||
bool notified_;
|
||||
};
|
||||
|
||||
|
||||
// Notification is an object that allows a user to to wait for another
|
||||
// thread to signal a notification that an event has occurred.
|
||||
//
|
||||
// Multiple threads can wait on the same Notification object,
|
||||
// but only one caller must call Notify() on the object.
|
||||
struct Notification : Barrier {
|
||||
Notification() : Barrier(1) {};
|
||||
};
|
||||
|
||||
|
||||
// Runs an arbitrary function and then calls Notify() on the passed in
|
||||
// Notification.
|
||||
template <typename Function, typename... Args> struct FunctionWrapperWithNotification
|
||||
@ -102,7 +52,7 @@ class Allocator {
|
||||
// Build a thread pool device on top the an existing pool of threads.
|
||||
struct ThreadPoolDevice {
|
||||
// The ownership of the thread pool remains with the caller.
|
||||
ThreadPoolDevice(ThreadPoolInterface* pool, int num_cores, Allocator* allocator = nullptr)
|
||||
ThreadPoolDevice(ThreadPoolInterface* pool, int num_cores, Allocator* allocator = NULL)
|
||||
: pool_(pool), num_threads_(num_cores), allocator_(allocator) { }
|
||||
|
||||
EIGEN_STRONG_INLINE void* allocate(size_t num_bytes) const {
|
||||
@ -282,7 +232,7 @@ struct ThreadPoolDevice {
|
||||
// Convenience wrapper for parallelFor that does not align blocks.
|
||||
void parallelFor(Index n, const TensorOpCost& cost,
|
||||
std::function<void(Index, Index)> f) const {
|
||||
parallelFor(n, cost, nullptr, std::move(f));
|
||||
parallelFor(n, cost, NULL, std::move(f));
|
||||
}
|
||||
|
||||
// Thread pool accessor.
|
||||
|
@ -32,12 +32,12 @@ namespace Eigen {
|
||||
// Boilerplate code
|
||||
namespace internal {
|
||||
|
||||
template<std::size_t n, typename Dimension> struct dget {
|
||||
template<std::ptrdiff_t n, typename Dimension> struct dget {
|
||||
static const std::ptrdiff_t value = get<n, Dimension>::value;
|
||||
};
|
||||
|
||||
|
||||
template<typename Index, std::size_t NumIndices, std::size_t n, bool RowMajor>
|
||||
template<typename Index, std::ptrdiff_t NumIndices, std::ptrdiff_t n, bool RowMajor>
|
||||
struct fixed_size_tensor_index_linearization_helper
|
||||
{
|
||||
template <typename Dimensions> EIGEN_DEVICE_FUNC
|
||||
@ -50,7 +50,7 @@ struct fixed_size_tensor_index_linearization_helper
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Index, std::size_t NumIndices, bool RowMajor>
|
||||
template<typename Index, std::ptrdiff_t NumIndices, bool RowMajor>
|
||||
struct fixed_size_tensor_index_linearization_helper<Index, NumIndices, 0, RowMajor>
|
||||
{
|
||||
template <typename Dimensions> EIGEN_DEVICE_FUNC
|
||||
@ -60,7 +60,7 @@ struct fixed_size_tensor_index_linearization_helper<Index, NumIndices, 0, RowMaj
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Index, std::size_t n>
|
||||
template<typename Index, std::ptrdiff_t n>
|
||||
struct fixed_size_tensor_index_extraction_helper
|
||||
{
|
||||
template <typename Dimensions> EIGEN_DEVICE_FUNC
|
||||
@ -94,7 +94,7 @@ struct Sizes {
|
||||
typedef internal::numeric_list<std::ptrdiff_t, Indices...> Base;
|
||||
const Base t = Base();
|
||||
static const std::ptrdiff_t total_size = internal::arg_prod(Indices...);
|
||||
static const size_t count = Base::count;
|
||||
static const ptrdiff_t count = Base::count;
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::ptrdiff_t rank() const {
|
||||
return Base::count;
|
||||
@ -121,16 +121,16 @@ struct Sizes {
|
||||
return *this;
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::ptrdiff_t operator[] (const std::size_t index) const {
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::ptrdiff_t operator[] (const std::ptrdiff_t index) const {
|
||||
return internal::fixed_size_tensor_index_extraction_helper<std::ptrdiff_t, Base::count>::run(index, t);
|
||||
}
|
||||
|
||||
template <typename DenseIndex> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
size_t IndexOfColMajor(const array<DenseIndex, Base::count>& indices) const {
|
||||
ptrdiff_t IndexOfColMajor(const array<DenseIndex, Base::count>& indices) const {
|
||||
return internal::fixed_size_tensor_index_linearization_helper<DenseIndex, Base::count, Base::count, false>::run(indices, t);
|
||||
}
|
||||
template <typename DenseIndex> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
size_t IndexOfRowMajor(const array<DenseIndex, Base::count>& indices) const {
|
||||
ptrdiff_t IndexOfRowMajor(const array<DenseIndex, Base::count>& indices) const {
|
||||
return internal::fixed_size_tensor_index_linearization_helper<DenseIndex, Base::count, Base::count, true>::run(indices, t);
|
||||
}
|
||||
};
|
||||
@ -144,25 +144,25 @@ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::ptrdiff_t array_prod(const Sizes<Indi
|
||||
|
||||
#else
|
||||
|
||||
template <std::size_t n>
|
||||
template <std::ptrdiff_t n>
|
||||
struct non_zero_size {
|
||||
typedef internal::type2val<std::size_t, n> type;
|
||||
typedef internal::type2val<std::ptrdiff_t, n> type;
|
||||
};
|
||||
template <>
|
||||
struct non_zero_size<0> {
|
||||
typedef internal::null_type type;
|
||||
};
|
||||
|
||||
template <std::size_t V1=0, std::size_t V2=0, std::size_t V3=0, std::size_t V4=0, std::size_t V5=0> struct Sizes {
|
||||
template <std::ptrdiff_t V1=0, std::ptrdiff_t V2=0, std::ptrdiff_t V3=0, std::ptrdiff_t V4=0, std::ptrdiff_t V5=0> struct Sizes {
|
||||
typedef typename internal::make_type_list<typename non_zero_size<V1>::type, typename non_zero_size<V2>::type, typename non_zero_size<V3>::type, typename non_zero_size<V4>::type, typename non_zero_size<V5>::type >::type Base;
|
||||
static const size_t count = Base::count;
|
||||
static const std::size_t total_size = internal::arg_prod<Base>::value;
|
||||
static const std::ptrdiff_t count = Base::count;
|
||||
static const std::ptrdiff_t total_size = internal::arg_prod<Base>::value;
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE size_t rank() const {
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ptrdiff_t rank() const {
|
||||
return count;
|
||||
}
|
||||
|
||||
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE size_t TotalSize() {
|
||||
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ptrdiff_t TotalSize() {
|
||||
return internal::arg_prod<Base>::value;
|
||||
}
|
||||
|
||||
@ -178,7 +178,7 @@ template <std::size_t V1=0, std::size_t V2=0, std::size_t V3=0, std::size_t V4=0
|
||||
|
||||
#if EIGEN_HAS_VARIADIC_TEMPLATES
|
||||
template <typename... DenseIndex> Sizes(DenseIndex... /*indices*/) { }
|
||||
explicit Sizes(std::initializer_list<std::size_t>) {
|
||||
explicit Sizes(std::initializer_list<std::ptrdiff_t>) {
|
||||
// todo: add assertion
|
||||
}
|
||||
#else
|
||||
@ -213,18 +213,18 @@ template <std::size_t V1=0, std::size_t V2=0, std::size_t V3=0, std::size_t V4=0
|
||||
}
|
||||
|
||||
template <typename DenseIndex> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
size_t IndexOfColMajor(const array<DenseIndex, Base::count>& indices) const {
|
||||
ptrdiff_t IndexOfColMajor(const array<DenseIndex, Base::count>& indices) const {
|
||||
return internal::fixed_size_tensor_index_linearization_helper<DenseIndex, Base::count, Base::count, false>::run(indices, *reinterpret_cast<const Base*>(this));
|
||||
}
|
||||
template <typename DenseIndex> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
size_t IndexOfRowMajor(const array<DenseIndex, Base::count>& indices) const {
|
||||
ptrdiff_t IndexOfRowMajor(const array<DenseIndex, Base::count>& indices) const {
|
||||
return internal::fixed_size_tensor_index_linearization_helper<DenseIndex, Base::count, Base::count, true>::run(indices, *reinterpret_cast<const Base*>(this));
|
||||
}
|
||||
};
|
||||
|
||||
namespace internal {
|
||||
template <std::size_t V1, std::size_t V2, std::size_t V3, std::size_t V4, std::size_t V5>
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::size_t array_prod(const Sizes<V1, V2, V3, V4, V5>&) {
|
||||
template <std::ptrdiff_t V1, std::ptrdiff_t V2, std::ptrdiff_t V3, std::ptrdiff_t V4, std::ptrdiff_t V5>
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::ptrdiff_t array_prod(const Sizes<V1, V2, V3, V4, V5>&) {
|
||||
return Sizes<V1, V2, V3, V4, V5>::total_size;
|
||||
}
|
||||
}
|
||||
@ -233,7 +233,7 @@ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::size_t array_prod(const Sizes<V1, V2,
|
||||
|
||||
// Boilerplate
|
||||
namespace internal {
|
||||
template<typename Index, std::size_t NumIndices, std::size_t n, bool RowMajor>
|
||||
template<typename Index, std::ptrdiff_t NumIndices, std::ptrdiff_t n, bool RowMajor>
|
||||
struct tensor_index_linearization_helper
|
||||
{
|
||||
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
@ -245,7 +245,7 @@ struct tensor_index_linearization_helper
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Index, std::size_t NumIndices, bool RowMajor>
|
||||
template<typename Index, std::ptrdiff_t NumIndices, bool RowMajor>
|
||||
struct tensor_index_linearization_helper<Index, NumIndices, 0, RowMajor>
|
||||
{
|
||||
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
@ -264,7 +264,7 @@ struct DSizes : array<DenseIndex, NumDims> {
|
||||
typedef array<DenseIndex, NumDims> Base;
|
||||
static const int count = NumDims;
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE size_t rank() const {
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index rank() const {
|
||||
return NumDims;
|
||||
}
|
||||
|
||||
@ -298,7 +298,7 @@ struct DSizes : array<DenseIndex, NumDims> {
|
||||
}
|
||||
}
|
||||
#else
|
||||
template <std::size_t V1, std::size_t V2, std::size_t V3, std::size_t V4, std::size_t V5>
|
||||
template <std::ptrdiff_t V1, std::ptrdiff_t V2, std::ptrdiff_t V3, std::ptrdiff_t V4, std::ptrdiff_t V5>
|
||||
EIGEN_DEVICE_FUNC DSizes(const Sizes<V1, V2, V3, V4, V5>& a) {
|
||||
for (int i = 0 ; i < NumDims; ++i) {
|
||||
(*this)[i] = a[i];
|
||||
@ -359,7 +359,7 @@ struct DSizes : array<DenseIndex, NumDims> {
|
||||
|
||||
// Boilerplate
|
||||
namespace internal {
|
||||
template<typename Index, std::size_t NumIndices, std::size_t n, bool RowMajor>
|
||||
template<typename Index, std::ptrdiff_t NumIndices, std::ptrdiff_t n, bool RowMajor>
|
||||
struct tensor_vsize_index_linearization_helper
|
||||
{
|
||||
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
@ -371,7 +371,7 @@ struct tensor_vsize_index_linearization_helper
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Index, std::size_t NumIndices, bool RowMajor>
|
||||
template<typename Index, std::ptrdiff_t NumIndices, bool RowMajor>
|
||||
struct tensor_vsize_index_linearization_helper<Index, NumIndices, 0, RowMajor>
|
||||
{
|
||||
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
@ -386,10 +386,10 @@ struct tensor_vsize_index_linearization_helper<Index, NumIndices, 0, RowMajor>
|
||||
namespace internal {
|
||||
|
||||
template <typename DenseIndex, int NumDims> struct array_size<const DSizes<DenseIndex, NumDims> > {
|
||||
static const size_t value = NumDims;
|
||||
static const ptrdiff_t value = NumDims;
|
||||
};
|
||||
template <typename DenseIndex, int NumDims> struct array_size<DSizes<DenseIndex, NumDims> > {
|
||||
static const size_t value = NumDims;
|
||||
static const ptrdiff_t value = NumDims;
|
||||
};
|
||||
#ifndef EIGEN_EMULATE_CXX11_META_H
|
||||
template <typename std::ptrdiff_t... Indices> struct array_size<const Sizes<Indices...> > {
|
||||
@ -399,33 +399,33 @@ template <typename std::ptrdiff_t... Indices> struct array_size<Sizes<Indices...
|
||||
static const std::ptrdiff_t value = Sizes<Indices...>::count;
|
||||
};
|
||||
template <std::ptrdiff_t n, typename std::ptrdiff_t... Indices> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::ptrdiff_t array_get(const Sizes<Indices...>&) {
|
||||
return get<n, internal::numeric_list<std::size_t, Indices...> >::value;
|
||||
return get<n, internal::numeric_list<std::ptrdiff_t, Indices...> >::value;
|
||||
}
|
||||
template <std::ptrdiff_t n> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::ptrdiff_t array_get(const Sizes<>&) {
|
||||
eigen_assert(false && "should never be called");
|
||||
return -1;
|
||||
}
|
||||
#else
|
||||
template <std::size_t V1, std::size_t V2, std::size_t V3, std::size_t V4, std::size_t V5> struct array_size<const Sizes<V1,V2,V3,V4,V5> > {
|
||||
static const size_t value = Sizes<V1,V2,V3,V4,V5>::count;
|
||||
template <std::ptrdiff_t V1, std::ptrdiff_t V2, std::ptrdiff_t V3, std::ptrdiff_t V4, std::ptrdiff_t V5> struct array_size<const Sizes<V1,V2,V3,V4,V5> > {
|
||||
static const ptrdiff_t value = Sizes<V1,V2,V3,V4,V5>::count;
|
||||
};
|
||||
template <std::size_t V1, std::size_t V2, std::size_t V3, std::size_t V4, std::size_t V5> struct array_size<Sizes<V1,V2,V3,V4,V5> > {
|
||||
static const size_t value = Sizes<V1,V2,V3,V4,V5>::count;
|
||||
template <std::ptrdiff_t V1, std::ptrdiff_t V2, std::ptrdiff_t V3, std::ptrdiff_t V4, std::ptrdiff_t V5> struct array_size<Sizes<V1,V2,V3,V4,V5> > {
|
||||
static const ptrdiff_t value = Sizes<V1,V2,V3,V4,V5>::count;
|
||||
};
|
||||
template <std::size_t n, std::size_t V1, std::size_t V2, std::size_t V3, std::size_t V4, std::size_t V5> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::size_t array_get(const Sizes<V1,V2,V3,V4,V5>&) {
|
||||
template <std::ptrdiff_t n, std::ptrdiff_t V1, std::ptrdiff_t V2, std::ptrdiff_t V3, std::ptrdiff_t V4, std::ptrdiff_t V5> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::ptrdiff_t array_get(const Sizes<V1,V2,V3,V4,V5>&) {
|
||||
return get<n, typename Sizes<V1,V2,V3,V4,V5>::Base>::value;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
template <typename Dims1, typename Dims2, size_t n, size_t m>
|
||||
template <typename Dims1, typename Dims2, ptrdiff_t n, ptrdiff_t m>
|
||||
struct sizes_match_below_dim {
|
||||
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool run(Dims1&, Dims2&) {
|
||||
return false;
|
||||
}
|
||||
};
|
||||
template <typename Dims1, typename Dims2, size_t n>
|
||||
template <typename Dims1, typename Dims2, ptrdiff_t n>
|
||||
struct sizes_match_below_dim<Dims1, Dims2, n, n> {
|
||||
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool run(Dims1& dims1, Dims2& dims2) {
|
||||
return (array_get<n-1>(dims1) == array_get<n-1>(dims2)) &
|
||||
|
@ -133,7 +133,7 @@ class TensorExecutor<Expression, DefaultDevice, Vectorizable,
|
||||
if (needs_assign) {
|
||||
// Size tensor blocks to fit in cache (or requested target block size).
|
||||
Index block_total_size = numext::mini(cache_size, total_size);
|
||||
TensorBlockShapeType block_shape = TensorBlockShapeType::kSkewedInnerDims;
|
||||
TensorBlockShapeType block_shape = kSkewedInnerDims;
|
||||
// Query expression tree for desired block size/shape.
|
||||
std::vector<TensorOpResourceRequirements> resources;
|
||||
evaluator.getResourceRequirements(&resources);
|
||||
@ -229,12 +229,8 @@ class TensorExecutor<Expression, ThreadPoolDevice, Vectorizable, Tileable> {
|
||||
typedef EvalRange<Evaluator, StorageIndex, Vectorizable> EvalRange;
|
||||
|
||||
Evaluator evaluator(expr, device);
|
||||
const bool needs_assign = evaluator.evalSubExprsIfNeeded(nullptr);
|
||||
const bool needs_assign = evaluator.evalSubExprsIfNeeded(NULL);
|
||||
if (needs_assign) {
|
||||
const StorageIndex PacketSize =
|
||||
Vectorizable
|
||||
? unpacket_traits<typename Evaluator::PacketReturnType>::size
|
||||
: 1;
|
||||
const StorageIndex size = array_prod(evaluator.dimensions());
|
||||
device.parallelFor(size, evaluator.costPerCoeff(Vectorizable),
|
||||
EvalRange::alignBlockSize,
|
||||
@ -259,12 +255,11 @@ class TensorExecutor<Expression, ThreadPoolDevice, Vectorizable, /*Tileable*/ tr
|
||||
|
||||
static EIGEN_STRONG_INLINE void run(const Expression& expr,
|
||||
const ThreadPoolDevice& device) {
|
||||
typedef TensorBlock<ScalarNoConst, StorageIndex, NumDims, Evaluator::Layout> TensorBlock;
|
||||
typedef TensorBlockMapper<ScalarNoConst, StorageIndex, NumDims, Evaluator::Layout> TensorBlockMapper;
|
||||
|
||||
Evaluator evaluator(expr, device);
|
||||
StorageIndex total_size = array_prod(evaluator.dimensions());
|
||||
StorageIndex cache_size = device.firstLevelCacheSize() / sizeof(Scalar);
|
||||
Index total_size = array_prod(evaluator.dimensions());
|
||||
Index cache_size = device.firstLevelCacheSize() / sizeof(Scalar);
|
||||
if (total_size < cache_size) {
|
||||
// TODO(andydavis) Reduce block management overhead for small tensors.
|
||||
internal::TensorExecutor<Expression, ThreadPoolDevice, Vectorizable,
|
||||
@ -273,9 +268,9 @@ class TensorExecutor<Expression, ThreadPoolDevice, Vectorizable, /*Tileable*/ tr
|
||||
return;
|
||||
}
|
||||
|
||||
const bool needs_assign = evaluator.evalSubExprsIfNeeded(nullptr);
|
||||
const bool needs_assign = evaluator.evalSubExprsIfNeeded(NULL);
|
||||
if (needs_assign) {
|
||||
TensorBlockShapeType block_shape = TensorBlockShapeType::kSkewedInnerDims;
|
||||
TensorBlockShapeType block_shape = kSkewedInnerDims;
|
||||
Index block_total_size = 0;
|
||||
// Query expression tree for desired block size/shape.
|
||||
std::vector<internal::TensorOpResourceRequirements> resources;
|
||||
|
@ -24,6 +24,14 @@ template<typename T> struct MakePointer {
|
||||
typedef T ScalarType;
|
||||
};
|
||||
|
||||
// The PointerType class is a container of the device specefic pointer
|
||||
// used for refering to a Pointer on TensorEvaluator class. While the TensorExpression
|
||||
// is a device-agnostic type and need MakePointer class for type conversion,
|
||||
// the TensorEvaluator calss can be specialized for a device, hence it is possible
|
||||
// to construct different types of temproray storage memory in TensorEvaluator
|
||||
// for different devices by specializing the following PointerType class.
|
||||
template<typename T, typename Device> struct PointerType : MakePointer<T>{};
|
||||
|
||||
namespace internal{
|
||||
template<typename A, typename B> struct Pointer_type_promotion {
|
||||
static const bool val=false;
|
||||
|
@ -54,36 +54,6 @@ struct functor_traits<scalar_fmod_op<Scalar> > {
|
||||
PacketAccess = false };
|
||||
};
|
||||
|
||||
|
||||
/** \internal
|
||||
* \brief Template functor to compute the sigmoid of a scalar
|
||||
* \sa class CwiseUnaryOp, ArrayBase::sigmoid()
|
||||
*/
|
||||
template <typename T>
|
||||
struct scalar_sigmoid_op {
|
||||
EIGEN_EMPTY_STRUCT_CTOR(scalar_sigmoid_op)
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T operator()(const T& x) const {
|
||||
const T one = T(1);
|
||||
return one / (one + numext::exp(-x));
|
||||
}
|
||||
|
||||
template <typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
Packet packetOp(const Packet& x) const {
|
||||
const Packet one = pset1<Packet>(T(1));
|
||||
return pdiv(one, padd(one, pexp(pnegate(x))));
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
struct functor_traits<scalar_sigmoid_op<T> > {
|
||||
enum {
|
||||
Cost = NumTraits<T>::AddCost * 2 + NumTraits<T>::MulCost * 6,
|
||||
PacketAccess = packet_traits<T>::HasAdd && packet_traits<T>::HasDiv &&
|
||||
packet_traits<T>::HasNegate && packet_traits<T>::HasExp
|
||||
};
|
||||
};
|
||||
|
||||
|
||||
template<typename Reducer, typename Device>
|
||||
struct reducer_traits {
|
||||
enum {
|
||||
|
@ -84,7 +84,7 @@ template<DenseIndex n> struct NumTraits<type2index<n> >
|
||||
namespace internal {
|
||||
template <typename T>
|
||||
EIGEN_DEVICE_FUNC void update_value(T& val, DenseIndex new_val) {
|
||||
val = new_val;
|
||||
val = internal::convert_index<T>(new_val);
|
||||
}
|
||||
template <DenseIndex n>
|
||||
EIGEN_DEVICE_FUNC void update_value(type2index<n>& val, DenseIndex new_val) {
|
||||
|
@ -527,7 +527,7 @@ struct TensorEvaluator<const TensorSlicingOp<StartIndices, Sizes, ArgType>, Devi
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
|
||||
: m_impl(op.expression(), device), m_device(device), m_dimensions(op.sizes()), m_offsets(op.startIndices())
|
||||
{
|
||||
for (std::size_t i = 0; i < internal::array_size<Dimensions>::value; ++i) {
|
||||
for (Index i = 0; i < internal::array_size<Dimensions>::value; ++i) {
|
||||
eigen_assert(m_impl.dimensions()[i] >= op.sizes()[i] + op.startIndices()[i]);
|
||||
}
|
||||
|
||||
@ -985,7 +985,7 @@ struct TensorEvaluator<const TensorStridingSlicingOp<StartIndices, StopIndices,
|
||||
// Handle degenerate intervals by gracefully clamping and allowing m_dimensions to be zero
|
||||
DSizes<Index,NumDims> startIndicesClamped, stopIndicesClamped;
|
||||
m_is_identity = true;
|
||||
for (size_t i = 0; i < internal::array_size<Dimensions>::value; ++i) {
|
||||
for (Index i = 0; i < internal::array_size<Dimensions>::value; ++i) {
|
||||
if (m_strides[i] != 1 || op.startIndices()[i] != 0 ||
|
||||
op.stopIndices()[i] != (m_impl.dimensions()[i] - 1)) {
|
||||
m_is_identity = false;
|
||||
|
64
unsupported/Eigen/CXX11/src/ThreadPool/Barrier.h
Normal file
64
unsupported/Eigen/CXX11/src/ThreadPool/Barrier.h
Normal file
@ -0,0 +1,64 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2018 Rasmus Munk Larsen <rmlarsen@google.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
// Barrier is an object that allows one or more threads to wait until
|
||||
// Notify has been called a specified number of times.
|
||||
|
||||
#ifndef EIGEN_CXX11_THREADPOOL_BARRIER_H
|
||||
#define EIGEN_CXX11_THREADPOOL_BARRIER_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
class Barrier {
|
||||
public:
|
||||
Barrier(unsigned int count) : state_(count << 1), notified_(false) {
|
||||
eigen_assert(((count << 1) >> 1) == count);
|
||||
}
|
||||
~Barrier() { eigen_plain_assert((state_ >> 1) == 0); }
|
||||
|
||||
void Notify() {
|
||||
unsigned int v = state_.fetch_sub(2, std::memory_order_acq_rel) - 2;
|
||||
if (v != 1) {
|
||||
eigen_assert(((v + 2) & ~1) != 0);
|
||||
return; // either count has not dropped to 0, or waiter is not waiting
|
||||
}
|
||||
std::unique_lock<std::mutex> l(mu_);
|
||||
eigen_assert(!notified_);
|
||||
notified_ = true;
|
||||
cv_.notify_all();
|
||||
}
|
||||
|
||||
void Wait() {
|
||||
unsigned int v = state_.fetch_or(1, std::memory_order_acq_rel);
|
||||
if ((v >> 1) == 0) return;
|
||||
std::unique_lock<std::mutex> l(mu_);
|
||||
while (!notified_) {
|
||||
cv_.wait(l);
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
std::mutex mu_;
|
||||
std::condition_variable cv_;
|
||||
std::atomic<unsigned int> state_; // low bit is waiter flag
|
||||
bool notified_;
|
||||
};
|
||||
|
||||
// Notification is an object that allows a user to to wait for another
|
||||
// thread to signal a notification that an event has occurred.
|
||||
//
|
||||
// Multiple threads can wait on the same Notification object,
|
||||
// but only one caller must call Notify() on the object.
|
||||
struct Notification : Barrier {
|
||||
Notification() : Barrier(1){};
|
||||
};
|
||||
|
||||
} // namespace Eigen
|
||||
|
||||
#endif // EIGEN_CXX11_THREADPOOL_BARRIER_H
|
@ -58,7 +58,7 @@ class EventCount {
|
||||
|
||||
~EventCount() {
|
||||
// Ensure there are no waiters.
|
||||
eigen_assert((state_.load() & (kStackMask | kWaiterMask)) == kStackMask);
|
||||
eigen_plain_assert((state_.load() & (kStackMask | kWaiterMask)) == kStackMask);
|
||||
}
|
||||
|
||||
// Prewait prepares for waiting.
|
||||
@ -169,7 +169,8 @@ class EventCount {
|
||||
|
||||
class Waiter {
|
||||
friend class EventCount;
|
||||
// Align to 128 byte boundary to prevent false sharing with other Waiter objects in the same vector.
|
||||
// Align to 128 byte boundary to prevent false sharing with other Waiter
|
||||
// objects in the same vector.
|
||||
EIGEN_ALIGN_TO_BOUNDARY(128) std::atomic<Waiter*> next;
|
||||
std::mutex mu;
|
||||
std::condition_variable cv;
|
||||
|
@ -10,7 +10,6 @@
|
||||
#ifndef EIGEN_CXX11_THREADPOOL_NONBLOCKING_THREAD_POOL_H
|
||||
#define EIGEN_CXX11_THREADPOOL_NONBLOCKING_THREAD_POOL_H
|
||||
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
template <typename Environment>
|
||||
@ -23,7 +22,7 @@ class ThreadPoolTempl : public Eigen::ThreadPoolInterface {
|
||||
: ThreadPoolTempl(num_threads, true, env) {}
|
||||
|
||||
ThreadPoolTempl(int num_threads, bool allow_spinning,
|
||||
Environment env = Environment())
|
||||
Environment env = Environment())
|
||||
: env_(env),
|
||||
num_threads_(num_threads),
|
||||
allow_spinning_(allow_spinning),
|
||||
@ -58,12 +57,18 @@ class ThreadPoolTempl : public Eigen::ThreadPoolInterface {
|
||||
coprimes_.push_back(i);
|
||||
}
|
||||
}
|
||||
queues_.resize(num_threads_);
|
||||
#ifndef EIGEN_THREAD_LOCAL
|
||||
init_barrier_.reset(new Barrier(num_threads_));
|
||||
#endif
|
||||
for (int i = 0; i < num_threads_; i++) {
|
||||
queues_.push_back(new Queue());
|
||||
}
|
||||
for (int i = 0; i < num_threads_; i++) {
|
||||
threads_.push_back(env_.CreateThread([this, i]() { WorkerLoop(i); }));
|
||||
threads_.emplace_back(env_.CreateThread([this, i]() { WorkerLoop(i); }));
|
||||
}
|
||||
#ifndef EIGEN_THREAD_LOCAL
|
||||
// Wait for workers to initialize per_thread_map_. Otherwise we might race
|
||||
// with them in Schedule or CurrentThreadId.
|
||||
init_barrier_->Wait();
|
||||
#endif
|
||||
}
|
||||
|
||||
~ThreadPoolTempl() {
|
||||
@ -78,13 +83,13 @@ class ThreadPoolTempl : public Eigen::ThreadPoolInterface {
|
||||
// Since we were cancelled, there might be entries in the queues.
|
||||
// Empty them to prevent their destructor from asserting.
|
||||
for (size_t i = 0; i < queues_.size(); i++) {
|
||||
queues_[i]->Flush();
|
||||
queues_[i].Flush();
|
||||
}
|
||||
}
|
||||
|
||||
// Join threads explicitly to avoid destruction order issues.
|
||||
for (size_t i = 0; i < num_threads_; i++) delete threads_[i];
|
||||
for (size_t i = 0; i < num_threads_; i++) delete queues_[i];
|
||||
threads_.resize(0);
|
||||
queues_.resize(0);
|
||||
}
|
||||
|
||||
void Schedule(std::function<void()> fn) {
|
||||
@ -92,13 +97,13 @@ class ThreadPoolTempl : public Eigen::ThreadPoolInterface {
|
||||
PerThread* pt = GetPerThread();
|
||||
if (pt->pool == this) {
|
||||
// Worker thread of this pool, push onto the thread's queue.
|
||||
Queue* q = queues_[pt->thread_id];
|
||||
t = q->PushFront(std::move(t));
|
||||
Queue& q = queues_[pt->thread_id];
|
||||
t = q.PushFront(std::move(t));
|
||||
} else {
|
||||
// A free-standing thread (or worker of another pool), push onto a random
|
||||
// queue.
|
||||
Queue* q = queues_[Rand(&pt->rand) % queues_.size()];
|
||||
t = q->PushBack(std::move(t));
|
||||
Queue& q = queues_[Rand(&pt->rand) % queues_.size()];
|
||||
t = q.PushBack(std::move(t));
|
||||
}
|
||||
// Note: below we touch this after making w available to worker threads.
|
||||
// Strictly speaking, this can lead to a racy-use-after-free. Consider that
|
||||
@ -109,8 +114,7 @@ class ThreadPoolTempl : public Eigen::ThreadPoolInterface {
|
||||
// this is kept alive while any threads can potentially be in Schedule.
|
||||
if (!t.f) {
|
||||
ec_.Notify(false);
|
||||
}
|
||||
else {
|
||||
} else {
|
||||
env_.ExecuteTask(t); // Push failed, execute directly.
|
||||
}
|
||||
}
|
||||
@ -130,13 +134,10 @@ class ThreadPoolTempl : public Eigen::ThreadPoolInterface {
|
||||
ec_.Notify(true);
|
||||
}
|
||||
|
||||
int NumThreads() const final {
|
||||
return num_threads_;
|
||||
}
|
||||
int NumThreads() const final { return num_threads_; }
|
||||
|
||||
int CurrentThreadId() const final {
|
||||
const PerThread* pt =
|
||||
const_cast<ThreadPoolTempl*>(this)->GetPerThread();
|
||||
const PerThread* pt = const_cast<ThreadPoolTempl*>(this)->GetPerThread();
|
||||
if (pt->pool == this) {
|
||||
return pt->thread_id;
|
||||
} else {
|
||||
@ -148,17 +149,21 @@ class ThreadPoolTempl : public Eigen::ThreadPoolInterface {
|
||||
typedef typename Environment::EnvThread Thread;
|
||||
|
||||
struct PerThread {
|
||||
constexpr PerThread() : pool(NULL), rand(0), thread_id(-1) { }
|
||||
constexpr PerThread() : pool(NULL), rand(0), thread_id(-1) {}
|
||||
ThreadPoolTempl* pool; // Parent pool, or null for normal threads.
|
||||
uint64_t rand; // Random generator state.
|
||||
int thread_id; // Worker thread index in pool.
|
||||
uint64_t rand; // Random generator state.
|
||||
int thread_id; // Worker thread index in pool.
|
||||
#ifndef EIGEN_THREAD_LOCAL
|
||||
// Prevent false sharing.
|
||||
char pad_[128];
|
||||
#endif
|
||||
};
|
||||
|
||||
Environment env_;
|
||||
const int num_threads_;
|
||||
const bool allow_spinning_;
|
||||
MaxSizeVector<Thread*> threads_;
|
||||
MaxSizeVector<Queue*> queues_;
|
||||
MaxSizeVector<std::unique_ptr<Thread> > threads_;
|
||||
MaxSizeVector<Queue> queues_;
|
||||
MaxSizeVector<unsigned> coprimes_;
|
||||
MaxSizeVector<EventCount::Waiter> waiters_;
|
||||
std::atomic<unsigned> blocked_;
|
||||
@ -166,14 +171,27 @@ class ThreadPoolTempl : public Eigen::ThreadPoolInterface {
|
||||
std::atomic<bool> done_;
|
||||
std::atomic<bool> cancelled_;
|
||||
EventCount ec_;
|
||||
#ifndef EIGEN_THREAD_LOCAL
|
||||
std::unique_ptr<Barrier> init_barrier_;
|
||||
std::mutex per_thread_map_mutex_; // Protects per_thread_map_.
|
||||
std::unordered_map<uint64_t, std::unique_ptr<PerThread>> per_thread_map_;
|
||||
#endif
|
||||
|
||||
// Main worker thread loop.
|
||||
void WorkerLoop(int thread_id) {
|
||||
#ifndef EIGEN_THREAD_LOCAL
|
||||
std::unique_ptr<PerThread> new_pt(new PerThread());
|
||||
per_thread_map_mutex_.lock();
|
||||
eigen_assert(per_thread_map_.emplace(GlobalThreadIdHash(), std::move(new_pt)).second);
|
||||
per_thread_map_mutex_.unlock();
|
||||
init_barrier_->Notify();
|
||||
init_barrier_->Wait();
|
||||
#endif
|
||||
PerThread* pt = GetPerThread();
|
||||
pt->pool = this;
|
||||
pt->rand = std::hash<std::thread::id>()(std::this_thread::get_id());
|
||||
pt->rand = GlobalThreadIdHash();
|
||||
pt->thread_id = thread_id;
|
||||
Queue* q = queues_[thread_id];
|
||||
Queue& q = queues_[thread_id];
|
||||
EventCount::Waiter* waiter = &waiters_[thread_id];
|
||||
// TODO(dvyukov,rmlarsen): The time spent in Steal() is proportional
|
||||
// to num_threads_ and we assume that new work is scheduled at a
|
||||
@ -189,10 +207,10 @@ class ThreadPoolTempl : public Eigen::ThreadPoolInterface {
|
||||
// counter-productive for the types of I/O workloads the single thread
|
||||
// pools tend to be used for.
|
||||
while (!cancelled_) {
|
||||
Task t = q->PopFront();
|
||||
Task t = q.PopFront();
|
||||
for (int i = 0; i < spin_count && !t.f; i++) {
|
||||
if (!cancelled_.load(std::memory_order_relaxed)) {
|
||||
t = q->PopFront();
|
||||
t = q.PopFront();
|
||||
}
|
||||
}
|
||||
if (!t.f) {
|
||||
@ -206,7 +224,7 @@ class ThreadPoolTempl : public Eigen::ThreadPoolInterface {
|
||||
}
|
||||
} else {
|
||||
while (!cancelled_) {
|
||||
Task t = q->PopFront();
|
||||
Task t = q.PopFront();
|
||||
if (!t.f) {
|
||||
t = Steal();
|
||||
if (!t.f) {
|
||||
@ -243,7 +261,7 @@ class ThreadPoolTempl : public Eigen::ThreadPoolInterface {
|
||||
unsigned inc = coprimes_[r % coprimes_.size()];
|
||||
unsigned victim = r % size;
|
||||
for (unsigned i = 0; i < size; i++) {
|
||||
Task t = queues_[victim]->PopBack();
|
||||
Task t = queues_[victim].PopBack();
|
||||
if (t.f) {
|
||||
return t;
|
||||
}
|
||||
@ -270,7 +288,7 @@ class ThreadPoolTempl : public Eigen::ThreadPoolInterface {
|
||||
if (cancelled_) {
|
||||
return false;
|
||||
} else {
|
||||
*t = queues_[victim]->PopBack();
|
||||
*t = queues_[victim].PopBack();
|
||||
return true;
|
||||
}
|
||||
}
|
||||
@ -278,7 +296,8 @@ class ThreadPoolTempl : public Eigen::ThreadPoolInterface {
|
||||
// If we are shutting down and all worker threads blocked without work,
|
||||
// that's we are done.
|
||||
blocked_++;
|
||||
if (done_ && blocked_ == num_threads_) {
|
||||
// TODO is blocked_ required to be unsigned?
|
||||
if (done_ && blocked_ == static_cast<unsigned>(num_threads_)) {
|
||||
ec_.CancelWait(waiter);
|
||||
// Almost done, but need to re-check queues.
|
||||
// Consider that all queues are empty and all worker threads are preempted
|
||||
@ -311,7 +330,7 @@ class ThreadPoolTempl : public Eigen::ThreadPoolInterface {
|
||||
unsigned inc = coprimes_[r % coprimes_.size()];
|
||||
unsigned victim = r % size;
|
||||
for (unsigned i = 0; i < size; i++) {
|
||||
if (!queues_[victim]->Empty()) {
|
||||
if (!queues_[victim].Empty()) {
|
||||
return victim;
|
||||
}
|
||||
victim += inc;
|
||||
@ -322,10 +341,24 @@ class ThreadPoolTempl : public Eigen::ThreadPoolInterface {
|
||||
return -1;
|
||||
}
|
||||
|
||||
static EIGEN_STRONG_INLINE PerThread* GetPerThread() {
|
||||
static EIGEN_STRONG_INLINE uint64_t GlobalThreadIdHash() {
|
||||
return std::hash<std::thread::id>()(std::this_thread::get_id());
|
||||
}
|
||||
|
||||
EIGEN_STRONG_INLINE PerThread* GetPerThread() {
|
||||
#ifndef EIGEN_THREAD_LOCAL
|
||||
static PerThread dummy;
|
||||
auto it = per_thread_map_.find(GlobalThreadIdHash());
|
||||
if (it == per_thread_map_.end()) {
|
||||
return &dummy;
|
||||
} else {
|
||||
return it->second.get();
|
||||
}
|
||||
#else
|
||||
EIGEN_THREAD_LOCAL PerThread per_thread_;
|
||||
PerThread* pt = &per_thread_;
|
||||
return pt;
|
||||
#endif
|
||||
}
|
||||
|
||||
static EIGEN_STRONG_INLINE unsigned Rand(uint64_t* state) {
|
||||
@ -333,7 +366,8 @@ class ThreadPoolTempl : public Eigen::ThreadPoolInterface {
|
||||
// Update the internal state
|
||||
*state = current * 6364136223846793005ULL + 0xda3e39cb94b95bdbULL;
|
||||
// Generate the random output (using the PCG-XSH-RS scheme)
|
||||
return static_cast<unsigned>((current ^ (current >> 22)) >> (22 + (current >> 61)));
|
||||
return static_cast<unsigned>((current ^ (current >> 22)) >>
|
||||
(22 + (current >> 61)));
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -10,7 +10,6 @@
|
||||
#ifndef EIGEN_CXX11_THREADPOOL_RUNQUEUE_H_
|
||||
#define EIGEN_CXX11_THREADPOOL_RUNQUEUE_H_
|
||||
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
// RunQueue is a fixed-size, partially non-blocking deque or Work items.
|
||||
@ -47,7 +46,7 @@ class RunQueue {
|
||||
array_[i].state.store(kEmpty, std::memory_order_relaxed);
|
||||
}
|
||||
|
||||
~RunQueue() { eigen_assert(Size() == 0); }
|
||||
~RunQueue() { eigen_plain_assert(Size() == 0); }
|
||||
|
||||
// PushFront inserts w at the beginning of the queue.
|
||||
// If queue is full returns w, otherwise returns default-constructed Work.
|
||||
@ -131,9 +130,8 @@ class RunQueue {
|
||||
Elem* e = &array_[mid & kMask];
|
||||
uint8_t s = e->state.load(std::memory_order_relaxed);
|
||||
if (n == 0) {
|
||||
if (s != kReady ||
|
||||
!e->state.compare_exchange_strong(s, kBusy,
|
||||
std::memory_order_acquire))
|
||||
if (s != kReady || !e->state.compare_exchange_strong(
|
||||
s, kBusy, std::memory_order_acquire))
|
||||
continue;
|
||||
start = mid;
|
||||
} else {
|
||||
|
@ -10,13 +10,45 @@
|
||||
#ifndef EIGEN_CXX11_THREADPOOL_THREAD_LOCAL_H
|
||||
#define EIGEN_CXX11_THREADPOOL_THREAD_LOCAL_H
|
||||
|
||||
// Try to come up with a portable implementation of thread local variables
|
||||
#if EIGEN_COMP_GNUC && EIGEN_GNUC_AT_MOST(4, 7)
|
||||
#define EIGEN_THREAD_LOCAL static __thread
|
||||
#elif EIGEN_COMP_CLANG
|
||||
#define EIGEN_THREAD_LOCAL static __thread
|
||||
#else
|
||||
#if EIGEN_MAX_CPP_VER >= 11 && \
|
||||
((EIGEN_COMP_GNUC && EIGEN_GNUC_AT_LEAST(4, 8)) || \
|
||||
__has_feature(cxx_thread_local))
|
||||
#define EIGEN_THREAD_LOCAL static thread_local
|
||||
#endif
|
||||
|
||||
// Disable TLS for Apple and Android builds with older toolchains.
|
||||
#if defined(__APPLE__)
|
||||
// Included for TARGET_OS_IPHONE, __IPHONE_OS_VERSION_MIN_REQUIRED,
|
||||
// __IPHONE_8_0.
|
||||
#include <Availability.h>
|
||||
#include <TargetConditionals.h>
|
||||
#endif
|
||||
// Checks whether C++11's `thread_local` storage duration specifier is
|
||||
// supported.
|
||||
#if defined(__apple_build_version__) && \
|
||||
((__apple_build_version__ < 8000042) || \
|
||||
(TARGET_OS_IPHONE && __IPHONE_OS_VERSION_MIN_REQUIRED < __IPHONE_9_0))
|
||||
// Notes: Xcode's clang did not support `thread_local` until version
|
||||
// 8, and even then not for all iOS < 9.0.
|
||||
#undef EIGEN_THREAD_LOCAL
|
||||
|
||||
#elif defined(__ANDROID__) && EIGEN_COMP_CLANG
|
||||
// There are platforms for which TLS should not be used even though the compiler
|
||||
// makes it seem like it's supported (Android NDK < r12b for example).
|
||||
// This is primarily because of linker problems and toolchain misconfiguration:
|
||||
// TLS isn't supported until NDK r12b per
|
||||
// https://developer.android.com/ndk/downloads/revision_history.html
|
||||
// Since NDK r16, `__NDK_MAJOR__` and `__NDK_MINOR__` are defined in
|
||||
// <android/ndk-version.h>. For NDK < r16, users should define these macros,
|
||||
// e.g. `-D__NDK_MAJOR__=11 -D__NKD_MINOR__=0` for NDK r11.
|
||||
#if __has_include(<android/ndk-version.h>)
|
||||
#include <android/ndk-version.h>
|
||||
#endif // __has_include(<android/ndk-version.h>)
|
||||
#if defined(__ANDROID__) && defined(__clang__) && defined(__NDK_MAJOR__) && \
|
||||
defined(__NDK_MINOR__) && \
|
||||
((__NDK_MAJOR__ < 12) || ((__NDK_MAJOR__ == 12) && (__NDK_MINOR__ < 1)))
|
||||
#undef EIGEN_THREAD_LOCAL
|
||||
#endif
|
||||
#endif // defined(__ANDROID__) && defined(__clang__)
|
||||
|
||||
#endif // EIGEN_CXX11_THREADPOOL_THREAD_LOCAL_H
|
||||
|
@ -25,6 +25,11 @@ template <typename T, size_t n> class array {
|
||||
EIGEN_DEVICE_FUNC
|
||||
EIGEN_STRONG_INLINE const T& operator[] (size_t index) const { return values[index]; }
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
EIGEN_STRONG_INLINE T& at(size_t index) { eigen_assert(index < size()); return values[index]; }
|
||||
EIGEN_DEVICE_FUNC
|
||||
EIGEN_STRONG_INLINE const T& at(size_t index) const { eigen_assert(index < size()); return values[index]; }
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
EIGEN_STRONG_INLINE T& front() { return values[0]; }
|
||||
EIGEN_DEVICE_FUNC
|
||||
@ -202,16 +207,16 @@ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const T& array_get(const array<T,N>& a) {
|
||||
}
|
||||
|
||||
template<class T, std::size_t N> struct array_size<array<T,N> > {
|
||||
static const size_t value = N;
|
||||
enum { value = N };
|
||||
};
|
||||
template<class T, std::size_t N> struct array_size<array<T,N>& > {
|
||||
static const size_t value = N;
|
||||
enum { value = N };
|
||||
};
|
||||
template<class T, std::size_t N> struct array_size<const array<T,N> > {
|
||||
static const size_t value = N;
|
||||
enum { value = N };
|
||||
};
|
||||
template<class T, std::size_t N> struct array_size<const array<T,N>& > {
|
||||
static const size_t value = N;
|
||||
enum { value = N };
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
@ -35,7 +35,6 @@ class MaxSizeVector {
|
||||
explicit MaxSizeVector(size_t n)
|
||||
: reserve_(n), size_(0),
|
||||
data_(static_cast<T*>(internal::aligned_malloc(n * sizeof(T)))) {
|
||||
for (size_t i = 0; i < n; ++i) { new (&data_[i]) T; }
|
||||
}
|
||||
|
||||
// Construct a new MaxSizeVector, reserve and resize to n.
|
||||
@ -44,35 +43,55 @@ class MaxSizeVector {
|
||||
MaxSizeVector(size_t n, const T& init)
|
||||
: reserve_(n), size_(n),
|
||||
data_(static_cast<T*>(internal::aligned_malloc(n * sizeof(T)))) {
|
||||
for (size_t i = 0; i < n; ++i) { new (&data_[i]) T(init); }
|
||||
size_t i = 0;
|
||||
EIGEN_TRY
|
||||
{
|
||||
for(; i < size_; ++i) { new (&data_[i]) T(init); }
|
||||
}
|
||||
EIGEN_CATCH(...)
|
||||
{
|
||||
// Construction failed, destruct in reverse order:
|
||||
for(; (i+1) > 0; --i) { data_[i-1].~T(); }
|
||||
internal::aligned_free(data_);
|
||||
EIGEN_THROW;
|
||||
}
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
~MaxSizeVector() {
|
||||
for (size_t i = 0; i < size_; ++i) {
|
||||
data_[i].~T();
|
||||
for (size_t i = size_; i > 0; --i) {
|
||||
data_[i-1].~T();
|
||||
}
|
||||
internal::aligned_free(data_);
|
||||
}
|
||||
|
||||
void resize(size_t n) {
|
||||
eigen_assert(n <= reserve_);
|
||||
for (size_t i = size_; i < n; ++i) {
|
||||
new (&data_[i]) T;
|
||||
for (; size_ < n; ++size_) {
|
||||
new (&data_[size_]) T;
|
||||
}
|
||||
for (size_t i = n; i < size_; ++i) {
|
||||
data_[i].~T();
|
||||
for (; size_ > n; --size_) {
|
||||
data_[size_-1].~T();
|
||||
}
|
||||
size_ = n;
|
||||
eigen_assert(size_ == n);
|
||||
}
|
||||
|
||||
// Append new elements (up to reserved size).
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
void push_back(const T& t) {
|
||||
eigen_assert(size_ < reserve_);
|
||||
data_[size_++] = t;
|
||||
new (&data_[size_++]) T(t);
|
||||
}
|
||||
|
||||
// For C++03 compatibility this only takes one argument
|
||||
template<class X>
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
void emplace_back(const X& x) {
|
||||
eigen_assert(size_ < reserve_);
|
||||
new (&data_[size_++]) T(x);
|
||||
}
|
||||
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
const T& operator[] (size_t i) const {
|
||||
eigen_assert(i < size_);
|
||||
@ -99,11 +118,8 @@ class MaxSizeVector {
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
void pop_back() {
|
||||
// NOTE: This does not destroy the value at the end the way
|
||||
// std::vector's version of pop_back() does. That happens when
|
||||
// the Vector is destroyed.
|
||||
eigen_assert(size_ > 0);
|
||||
size_--;
|
||||
data_[--size_].~T();
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
|
||||
|
@ -289,6 +289,7 @@ class FFT
|
||||
void inv( MatrixBase<OutputDerived> & dst, const MatrixBase<ComplexDerived> & src, Index nfft=-1)
|
||||
{
|
||||
typedef typename ComplexDerived::Scalar src_type;
|
||||
typedef typename ComplexDerived::RealScalar real_type;
|
||||
typedef typename OutputDerived::Scalar dst_type;
|
||||
const bool realfft= (NumTraits<dst_type>::IsComplex == 0);
|
||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(OutputDerived)
|
||||
@ -329,9 +330,9 @@ class FFT
|
||||
tmp.head(nhead) = src.head(nhead);
|
||||
tmp.tail(ntail) = src.tail(ntail);
|
||||
if (resize_input<0) { //shrinking -- create the Nyquist bin as the average of the two bins that fold into it
|
||||
tmp(nhead) = ( src(nfft/2) + src( src.size() - nfft/2 ) )*src_type(.5);
|
||||
tmp(nhead) = ( src(nfft/2) + src( src.size() - nfft/2 ) )*real_type(.5);
|
||||
}else{ // expanding -- split the old Nyquist bin into two halves
|
||||
tmp(nhead) = src(nhead) * src_type(.5);
|
||||
tmp(nhead) = src(nhead) * real_type(.5);
|
||||
tmp(tmp.size()-nhead) = tmp(nhead);
|
||||
}
|
||||
}
|
||||
|
@ -184,7 +184,7 @@ inline void glRotate(const Rotation2D<float>& rot)
|
||||
}
|
||||
inline void glRotate(const Rotation2D<double>& rot)
|
||||
{
|
||||
glRotated(rot.angle()*180.0/EIGEN_PI, 0.0, 0.0, 1.0);
|
||||
glRotated(rot.angle()*180.0/double(EIGEN_PI), 0.0, 0.0, 1.0);
|
||||
}
|
||||
|
||||
template<typename Derived> void glRotate(const RotationBase<Derived,3>& rot)
|
||||
|
@ -35,6 +35,7 @@ struct get_boxes_helper {
|
||||
{
|
||||
outBoxes.insert(outBoxes.end(), boxBegin, boxEnd);
|
||||
eigen_assert(outBoxes.size() == objects.size());
|
||||
EIGEN_ONLY_USED_FOR_DEBUG(objects);
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -249,15 +249,13 @@ namespace Eigen
|
||||
DenseIndex degree,
|
||||
const typename Spline<_Scalar, _Dim, _Degree>::KnotVectorType& knots)
|
||||
{
|
||||
typedef typename Spline<_Scalar, _Dim, _Degree>::BasisVectorType BasisVectorType;
|
||||
|
||||
const DenseIndex p = degree;
|
||||
const DenseIndex i = Spline::Span(u, degree, knots);
|
||||
|
||||
const KnotVectorType& U = knots;
|
||||
|
||||
BasisVectorType left(p+1); left(0) = Scalar(0);
|
||||
BasisVectorType right(p+1); right(0) = Scalar(0);
|
||||
BasisVectorType right(p+1); right(0) = Scalar(0);
|
||||
|
||||
VectorBlock<BasisVectorType,Degree>(left,1,p) = u - VectorBlock<const KnotVectorType,Degree>(U,i+1-p,p).reverse();
|
||||
VectorBlock<BasisVectorType,Degree>(right,1,p) = VectorBlock<const KnotVectorType,Degree>(U,i+1,p) - u;
|
||||
@ -380,9 +378,6 @@ namespace Eigen
|
||||
typedef Spline<_Scalar, _Dim, _Degree> SplineType;
|
||||
enum { Order = SplineTraits<SplineType>::OrderAtCompileTime };
|
||||
|
||||
typedef typename SplineTraits<SplineType>::Scalar Scalar;
|
||||
typedef typename SplineTraits<SplineType>::BasisVectorType BasisVectorType;
|
||||
|
||||
const DenseIndex span = SplineType::Span(u, p, U);
|
||||
|
||||
const DenseIndex n = (std::min)(p, order);
|
||||
|
@ -197,6 +197,7 @@ template<typename Scalar> void check_singular_cases(const Scalar& singularBeta)
|
||||
template<typename Scalar> void eulerangles_manual()
|
||||
{
|
||||
typedef Matrix<Scalar,3,1> Vector3;
|
||||
typedef Matrix<Scalar,Dynamic,1> VectorX;
|
||||
const Vector3 Zero = Vector3::Zero();
|
||||
const Scalar PI = Scalar(EIGEN_PI);
|
||||
|
||||
@ -213,13 +214,13 @@ template<typename Scalar> void eulerangles_manual()
|
||||
check_singular_cases(-PI);
|
||||
|
||||
// non-singular cases
|
||||
VectorXd alpha = VectorXd::LinSpaced(Eigen::Sequential, 20, Scalar(-0.99) * PI, PI);
|
||||
VectorXd beta = VectorXd::LinSpaced(Eigen::Sequential, 20, Scalar(-0.49) * PI, Scalar(0.49) * PI);
|
||||
VectorXd gamma = VectorXd::LinSpaced(Eigen::Sequential, 20, Scalar(-0.99) * PI, PI);
|
||||
VectorX alpha = VectorX::LinSpaced(Eigen::Sequential, 20, Scalar(-0.99) * PI, PI);
|
||||
VectorX beta = VectorX::LinSpaced(Eigen::Sequential, 20, Scalar(-0.49) * PI, Scalar(0.49) * PI);
|
||||
VectorX gamma = VectorX::LinSpaced(Eigen::Sequential, 20, Scalar(-0.99) * PI, PI);
|
||||
for (int i = 0; i < alpha.size(); ++i) {
|
||||
for (int j = 0; j < beta.size(); ++j) {
|
||||
for (int k = 0; k < gamma.size(); ++k) {
|
||||
check_all_var(Vector3d(alpha(i), beta(j), gamma(k)));
|
||||
check_all_var(Vector3(alpha(i), beta(j), gamma(k)));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -10,6 +10,7 @@
|
||||
|
||||
#include "main.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <set>
|
||||
|
||||
#include <Eigen/CXX11/Tensor>
|
||||
@ -19,22 +20,21 @@ using Eigen::Index;
|
||||
using Eigen::RowMajor;
|
||||
using Eigen::ColMajor;
|
||||
|
||||
using internal::TensorBlockShapeType;
|
||||
|
||||
template<typename T>
|
||||
static const T& choose(int layout, const T& col, const T& row) {
|
||||
return layout == ColMajor ? col : row;
|
||||
}
|
||||
|
||||
static const TensorBlockShapeType RandomShape() {
|
||||
static internal::TensorBlockShapeType RandomShape() {
|
||||
return internal::random<bool>()
|
||||
? internal::TensorBlockShapeType::kUniformAllDims
|
||||
: internal::TensorBlockShapeType::kSkewedInnerDims;
|
||||
? internal::kUniformAllDims
|
||||
: internal::kSkewedInnerDims;
|
||||
}
|
||||
|
||||
template <int NumDims>
|
||||
static std::size_t RandomTargetSize(const DSizes<Index, NumDims>& dims) {
|
||||
return internal::random<int>(1, dims.TotalSize());
|
||||
static Index RandomTargetSize(const DSizes<Index, NumDims>& dims) {
|
||||
return internal::random<Index>(1, dims.TotalSize());
|
||||
}
|
||||
|
||||
template <int NumDims>
|
||||
@ -44,12 +44,12 @@ static DSizes<Index, NumDims> RandomDims() {
|
||||
dims[i] = internal::random<int>(1, 20);
|
||||
}
|
||||
return DSizes<Index, NumDims>(dims);
|
||||
};
|
||||
}
|
||||
|
||||
/** Dummy data type to test TensorBlock copy ops. */
|
||||
struct Data {
|
||||
Data() : Data(0) {}
|
||||
explicit Data(int v) { value = v; }
|
||||
Data() : value(0) {}
|
||||
explicit Data(int v) : value(v) { }
|
||||
int value;
|
||||
};
|
||||
|
||||
@ -91,21 +91,19 @@ static void Debug(DSizes<Index, NumDims> dims) {
|
||||
template <int Layout>
|
||||
static void test_block_mapper_sanity()
|
||||
{
|
||||
using T = int;
|
||||
using TensorBlock = internal::TensorBlock<T, Index, 2, Layout>;
|
||||
using TensorBlockMapper = internal::TensorBlockMapper<T, Index, 2, Layout>;
|
||||
typedef internal::TensorBlockMapper<int, Index, 2, Layout> TensorBlockMapper;
|
||||
|
||||
DSizes<Index, 2> tensor_dims(100, 100);
|
||||
|
||||
// Test uniform blocks.
|
||||
TensorBlockMapper uniform_block_mapper(
|
||||
tensor_dims, internal::TensorBlockShapeType::kUniformAllDims, 100);
|
||||
tensor_dims, internal::kUniformAllDims, 100);
|
||||
|
||||
VERIFY_IS_EQUAL(uniform_block_mapper.total_block_count(), 100);
|
||||
VERIFY_IS_EQUAL(uniform_block_mapper.block_dims_total_size(), 100);
|
||||
|
||||
// 10x10 blocks
|
||||
auto uniform_b0 = uniform_block_mapper.GetBlockForIndex(0, nullptr);
|
||||
typename TensorBlockMapper::Block uniform_b0 = uniform_block_mapper.GetBlockForIndex(0, NULL);
|
||||
VERIFY_IS_EQUAL(uniform_b0.block_sizes().at(0), 10);
|
||||
VERIFY_IS_EQUAL(uniform_b0.block_sizes().at(1), 10);
|
||||
// Depending on a layout we stride by cols rows.
|
||||
@ -117,13 +115,13 @@ static void test_block_mapper_sanity()
|
||||
|
||||
// Test skewed to inner dims blocks.
|
||||
TensorBlockMapper skewed_block_mapper(
|
||||
tensor_dims, internal::TensorBlockShapeType::kSkewedInnerDims, 100);
|
||||
tensor_dims, internal::kSkewedInnerDims, 100);
|
||||
|
||||
VERIFY_IS_EQUAL(skewed_block_mapper.total_block_count(), 100);
|
||||
VERIFY_IS_EQUAL(skewed_block_mapper.block_dims_total_size(), 100);
|
||||
|
||||
// 1x100 (100x1) rows/cols depending on a tensor layout.
|
||||
auto skewed_b0 = skewed_block_mapper.GetBlockForIndex(0, nullptr);
|
||||
typename TensorBlockMapper::Block skewed_b0 = skewed_block_mapper.GetBlockForIndex(0, NULL);
|
||||
VERIFY_IS_EQUAL(skewed_b0.block_sizes().at(0), choose(Layout, 100, 1));
|
||||
VERIFY_IS_EQUAL(skewed_b0.block_sizes().at(1), choose(Layout, 1, 100));
|
||||
// Depending on a layout we stride by cols rows.
|
||||
@ -140,12 +138,13 @@ template <typename T, int Layout, int NumDims>
|
||||
static void UpdateCoeffSet(
|
||||
const internal::TensorBlock<T, Index, NumDims, Layout>& block,
|
||||
Index first_coeff_index, int dim_index, std::set<Index>* visited_coeffs) {
|
||||
const DSizes<Index, NumDims> block_sizes = block.block_sizes();
|
||||
const DSizes<Index, NumDims> tensor_strides = block.tensor_strides();
|
||||
const DSizes<Index, NumDims>& block_sizes = block.block_sizes();
|
||||
const DSizes<Index, NumDims>& tensor_strides = block.tensor_strides();
|
||||
|
||||
for (int i = 0; i < block_sizes[dim_index]; ++i) {
|
||||
if (tensor_strides[dim_index] == 1) {
|
||||
auto inserted = visited_coeffs->insert(first_coeff_index + i);
|
||||
typedef std::pair<std::set<Index>::iterator, bool> ReturnType;
|
||||
ReturnType inserted = visited_coeffs->insert(first_coeff_index + i);
|
||||
VERIFY_IS_EQUAL(inserted.second, true);
|
||||
} else {
|
||||
int next_dim_index = dim_index + choose(Layout, -1, 1);
|
||||
@ -158,9 +157,8 @@ static void UpdateCoeffSet(
|
||||
|
||||
template <typename T, int NumDims, int Layout>
|
||||
static void test_block_mapper_maps_every_element() {
|
||||
using TensorBlock = internal::TensorBlock<T, Index, NumDims, Layout>;
|
||||
using TensorBlockMapper =
|
||||
internal::TensorBlockMapper<T, Index, NumDims, Layout>;
|
||||
typedef internal::TensorBlock<T, Index, NumDims, Layout> TensorBlock;
|
||||
typedef internal::TensorBlockMapper<T, Index, NumDims, Layout> TensorBlockMapper;
|
||||
|
||||
DSizes<Index, NumDims> dims = RandomDims<NumDims>();
|
||||
|
||||
@ -171,7 +169,7 @@ static void test_block_mapper_maps_every_element() {
|
||||
TensorBlockMapper block_mapper(dims, RandomShape(), RandomTargetSize(dims));
|
||||
|
||||
for (int i = 0; i < block_mapper.total_block_count(); ++i) {
|
||||
TensorBlock block = block_mapper.GetBlockForIndex(i, nullptr);
|
||||
TensorBlock block = block_mapper.GetBlockForIndex(i, NULL);
|
||||
UpdateCoeffSet<T, Layout, NumDims>(block, block.first_coeff_index(),
|
||||
choose(Layout, NumDims - 1, 0),
|
||||
&coeff_set);
|
||||
@ -180,16 +178,15 @@ static void test_block_mapper_maps_every_element() {
|
||||
// Verify that every coefficient in the original Tensor is accessible through
|
||||
// TensorBlock only once.
|
||||
Index total_coeffs = dims.TotalSize();
|
||||
VERIFY_IS_EQUAL(coeff_set.size(), total_coeffs);
|
||||
VERIFY_IS_EQUAL(Index(coeff_set.size()), total_coeffs);
|
||||
VERIFY_IS_EQUAL(*coeff_set.begin(), 0);
|
||||
VERIFY_IS_EQUAL(*coeff_set.rbegin(), total_coeffs - 1);
|
||||
}
|
||||
|
||||
template <typename T, int NumDims, int Layout>
|
||||
static void test_slice_block_mapper_maps_every_element() {
|
||||
using TensorBlock = internal::TensorBlock<T, Index, NumDims, Layout>;
|
||||
using TensorSliceBlockMapper =
|
||||
internal::TensorSliceBlockMapper<T, Index, NumDims, Layout>;
|
||||
typedef internal::TensorBlock<T, Index, NumDims, Layout> TensorBlock;
|
||||
typedef internal::TensorSliceBlockMapper<T, Index, NumDims, Layout> TensorSliceBlockMapper;
|
||||
|
||||
DSizes<Index, NumDims> tensor_dims = RandomDims<NumDims>();
|
||||
DSizes<Index, NumDims> tensor_slice_offsets = RandomDims<NumDims>();
|
||||
@ -206,12 +203,12 @@ static void test_slice_block_mapper_maps_every_element() {
|
||||
// Keep track of elements indices available via block access.
|
||||
std::set<Index> coeff_set;
|
||||
|
||||
auto total_coeffs = static_cast<int>(tensor_slice_extents.TotalSize());
|
||||
int total_coeffs = static_cast<int>(tensor_slice_extents.TotalSize());
|
||||
|
||||
// Pick a random dimension sizes for the tensor blocks.
|
||||
DSizes<Index, NumDims> block_sizes;
|
||||
for (int i = 0; i < NumDims; ++i) {
|
||||
block_sizes[i] = internal::random<int>(1, tensor_slice_extents[i]);
|
||||
block_sizes[i] = internal::random<Index>(1, tensor_slice_extents[i]);
|
||||
}
|
||||
|
||||
TensorSliceBlockMapper block_mapper(tensor_dims, tensor_slice_offsets,
|
||||
@ -219,13 +216,13 @@ static void test_slice_block_mapper_maps_every_element() {
|
||||
DimensionList<Index, NumDims>());
|
||||
|
||||
for (int i = 0; i < block_mapper.total_block_count(); ++i) {
|
||||
TensorBlock block = block_mapper.GetBlockForIndex(i, nullptr);
|
||||
TensorBlock block = block_mapper.GetBlockForIndex(i, NULL);
|
||||
UpdateCoeffSet<T, Layout, NumDims>(block, block.first_coeff_index(),
|
||||
choose(Layout, NumDims - 1, 0),
|
||||
&coeff_set);
|
||||
}
|
||||
|
||||
VERIFY_IS_EQUAL(coeff_set.size(), total_coeffs);
|
||||
VERIFY_IS_EQUAL(Index(coeff_set.size()), total_coeffs);
|
||||
}
|
||||
|
||||
template <typename T, int NumDims, int Layout>
|
||||
@ -240,7 +237,7 @@ static void test_block_io_copy_data_from_source_to_target() {
|
||||
TensorBlockWriter;
|
||||
|
||||
DSizes<Index, NumDims> input_tensor_dims = RandomDims<NumDims>();
|
||||
const auto input_tensor_size = input_tensor_dims.TotalSize();
|
||||
const Index input_tensor_size = input_tensor_dims.TotalSize();
|
||||
|
||||
T* input_data = GenerateRandomData<T>(input_tensor_size);
|
||||
T* output_data = new T[input_tensor_size];
|
||||
@ -265,14 +262,14 @@ static void test_block_io_copy_data_from_source_to_target() {
|
||||
}
|
||||
|
||||
template <int Layout, int NumDims>
|
||||
static int GetInputIndex(Index output_index,
|
||||
static Index GetInputIndex(Index output_index,
|
||||
const array<Index, NumDims>& output_to_input_dim_map,
|
||||
const array<Index, NumDims>& input_strides,
|
||||
const array<Index, NumDims>& output_strides) {
|
||||
int input_index = 0;
|
||||
if (Layout == ColMajor) {
|
||||
for (int i = NumDims - 1; i > 0; --i) {
|
||||
const int idx = output_index / output_strides[i];
|
||||
const Index idx = output_index / output_strides[i];
|
||||
input_index += idx * input_strides[output_to_input_dim_map[i]];
|
||||
output_index -= idx * output_strides[i];
|
||||
}
|
||||
@ -280,7 +277,7 @@ static int GetInputIndex(Index output_index,
|
||||
output_index * input_strides[output_to_input_dim_map[0]];
|
||||
} else {
|
||||
for (int i = 0; i < NumDims - 1; ++i) {
|
||||
const int idx = output_index / output_strides[i];
|
||||
const Index idx = output_index / output_strides[i];
|
||||
input_index += idx * input_strides[output_to_input_dim_map[i]];
|
||||
output_index -= idx * output_strides[i];
|
||||
}
|
||||
@ -319,7 +316,7 @@ static void test_block_io_copy_using_reordered_dimensions() {
|
||||
TensorBlockWriter;
|
||||
|
||||
DSizes<Index, NumDims> input_tensor_dims = RandomDims<NumDims>();
|
||||
const auto input_tensor_size = input_tensor_dims.TotalSize();
|
||||
const Index input_tensor_size = input_tensor_dims.TotalSize();
|
||||
|
||||
// Create a random input tensor.
|
||||
T* input_data = GenerateRandomData<T>(input_tensor_size);
|
||||
@ -327,7 +324,7 @@ static void test_block_io_copy_using_reordered_dimensions() {
|
||||
// Create a random dimension re-ordering/shuffle.
|
||||
std::vector<Index> shuffle;
|
||||
for (int i = 0; i < NumDims; ++i) shuffle.push_back(i);
|
||||
std::shuffle(shuffle.begin(), shuffle.end(), std::mt19937());
|
||||
std::random_shuffle(shuffle.begin(), shuffle.end());
|
||||
|
||||
DSizes<Index, NumDims> output_tensor_dims;
|
||||
array<Index, NumDims> input_to_output_dim_map;
|
||||
@ -342,8 +339,8 @@ static void test_block_io_copy_using_reordered_dimensions() {
|
||||
TensorBlockMapper block_mapper(output_tensor_dims, RandomShape(),
|
||||
RandomTargetSize(input_tensor_dims));
|
||||
|
||||
auto* block_data = new T[block_mapper.block_dims_total_size()];
|
||||
auto* output_data = new T[input_tensor_size];
|
||||
T* block_data = new T[block_mapper.block_dims_total_size()];
|
||||
T* output_data = new T[input_tensor_size];
|
||||
|
||||
array<Index, NumDims> input_tensor_strides =
|
||||
ComputeStrides<Layout, NumDims>(input_tensor_dims);
|
||||
@ -370,6 +367,40 @@ static void test_block_io_copy_using_reordered_dimensions() {
|
||||
delete[] output_data;
|
||||
}
|
||||
|
||||
template<typename Scalar, typename StorageIndex, int Dim>
|
||||
class EqualityChecker
|
||||
{
|
||||
const Scalar* input_data;
|
||||
const DSizes<StorageIndex, Dim> &input_dims, &input_strides, &output_dims, &output_strides;
|
||||
void check_recursive(const Scalar* input, const Scalar* output, int depth=0) const
|
||||
{
|
||||
if(depth==Dim)
|
||||
{
|
||||
VERIFY_IS_EQUAL(*input, *output);
|
||||
return;
|
||||
}
|
||||
|
||||
for(int i=0; i<output_dims[depth]; ++i)
|
||||
{
|
||||
check_recursive(input + i % input_dims[depth] * input_strides[depth], output + i*output_strides[depth], depth+1);
|
||||
}
|
||||
}
|
||||
public:
|
||||
EqualityChecker(const Scalar* input_data_,
|
||||
const DSizes<StorageIndex, Dim> &input_dims_, const DSizes<StorageIndex, Dim> &input_strides_,
|
||||
const DSizes<StorageIndex, Dim> &output_dims_, const DSizes<StorageIndex, Dim> &output_strides_)
|
||||
: input_data(input_data_)
|
||||
, input_dims(input_dims_), input_strides(input_strides_)
|
||||
, output_dims(output_dims_), output_strides(output_strides_)
|
||||
{}
|
||||
|
||||
void operator()(const Scalar* output_data) const
|
||||
{
|
||||
check_recursive(input_data, output_data);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
template <int Layout>
|
||||
static void test_block_io_zero_stride()
|
||||
{
|
||||
@ -385,8 +416,8 @@ static void test_block_io_zero_stride()
|
||||
input_tensor_dims[0] = 1;
|
||||
input_tensor_dims[2] = 1;
|
||||
input_tensor_dims[4] = 1;
|
||||
const auto input_tensor_size = input_tensor_dims.TotalSize();
|
||||
auto* input_data = GenerateRandomData<float>(input_tensor_size);
|
||||
const Index input_tensor_size = input_tensor_dims.TotalSize();
|
||||
float* input_data = GenerateRandomData<float>(input_tensor_size);
|
||||
|
||||
DSizes<Index, 5> output_tensor_dims = rnd_dims;
|
||||
|
||||
@ -401,33 +432,10 @@ static void test_block_io_zero_stride()
|
||||
input_tensor_strides_with_zeros[4] = 0;
|
||||
|
||||
// Verify that data was correctly read/written from/into the block.
|
||||
const auto verify_is_equal = [&](const float* output_data) {
|
||||
for (int i = 0; i < output_tensor_dims[0]; ++i) {
|
||||
for (int j = 0; j < output_tensor_dims[1]; ++j) {
|
||||
for (int k = 0; k < output_tensor_dims[2]; ++k) {
|
||||
for (int l = 0; l < output_tensor_dims[3]; ++l) {
|
||||
for (int m = 0; m < output_tensor_dims[4]; ++m) {
|
||||
const Index output_offset =
|
||||
i * output_tensor_strides[0] + j * output_tensor_strides[1] +
|
||||
k * output_tensor_strides[2] + l * output_tensor_strides[3] +
|
||||
m * output_tensor_strides[4];
|
||||
const Index input_offset =
|
||||
i % input_tensor_dims[0] * input_tensor_strides[0] +
|
||||
j % input_tensor_dims[1] * input_tensor_strides[1] +
|
||||
k % input_tensor_dims[2] * input_tensor_strides[2] +
|
||||
l % input_tensor_dims[3] * input_tensor_strides[3] +
|
||||
m % input_tensor_dims[4] * input_tensor_strides[4];
|
||||
VERIFY_IS_EQUAL(output_data[output_offset],
|
||||
input_data[input_offset]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
const EqualityChecker<float, Index, 5> verify_is_equal(input_data, input_tensor_dims, input_tensor_strides, output_tensor_dims, output_tensor_strides);
|
||||
|
||||
{
|
||||
auto* output_data = new float[output_tensor_dims.TotalSize()];
|
||||
float* output_data = new float[output_tensor_dims.TotalSize()];
|
||||
TensorBlock read_block(0, output_tensor_dims, output_tensor_strides,
|
||||
input_tensor_strides_with_zeros, output_data);
|
||||
TensorBlockReader::Run(&read_block, input_data);
|
||||
@ -436,7 +444,7 @@ static void test_block_io_zero_stride()
|
||||
}
|
||||
|
||||
{
|
||||
auto* output_data = new float[output_tensor_dims.TotalSize()];
|
||||
float* output_data = new float[output_tensor_dims.TotalSize()];
|
||||
TensorBlock write_block(0, output_tensor_dims,
|
||||
input_tensor_strides_with_zeros,
|
||||
output_tensor_strides, input_data);
|
||||
@ -459,14 +467,14 @@ static void test_block_io_squeeze_ones() {
|
||||
// Total size > 1.
|
||||
{
|
||||
DSizes<Index, 5> block_sizes(1, 2, 1, 2, 1);
|
||||
const auto total_size = block_sizes.TotalSize();
|
||||
const Index total_size = block_sizes.TotalSize();
|
||||
|
||||
// Create a random input tensor.
|
||||
auto* input_data = GenerateRandomData<float>(total_size);
|
||||
float* input_data = GenerateRandomData<float>(total_size);
|
||||
DSizes<Index, 5> strides(ComputeStrides<Layout, 5>(block_sizes));
|
||||
|
||||
{
|
||||
auto* output_data = new float[block_sizes.TotalSize()];
|
||||
float* output_data = new float[block_sizes.TotalSize()];
|
||||
TensorBlock read_block(0, block_sizes, strides, strides, output_data);
|
||||
TensorBlockReader::Run(&read_block, input_data);
|
||||
for (int i = 0; i < total_size; ++i) {
|
||||
@ -476,7 +484,7 @@ static void test_block_io_squeeze_ones() {
|
||||
}
|
||||
|
||||
{
|
||||
auto* output_data = new float[block_sizes.TotalSize()];
|
||||
float* output_data = new float[block_sizes.TotalSize()];
|
||||
TensorBlock write_block(0, block_sizes, strides, strides, input_data);
|
||||
TensorBlockWriter::Run(write_block, output_data);
|
||||
for (int i = 0; i < total_size; ++i) {
|
||||
@ -489,14 +497,14 @@ static void test_block_io_squeeze_ones() {
|
||||
// Total size == 1.
|
||||
{
|
||||
DSizes<Index, 5> block_sizes(1, 1, 1, 1, 1);
|
||||
const auto total_size = block_sizes.TotalSize();
|
||||
const Index total_size = block_sizes.TotalSize();
|
||||
|
||||
// Create a random input tensor.
|
||||
auto* input_data = GenerateRandomData<float>(total_size);
|
||||
float* input_data = GenerateRandomData<float>(total_size);
|
||||
DSizes<Index, 5> strides(ComputeStrides<Layout, 5>(block_sizes));
|
||||
|
||||
{
|
||||
auto* output_data = new float[block_sizes.TotalSize()];
|
||||
float* output_data = new float[block_sizes.TotalSize()];
|
||||
TensorBlock read_block(0, block_sizes, strides, strides, output_data);
|
||||
TensorBlockReader::Run(&read_block, input_data);
|
||||
for (int i = 0; i < total_size; ++i) {
|
||||
@ -506,7 +514,7 @@ static void test_block_io_squeeze_ones() {
|
||||
}
|
||||
|
||||
{
|
||||
auto* output_data = new float[block_sizes.TotalSize()];
|
||||
float* output_data = new float[block_sizes.TotalSize()];
|
||||
TensorBlock write_block(0, block_sizes, strides, strides, input_data);
|
||||
TensorBlockWriter::Run(write_block, output_data);
|
||||
for (int i = 0; i < total_size; ++i) {
|
||||
@ -635,7 +643,7 @@ static void test_block_cwise_binary_io_basic() {
|
||||
DSizes<Index, NumDims> block_sizes = RandomDims<NumDims>();
|
||||
DSizes<Index, NumDims> strides(ComputeStrides<Layout, NumDims>(block_sizes));
|
||||
|
||||
const auto total_size = block_sizes.TotalSize();
|
||||
const Index total_size = block_sizes.TotalSize();
|
||||
|
||||
// Create a random input tensors.
|
||||
T* left_data = GenerateRandomData<T>(total_size);
|
||||
@ -664,13 +672,13 @@ static void test_block_cwise_binary_io_squeeze_ones() {
|
||||
DSizes<Index, 5> block_sizes(1, 2, 1, 3, 1);
|
||||
DSizes<Index, 5> strides(ComputeStrides<Layout, 5>(block_sizes));
|
||||
|
||||
const auto total_size = block_sizes.TotalSize();
|
||||
const Index total_size = block_sizes.TotalSize();
|
||||
|
||||
// Create a random input tensors.
|
||||
auto* left_data = GenerateRandomData<float>(total_size);
|
||||
auto* right_data = GenerateRandomData<float>(total_size);
|
||||
float* left_data = GenerateRandomData<float>(total_size);
|
||||
float* right_data = GenerateRandomData<float>(total_size);
|
||||
|
||||
auto* output_data = new float[total_size];
|
||||
float* output_data = new float[total_size];
|
||||
BinaryFunctor functor;
|
||||
TensorBlockCwiseBinaryIO::Run(functor, block_sizes, strides, output_data,
|
||||
strides, left_data, strides, right_data);
|
||||
@ -711,14 +719,14 @@ static void test_block_cwise_binary_io_zero_strides() {
|
||||
right_strides[3] = 0;
|
||||
|
||||
// Generate random data.
|
||||
auto* left_data = GenerateRandomData<float>(left_sizes.TotalSize());
|
||||
auto* right_data = GenerateRandomData<float>(right_sizes.TotalSize());
|
||||
float* left_data = GenerateRandomData<float>(left_sizes.TotalSize());
|
||||
float* right_data = GenerateRandomData<float>(right_sizes.TotalSize());
|
||||
|
||||
DSizes<Index, 5> output_sizes = rnd_dims;
|
||||
DSizes<Index, 5> output_strides(ComputeStrides<Layout, 5>(output_sizes));
|
||||
|
||||
const auto output_total_size = output_sizes.TotalSize();
|
||||
auto* output_data = new float[output_total_size];
|
||||
const Index output_total_size = output_sizes.TotalSize();
|
||||
float* output_data = new float[output_total_size];
|
||||
|
||||
BinaryFunctor functor;
|
||||
TensorBlockCwiseBinaryIO::Run(functor, output_sizes, output_strides,
|
||||
@ -755,17 +763,16 @@ static void test_block_cwise_binary_io_zero_strides() {
|
||||
template <int Layout>
|
||||
static void test_uniform_block_shape()
|
||||
{
|
||||
using T = int;
|
||||
typedef internal::TensorBlock<T, Index, 5, Layout> TensorBlock;
|
||||
typedef internal::TensorBlockMapper<T, Index, 5, Layout> TensorBlockMapper;
|
||||
typedef internal::TensorBlock<int, Index, 5, Layout> TensorBlock;
|
||||
typedef internal::TensorBlockMapper<int, Index, 5, Layout> TensorBlockMapper;
|
||||
|
||||
{
|
||||
// Test shape 'UniformAllDims' with uniform 'max_coeff count'.
|
||||
DSizes<Index, 5> dims(11, 5, 6, 17, 7);
|
||||
const size_t max_coeff_count = 5 * 5 * 5 * 5 * 5;
|
||||
TensorBlockMapper block_mapper(dims, TensorBlockShapeType::kUniformAllDims,
|
||||
const Index max_coeff_count = 5 * 5 * 5 * 5 * 5;
|
||||
TensorBlockMapper block_mapper(dims, internal::kUniformAllDims,
|
||||
max_coeff_count);
|
||||
TensorBlock block = block_mapper.GetBlockForIndex(0, nullptr);
|
||||
TensorBlock block = block_mapper.GetBlockForIndex(0, NULL);
|
||||
for (int i = 0; i < 5; ++i) {
|
||||
VERIFY_IS_EQUAL(5, block.block_sizes()[i]);
|
||||
}
|
||||
@ -776,10 +783,10 @@ static void test_uniform_block_shape()
|
||||
// partially into first inner-most dimension.
|
||||
if (Layout == ColMajor) {
|
||||
DSizes<Index, 5> dims(11, 5, 6, 17, 7);
|
||||
const size_t max_coeff_count = 7 * 5 * 5 * 5 * 5;
|
||||
TensorBlockMapper block_mapper(dims, TensorBlockShapeType::kUniformAllDims,
|
||||
const Index max_coeff_count = 7 * 5 * 5 * 5 * 5;
|
||||
TensorBlockMapper block_mapper(dims, internal::kUniformAllDims,
|
||||
max_coeff_count);
|
||||
TensorBlock block = block_mapper.GetBlockForIndex(0, nullptr);
|
||||
TensorBlock block = block_mapper.GetBlockForIndex(0, NULL);
|
||||
VERIFY_IS_EQUAL(7, block.block_sizes()[0]);
|
||||
for (int i = 1; i < 5; ++i) {
|
||||
VERIFY_IS_EQUAL(5, block.block_sizes()[i]);
|
||||
@ -787,10 +794,10 @@ static void test_uniform_block_shape()
|
||||
VERIFY(block.block_sizes().TotalSize() <= max_coeff_count);
|
||||
} else {
|
||||
DSizes<Index, 5> dims(11, 5, 6, 17, 7);
|
||||
const size_t max_coeff_count = 5 * 5 * 5 * 5 * 6;
|
||||
TensorBlockMapper block_mapper(dims, TensorBlockShapeType::kUniformAllDims,
|
||||
const Index max_coeff_count = 5 * 5 * 5 * 5 * 6;
|
||||
TensorBlockMapper block_mapper(dims, internal::kUniformAllDims,
|
||||
max_coeff_count);
|
||||
TensorBlock block = block_mapper.GetBlockForIndex(0, nullptr);
|
||||
TensorBlock block = block_mapper.GetBlockForIndex(0, NULL);
|
||||
VERIFY_IS_EQUAL(6, block.block_sizes()[4]);
|
||||
for (int i = 3; i >= 0; --i) {
|
||||
VERIFY_IS_EQUAL(5, block.block_sizes()[i]);
|
||||
@ -802,10 +809,10 @@ static void test_uniform_block_shape()
|
||||
// fully into first inner-most dimension.
|
||||
if (Layout == ColMajor) {
|
||||
DSizes<Index, 5> dims(11, 5, 6, 17, 7);
|
||||
const size_t max_coeff_count = 11 * 5 * 5 * 5 * 5;
|
||||
TensorBlockMapper block_mapper(dims, TensorBlockShapeType::kUniformAllDims,
|
||||
const Index max_coeff_count = 11 * 5 * 5 * 5 * 5;
|
||||
TensorBlockMapper block_mapper(dims, internal::kUniformAllDims,
|
||||
max_coeff_count);
|
||||
TensorBlock block = block_mapper.GetBlockForIndex(0, nullptr);
|
||||
TensorBlock block = block_mapper.GetBlockForIndex(0, NULL);
|
||||
VERIFY_IS_EQUAL(11, block.block_sizes()[0]);
|
||||
for (int i = 1; i < 5; ++i) {
|
||||
VERIFY_IS_EQUAL(5, block.block_sizes()[i]);
|
||||
@ -813,10 +820,10 @@ static void test_uniform_block_shape()
|
||||
VERIFY(block.block_sizes().TotalSize() <= max_coeff_count);
|
||||
} else {
|
||||
DSizes<Index, 5> dims(11, 5, 6, 17, 7);
|
||||
const size_t max_coeff_count = 5 * 5 * 5 * 5 * 7;
|
||||
TensorBlockMapper block_mapper(dims, TensorBlockShapeType::kUniformAllDims,
|
||||
const Index max_coeff_count = 5 * 5 * 5 * 5 * 7;
|
||||
TensorBlockMapper block_mapper(dims, internal::kUniformAllDims,
|
||||
max_coeff_count);
|
||||
TensorBlock block = block_mapper.GetBlockForIndex(0, nullptr);
|
||||
TensorBlock block = block_mapper.GetBlockForIndex(0, NULL);
|
||||
VERIFY_IS_EQUAL(7, block.block_sizes()[4]);
|
||||
for (int i = 3; i >= 0; --i) {
|
||||
VERIFY_IS_EQUAL(5, block.block_sizes()[i]);
|
||||
@ -828,10 +835,10 @@ static void test_uniform_block_shape()
|
||||
// fully into first few inner-most dimensions.
|
||||
if (Layout == ColMajor) {
|
||||
DSizes<Index, 5> dims(7, 5, 6, 17, 7);
|
||||
const size_t max_coeff_count = 7 * 5 * 6 * 7 * 5;
|
||||
TensorBlockMapper block_mapper(dims, TensorBlockShapeType::kUniformAllDims,
|
||||
const Index max_coeff_count = 7 * 5 * 6 * 7 * 5;
|
||||
TensorBlockMapper block_mapper(dims, internal::kUniformAllDims,
|
||||
max_coeff_count);
|
||||
TensorBlock block = block_mapper.GetBlockForIndex(0, nullptr);
|
||||
TensorBlock block = block_mapper.GetBlockForIndex(0, NULL);
|
||||
VERIFY_IS_EQUAL(7, block.block_sizes()[0]);
|
||||
VERIFY_IS_EQUAL(5, block.block_sizes()[1]);
|
||||
VERIFY_IS_EQUAL(6, block.block_sizes()[2]);
|
||||
@ -840,10 +847,10 @@ static void test_uniform_block_shape()
|
||||
VERIFY(block.block_sizes().TotalSize() <= max_coeff_count);
|
||||
} else {
|
||||
DSizes<Index, 5> dims(7, 5, 6, 9, 7);
|
||||
const size_t max_coeff_count = 5 * 5 * 5 * 6 * 7;
|
||||
TensorBlockMapper block_mapper(dims, TensorBlockShapeType::kUniformAllDims,
|
||||
const Index max_coeff_count = 5 * 5 * 5 * 6 * 7;
|
||||
TensorBlockMapper block_mapper(dims, internal::kUniformAllDims,
|
||||
max_coeff_count);
|
||||
TensorBlock block = block_mapper.GetBlockForIndex(0, nullptr);
|
||||
TensorBlock block = block_mapper.GetBlockForIndex(0, NULL);
|
||||
VERIFY_IS_EQUAL(7, block.block_sizes()[4]);
|
||||
VERIFY_IS_EQUAL(6, block.block_sizes()[3]);
|
||||
VERIFY_IS_EQUAL(5, block.block_sizes()[2]);
|
||||
@ -855,10 +862,10 @@ static void test_uniform_block_shape()
|
||||
// Test shape 'UniformAllDims' with full allocation to all dims.
|
||||
if (Layout == ColMajor) {
|
||||
DSizes<Index, 5> dims(7, 5, 6, 17, 7);
|
||||
const size_t max_coeff_count = 7 * 5 * 6 * 17 * 7;
|
||||
TensorBlockMapper block_mapper(dims, TensorBlockShapeType::kUniformAllDims,
|
||||
const Index max_coeff_count = 7 * 5 * 6 * 17 * 7;
|
||||
TensorBlockMapper block_mapper(dims, internal::kUniformAllDims,
|
||||
max_coeff_count);
|
||||
TensorBlock block = block_mapper.GetBlockForIndex(0, nullptr);
|
||||
TensorBlock block = block_mapper.GetBlockForIndex(0, NULL);
|
||||
VERIFY_IS_EQUAL(7, block.block_sizes()[0]);
|
||||
VERIFY_IS_EQUAL(5, block.block_sizes()[1]);
|
||||
VERIFY_IS_EQUAL(6, block.block_sizes()[2]);
|
||||
@ -867,10 +874,10 @@ static void test_uniform_block_shape()
|
||||
VERIFY(block.block_sizes().TotalSize() <= max_coeff_count);
|
||||
} else {
|
||||
DSizes<Index, 5> dims(7, 5, 6, 9, 7);
|
||||
const size_t max_coeff_count = 7 * 5 * 6 * 9 * 7;
|
||||
TensorBlockMapper block_mapper(dims, TensorBlockShapeType::kUniformAllDims,
|
||||
const Index max_coeff_count = 7 * 5 * 6 * 9 * 7;
|
||||
TensorBlockMapper block_mapper(dims, internal::kUniformAllDims,
|
||||
max_coeff_count);
|
||||
TensorBlock block = block_mapper.GetBlockForIndex(0, nullptr);
|
||||
TensorBlock block = block_mapper.GetBlockForIndex(0, NULL);
|
||||
VERIFY_IS_EQUAL(7, block.block_sizes()[4]);
|
||||
VERIFY_IS_EQUAL(9, block.block_sizes()[3]);
|
||||
VERIFY_IS_EQUAL(6, block.block_sizes()[2]);
|
||||
@ -883,17 +890,16 @@ static void test_uniform_block_shape()
|
||||
template <int Layout>
|
||||
static void test_skewed_inner_dim_block_shape()
|
||||
{
|
||||
using T = int;
|
||||
typedef internal::TensorBlock<T, Index, 5, Layout> TensorBlock;
|
||||
typedef internal::TensorBlockMapper<T, Index, 5, Layout> TensorBlockMapper;
|
||||
typedef internal::TensorBlock<int, Index, 5, Layout> TensorBlock;
|
||||
typedef internal::TensorBlockMapper<int, Index, 5, Layout> TensorBlockMapper;
|
||||
|
||||
// Test shape 'SkewedInnerDims' with partial allocation to inner-most dim.
|
||||
if (Layout == ColMajor) {
|
||||
DSizes<Index, 5> dims(11, 5, 6, 17, 7);
|
||||
const size_t max_coeff_count = 10 * 1 * 1 * 1 * 1;
|
||||
TensorBlockMapper block_mapper(dims, TensorBlockShapeType::kSkewedInnerDims,
|
||||
const Index max_coeff_count = 10 * 1 * 1 * 1 * 1;
|
||||
TensorBlockMapper block_mapper(dims, internal::kSkewedInnerDims,
|
||||
max_coeff_count);
|
||||
TensorBlock block = block_mapper.GetBlockForIndex(0, nullptr);
|
||||
TensorBlock block = block_mapper.GetBlockForIndex(0, NULL);
|
||||
VERIFY_IS_EQUAL(10, block.block_sizes()[0]);
|
||||
for (int i = 1; i < 5; ++i) {
|
||||
VERIFY_IS_EQUAL(1, block.block_sizes()[i]);
|
||||
@ -901,10 +907,10 @@ static void test_skewed_inner_dim_block_shape()
|
||||
VERIFY(block.block_sizes().TotalSize() <= max_coeff_count);
|
||||
} else {
|
||||
DSizes<Index, 5> dims(11, 5, 6, 17, 7);
|
||||
const size_t max_coeff_count = 1 * 1 * 1 * 1 * 6;
|
||||
TensorBlockMapper block_mapper(dims, TensorBlockShapeType::kSkewedInnerDims,
|
||||
const Index max_coeff_count = 1 * 1 * 1 * 1 * 6;
|
||||
TensorBlockMapper block_mapper(dims, internal::kSkewedInnerDims,
|
||||
max_coeff_count);
|
||||
TensorBlock block = block_mapper.GetBlockForIndex(0, nullptr);
|
||||
TensorBlock block = block_mapper.GetBlockForIndex(0, NULL);
|
||||
VERIFY_IS_EQUAL(6, block.block_sizes()[4]);
|
||||
for (int i = 3; i >= 0; --i) {
|
||||
VERIFY_IS_EQUAL(1, block.block_sizes()[i]);
|
||||
@ -915,10 +921,10 @@ static void test_skewed_inner_dim_block_shape()
|
||||
// Test shape 'SkewedInnerDims' with full allocation to inner-most dim.
|
||||
if (Layout == ColMajor) {
|
||||
DSizes<Index, 5> dims(11, 5, 6, 17, 7);
|
||||
const size_t max_coeff_count = 11 * 1 * 1 * 1 * 1;
|
||||
TensorBlockMapper block_mapper(dims, TensorBlockShapeType::kSkewedInnerDims,
|
||||
const Index max_coeff_count = 11 * 1 * 1 * 1 * 1;
|
||||
TensorBlockMapper block_mapper(dims, internal::kSkewedInnerDims,
|
||||
max_coeff_count);
|
||||
TensorBlock block = block_mapper.GetBlockForIndex(0, nullptr);
|
||||
TensorBlock block = block_mapper.GetBlockForIndex(0, NULL);
|
||||
VERIFY_IS_EQUAL(11, block.block_sizes()[0]);
|
||||
for (int i = 1; i < 5; ++i) {
|
||||
VERIFY_IS_EQUAL(1, block.block_sizes()[i]);
|
||||
@ -926,10 +932,10 @@ static void test_skewed_inner_dim_block_shape()
|
||||
VERIFY(block.block_sizes().TotalSize() <= max_coeff_count);
|
||||
} else {
|
||||
DSizes<Index, 5> dims(11, 5, 6, 17, 7);
|
||||
const size_t max_coeff_count = 1 * 1 * 1 * 1 * 7;
|
||||
TensorBlockMapper block_mapper(dims, TensorBlockShapeType::kSkewedInnerDims,
|
||||
const Index max_coeff_count = 1 * 1 * 1 * 1 * 7;
|
||||
TensorBlockMapper block_mapper(dims, internal::kSkewedInnerDims,
|
||||
max_coeff_count);
|
||||
TensorBlock block = block_mapper.GetBlockForIndex(0, nullptr);
|
||||
TensorBlock block = block_mapper.GetBlockForIndex(0, NULL);
|
||||
VERIFY_IS_EQUAL(7, block.block_sizes()[4]);
|
||||
for (int i = 3; i >= 0; --i) {
|
||||
VERIFY_IS_EQUAL(1, block.block_sizes()[i]);
|
||||
@ -941,10 +947,10 @@ static void test_skewed_inner_dim_block_shape()
|
||||
// and partial allocation to second inner-dim.
|
||||
if (Layout == ColMajor) {
|
||||
DSizes<Index, 5> dims(11, 5, 6, 17, 7);
|
||||
const size_t max_coeff_count = 11 * 3 * 1 * 1 * 1;
|
||||
TensorBlockMapper block_mapper(dims, TensorBlockShapeType::kSkewedInnerDims,
|
||||
const Index max_coeff_count = 11 * 3 * 1 * 1 * 1;
|
||||
TensorBlockMapper block_mapper(dims, internal::kSkewedInnerDims,
|
||||
max_coeff_count);
|
||||
TensorBlock block = block_mapper.GetBlockForIndex(0, nullptr);
|
||||
TensorBlock block = block_mapper.GetBlockForIndex(0, NULL);
|
||||
VERIFY_IS_EQUAL(11, block.block_sizes()[0]);
|
||||
VERIFY_IS_EQUAL(3, block.block_sizes()[1]);
|
||||
for (int i = 2; i < 5; ++i) {
|
||||
@ -953,10 +959,10 @@ static void test_skewed_inner_dim_block_shape()
|
||||
VERIFY(block.block_sizes().TotalSize() <= max_coeff_count);
|
||||
} else {
|
||||
DSizes<Index, 5> dims(11, 5, 6, 17, 7);
|
||||
const size_t max_coeff_count = 1 * 1 * 1 * 15 * 7;
|
||||
TensorBlockMapper block_mapper(dims, TensorBlockShapeType::kSkewedInnerDims,
|
||||
const Index max_coeff_count = 1 * 1 * 1 * 15 * 7;
|
||||
TensorBlockMapper block_mapper(dims, internal::kSkewedInnerDims,
|
||||
max_coeff_count);
|
||||
TensorBlock block = block_mapper.GetBlockForIndex(0, nullptr);
|
||||
TensorBlock block = block_mapper.GetBlockForIndex(0, NULL);
|
||||
VERIFY_IS_EQUAL(7, block.block_sizes()[4]);
|
||||
VERIFY_IS_EQUAL(15, block.block_sizes()[3]);
|
||||
for (int i = 2; i >= 0; --i) {
|
||||
@ -969,10 +975,10 @@ static void test_skewed_inner_dim_block_shape()
|
||||
// and partial allocation to third inner-dim.
|
||||
if (Layout == ColMajor) {
|
||||
DSizes<Index, 5> dims(11, 5, 6, 17, 7);
|
||||
const size_t max_coeff_count = 11 * 5 * 5 * 1 * 1;
|
||||
TensorBlockMapper block_mapper(dims, TensorBlockShapeType::kSkewedInnerDims,
|
||||
const Index max_coeff_count = 11 * 5 * 5 * 1 * 1;
|
||||
TensorBlockMapper block_mapper(dims, internal::kSkewedInnerDims,
|
||||
max_coeff_count);
|
||||
TensorBlock block = block_mapper.GetBlockForIndex(0, nullptr);
|
||||
TensorBlock block = block_mapper.GetBlockForIndex(0, NULL);
|
||||
VERIFY_IS_EQUAL(11, block.block_sizes()[0]);
|
||||
VERIFY_IS_EQUAL(5, block.block_sizes()[1]);
|
||||
VERIFY_IS_EQUAL(5, block.block_sizes()[2]);
|
||||
@ -982,10 +988,10 @@ static void test_skewed_inner_dim_block_shape()
|
||||
VERIFY(block.block_sizes().TotalSize() <= max_coeff_count);
|
||||
} else {
|
||||
DSizes<Index, 5> dims(11, 5, 6, 17, 7);
|
||||
const size_t max_coeff_count = 1 * 1 * 5 * 17 * 7;
|
||||
TensorBlockMapper block_mapper(dims, TensorBlockShapeType::kSkewedInnerDims,
|
||||
const Index max_coeff_count = 1 * 1 * 5 * 17 * 7;
|
||||
TensorBlockMapper block_mapper(dims, internal::kSkewedInnerDims,
|
||||
max_coeff_count);
|
||||
TensorBlock block = block_mapper.GetBlockForIndex(0, nullptr);
|
||||
TensorBlock block = block_mapper.GetBlockForIndex(0, NULL);
|
||||
VERIFY_IS_EQUAL(7, block.block_sizes()[4]);
|
||||
VERIFY_IS_EQUAL(17, block.block_sizes()[3]);
|
||||
VERIFY_IS_EQUAL(5, block.block_sizes()[2]);
|
||||
@ -998,10 +1004,10 @@ static void test_skewed_inner_dim_block_shape()
|
||||
// Test shape 'SkewedInnerDims' with full allocation to all dims.
|
||||
if (Layout == ColMajor) {
|
||||
DSizes<Index, 5> dims(11, 5, 6, 17, 7);
|
||||
const size_t max_coeff_count = 11 * 5 * 6 * 17 * 7;
|
||||
TensorBlockMapper block_mapper(dims, TensorBlockShapeType::kSkewedInnerDims,
|
||||
const Index max_coeff_count = 11 * 5 * 6 * 17 * 7;
|
||||
TensorBlockMapper block_mapper(dims, internal::kSkewedInnerDims,
|
||||
max_coeff_count);
|
||||
TensorBlock block = block_mapper.GetBlockForIndex(0, nullptr);
|
||||
TensorBlock block = block_mapper.GetBlockForIndex(0, NULL);
|
||||
VERIFY_IS_EQUAL(11, block.block_sizes()[0]);
|
||||
VERIFY_IS_EQUAL(5, block.block_sizes()[1]);
|
||||
VERIFY_IS_EQUAL(6, block.block_sizes()[2]);
|
||||
@ -1010,10 +1016,10 @@ static void test_skewed_inner_dim_block_shape()
|
||||
VERIFY(block.block_sizes().TotalSize() <= max_coeff_count);
|
||||
} else {
|
||||
DSizes<Index, 5> dims(11, 5, 6, 17, 7);
|
||||
const size_t max_coeff_count = 11 * 5 * 6 * 17 * 7;
|
||||
TensorBlockMapper block_mapper(dims, TensorBlockShapeType::kSkewedInnerDims,
|
||||
const Index max_coeff_count = 11 * 5 * 6 * 17 * 7;
|
||||
TensorBlockMapper block_mapper(dims, internal::kSkewedInnerDims,
|
||||
max_coeff_count);
|
||||
TensorBlock block = block_mapper.GetBlockForIndex(0, nullptr);
|
||||
TensorBlock block = block_mapper.GetBlockForIndex(0, NULL);
|
||||
VERIFY_IS_EQUAL(7, block.block_sizes()[4]);
|
||||
VERIFY_IS_EQUAL(17, block.block_sizes()[3]);
|
||||
VERIFY_IS_EQUAL(6, block.block_sizes()[2]);
|
||||
@ -1026,15 +1032,13 @@ static void test_skewed_inner_dim_block_shape()
|
||||
template <int Layout>
|
||||
static void test_empty_dims(const internal::TensorBlockShapeType block_shape)
|
||||
{
|
||||
using T = int;
|
||||
|
||||
// Test blocking of tensors with zero dimensions:
|
||||
// - we must not crash on asserts and divisions by zero
|
||||
// - we must not return block with zero dimensions
|
||||
// (recipe for overflows/underflows, divisions by zero and NaNs later)
|
||||
// - total block count must be zero
|
||||
{
|
||||
typedef internal::TensorBlockMapper<T, Index, 1, Layout> TensorBlockMapper;
|
||||
typedef internal::TensorBlockMapper<int, Index, 1, Layout> TensorBlockMapper;
|
||||
DSizes<Index, 1> dims(0);
|
||||
for (int max_coeff_count = 0; max_coeff_count < 2; ++max_coeff_count) {
|
||||
TensorBlockMapper block_mapper(dims, block_shape, max_coeff_count);
|
||||
@ -1044,7 +1048,7 @@ static void test_empty_dims(const internal::TensorBlockShapeType block_shape)
|
||||
}
|
||||
|
||||
{
|
||||
typedef internal::TensorBlockMapper<T, Index, 2, Layout> TensorBlockMapper;
|
||||
typedef internal::TensorBlockMapper<int, Index, 2, Layout> TensorBlockMapper;
|
||||
for (int dim1 = 0; dim1 < 3; ++dim1) {
|
||||
for (int dim2 = 0; dim2 < 3; ++dim2) {
|
||||
DSizes<Index, 2> dims(dim1, dim2);
|
||||
@ -1098,9 +1102,9 @@ EIGEN_DECLARE_TEST(cxx11_tensor_block_access) {
|
||||
TEST_LAYOUTS(test_block_cwise_binary_io_zero_strides);
|
||||
TEST_LAYOUTS(test_uniform_block_shape);
|
||||
TEST_LAYOUTS(test_skewed_inner_dim_block_shape);
|
||||
TEST_LAYOUTS_WITH_ARG(test_empty_dims, TensorBlockShapeType::kUniformAllDims);
|
||||
TEST_LAYOUTS_WITH_ARG(test_empty_dims, TensorBlockShapeType::kSkewedInnerDims);
|
||||
TEST_LAYOUTS_WITH_ARG(test_empty_dims, internal::kUniformAllDims);
|
||||
TEST_LAYOUTS_WITH_ARG(test_empty_dims, internal::kSkewedInnerDims);
|
||||
}
|
||||
|
||||
#undef TEST_LAYOUTS
|
||||
#undef TEST_LAYOUTS_WITH_ARG
|
||||
#undef TEST_LAYOUTS_WITH_ARG
|
||||
|
@ -56,7 +56,7 @@ static void test_static_dimension_failure()
|
||||
// either the code should change to
|
||||
// Tensor<int, 2>::Dimensions{{2, 3}}
|
||||
// or Tensor<int, 2>::Dimensions{Tensor<int, 2>::Dimensions{{2, 3}}}
|
||||
.concatenate(right.reshape(Tensor<int, 2>::Dimensions{{2, 3}}), 0);
|
||||
.concatenate(right.reshape(Tensor<int, 2>::Dimensions(2, 3)), 0);
|
||||
}
|
||||
|
||||
template<int DataLayout>
|
||||
|
@ -514,7 +514,7 @@ static void test_const_inputs()
|
||||
struct SqrtOutputKernel {
|
||||
template <typename Index, typename Scalar>
|
||||
EIGEN_ALWAYS_INLINE void operator()(
|
||||
const OutputKernel::OutputMapper<Index, Scalar>& output_mapper,
|
||||
const internal::blas_data_mapper<Scalar, Index, ColMajor>& output_mapper,
|
||||
const TensorContractionParams&, Index, Index, Index num_rows,
|
||||
Index num_cols) const {
|
||||
for (int i = 0; i < num_rows; ++i) {
|
||||
@ -553,7 +553,7 @@ static void test_large_contraction_with_output_kernel() {
|
||||
|
||||
m_result = m_left * m_right;
|
||||
|
||||
for (size_t i = 0; i < t_result.dimensions().TotalSize(); i++) {
|
||||
for (std::ptrdiff_t i = 0; i < t_result.dimensions().TotalSize(); i++) {
|
||||
VERIFY(&t_result.data()[i] != &m_result.data()[i]);
|
||||
VERIFY_IS_APPROX(t_result.data()[i], std::sqrt(m_result.data()[i]));
|
||||
}
|
||||
|
@ -170,7 +170,6 @@ static void test_type2indexpair_list()
|
||||
typedef Eigen::IndexPairList<Eigen::type2indexpair<0,10>, Eigen::IndexPair<DenseIndex>, Eigen::type2indexpair<2,12>> Dims2_b;
|
||||
typedef Eigen::IndexPairList<Eigen::IndexPair<DenseIndex>, Eigen::type2indexpair<1,11>, Eigen::IndexPair<DenseIndex>> Dims2_c;
|
||||
|
||||
Dims0 d0;
|
||||
Dims2_a d2_a;
|
||||
|
||||
Dims2_b d2_b;
|
||||
|
@ -255,7 +255,7 @@ void test_multithread_contraction_agrees_with_singlethread() {
|
||||
struct SqrtOutputKernel {
|
||||
template <typename Index, typename Scalar>
|
||||
EIGEN_ALWAYS_INLINE void operator()(
|
||||
const OutputKernel::OutputMapper<Index, Scalar>& output_mapper,
|
||||
const internal::blas_data_mapper<Scalar, Index, ColMajor>& output_mapper,
|
||||
const TensorContractionParams&, Index, Index, Index num_rows,
|
||||
Index num_cols) const {
|
||||
for (int i = 0; i < num_rows; ++i) {
|
||||
@ -300,7 +300,7 @@ static void test_multithread_contraction_with_output_kernel() {
|
||||
|
||||
m_result = m_left * m_right;
|
||||
|
||||
for (size_t i = 0; i < t_result.dimensions().TotalSize(); i++) {
|
||||
for (Index i = 0; i < t_result.dimensions().TotalSize(); i++) {
|
||||
VERIFY(&t_result.data()[i] != &m_result.data()[i]);
|
||||
VERIFY_IS_APPROX(t_result.data()[i], std::sqrt(m_result.data()[i]));
|
||||
}
|
||||
@ -428,7 +428,7 @@ void test_threadpool_allocate(TestAllocator* allocator)
|
||||
void* ptr = device.allocate(512);
|
||||
device.deallocate(ptr);
|
||||
}
|
||||
VERIFY(allocator != nullptr);
|
||||
VERIFY(allocator != NULL);
|
||||
VERIFY_IS_EQUAL(allocator->alloc_count(), num_allocs);
|
||||
VERIFY_IS_EQUAL(allocator->dealloc_count(), num_allocs);
|
||||
}
|
||||
@ -460,7 +460,7 @@ EIGEN_DECLARE_TEST(cxx11_tensor_thread_pool)
|
||||
CALL_SUBTEST_6(test_multithread_random());
|
||||
|
||||
TestAllocator test_allocator;
|
||||
CALL_SUBTEST_6(test_multithread_shuffle<ColMajor>(nullptr));
|
||||
CALL_SUBTEST_6(test_multithread_shuffle<ColMajor>(NULL));
|
||||
CALL_SUBTEST_6(test_multithread_shuffle<RowMajor>(&test_allocator));
|
||||
CALL_SUBTEST_6(test_threadpool_allocate(&test_allocator));
|
||||
}
|
||||
|
@ -9,6 +9,7 @@
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
|
||||
#ifdef EIGEN_TEST_PART_1
|
||||
|
||||
#include "sparse.h"
|
||||
@ -95,7 +96,7 @@ EIGEN_DECLARE_TEST(kronecker_product)
|
||||
SM_a.insert(1,0) = DM_a.coeffRef(1,0) = -0.9076572187376921;
|
||||
SM_a.insert(1,1) = DM_a.coeffRef(1,1) = 0.6469156566545853;
|
||||
SM_a.insert(1,2) = DM_a.coeffRef(1,2) = -0.3658010398782789;
|
||||
|
||||
|
||||
MatrixXd DM_b(3,2);
|
||||
SparseMatrix<double> SM_b(3,2);
|
||||
SM_b.insert(0,0) = DM_b.coeffRef(0,0) = 0.9004440976767099;
|
||||
@ -165,7 +166,7 @@ EIGEN_DECLARE_TEST(kronecker_product)
|
||||
SM_a.insert(0,3) = -0.2;
|
||||
SM_a.insert(2,4) = 0.3;
|
||||
SM_a.finalize();
|
||||
|
||||
|
||||
SM_b.insert(0,0) = 0.4;
|
||||
SM_b.insert(2,1) = -0.5;
|
||||
SM_b.finalize();
|
||||
@ -183,7 +184,7 @@ EIGEN_DECLARE_TEST(kronecker_product)
|
||||
DM_b2.resize(4,8);
|
||||
DM_ab2 = kroneckerProduct(DM_a2,DM_b2);
|
||||
CALL_SUBTEST(check_dimension(DM_ab2,10*4,9*8));
|
||||
|
||||
|
||||
for(int i = 0; i < g_repeat; i++)
|
||||
{
|
||||
double density = Eigen::internal::random<double>(0.01,0.5);
|
||||
@ -196,35 +197,35 @@ EIGEN_DECLARE_TEST(kronecker_product)
|
||||
MatrixXf dA(ra,ca), dB(rb,cb), dC;
|
||||
initSparse(density, dA, sA);
|
||||
initSparse(density, dB, sB);
|
||||
|
||||
|
||||
sC = kroneckerProduct(sA,sB);
|
||||
dC = kroneckerProduct(dA,dB);
|
||||
VERIFY_IS_APPROX(MatrixXf(sC),dC);
|
||||
|
||||
|
||||
sC = kroneckerProduct(sA.transpose(),sB);
|
||||
dC = kroneckerProduct(dA.transpose(),dB);
|
||||
VERIFY_IS_APPROX(MatrixXf(sC),dC);
|
||||
|
||||
|
||||
sC = kroneckerProduct(sA.transpose(),sB.transpose());
|
||||
dC = kroneckerProduct(dA.transpose(),dB.transpose());
|
||||
VERIFY_IS_APPROX(MatrixXf(sC),dC);
|
||||
|
||||
|
||||
sC = kroneckerProduct(sA,sB.transpose());
|
||||
dC = kroneckerProduct(dA,dB.transpose());
|
||||
VERIFY_IS_APPROX(MatrixXf(sC),dC);
|
||||
|
||||
|
||||
sC2 = kroneckerProduct(sA,sB);
|
||||
dC = kroneckerProduct(dA,dB);
|
||||
VERIFY_IS_APPROX(MatrixXf(sC2),dC);
|
||||
|
||||
|
||||
sC2 = kroneckerProduct(dA,sB);
|
||||
dC = kroneckerProduct(dA,dB);
|
||||
VERIFY_IS_APPROX(MatrixXf(sC2),dC);
|
||||
|
||||
|
||||
sC2 = kroneckerProduct(sA,dB);
|
||||
dC = kroneckerProduct(dA,dB);
|
||||
VERIFY_IS_APPROX(MatrixXf(sC2),dC);
|
||||
|
||||
|
||||
sC2 = kroneckerProduct(2*sA,sB);
|
||||
dC = kroneckerProduct(2*dA,dB);
|
||||
VERIFY_IS_APPROX(MatrixXf(sC2),dC);
|
||||
@ -236,7 +237,6 @@ EIGEN_DECLARE_TEST(kronecker_product)
|
||||
#ifdef EIGEN_TEST_PART_2
|
||||
|
||||
// simply check that for a dense kronecker product, sparse module is not needed
|
||||
|
||||
#include "main.h"
|
||||
#include <Eigen/KroneckerProduct>
|
||||
|
||||
|
@ -23,9 +23,8 @@ inline bool test_isApprox_abs(const Type1& a, const Type2& b)
|
||||
|
||||
// Returns a matrix with eigenvalues clustered around 0, 1 and 2.
|
||||
template<typename MatrixType>
|
||||
MatrixType randomMatrixWithRealEivals(const typename MatrixType::Index size)
|
||||
MatrixType randomMatrixWithRealEivals(const Index size)
|
||||
{
|
||||
typedef typename MatrixType::Index Index;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
MatrixType diag = MatrixType::Zero(size, size);
|
||||
@ -42,16 +41,15 @@ template <typename MatrixType, int IsComplex = NumTraits<typename internal::trai
|
||||
struct randomMatrixWithImagEivals
|
||||
{
|
||||
// Returns a matrix with eigenvalues clustered around 0 and +/- i.
|
||||
static MatrixType run(const typename MatrixType::Index size);
|
||||
static MatrixType run(const Index size);
|
||||
};
|
||||
|
||||
// Partial specialization for real matrices
|
||||
template<typename MatrixType>
|
||||
struct randomMatrixWithImagEivals<MatrixType, 0>
|
||||
{
|
||||
static MatrixType run(const typename MatrixType::Index size)
|
||||
static MatrixType run(const Index size)
|
||||
{
|
||||
typedef typename MatrixType::Index Index;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
MatrixType diag = MatrixType::Zero(size, size);
|
||||
Index i = 0;
|
||||
@ -77,9 +75,8 @@ struct randomMatrixWithImagEivals<MatrixType, 0>
|
||||
template<typename MatrixType>
|
||||
struct randomMatrixWithImagEivals<MatrixType, 1>
|
||||
{
|
||||
static MatrixType run(const typename MatrixType::Index size)
|
||||
static MatrixType run(const Index size)
|
||||
{
|
||||
typedef typename MatrixType::Index Index;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
const Scalar imagUnit(0, 1);
|
||||
@ -171,7 +168,6 @@ void testMatrixType(const MatrixType& m)
|
||||
{
|
||||
// Matrices with clustered eigenvalue lead to different code paths
|
||||
// in MatrixFunction.h and are thus useful for testing.
|
||||
typedef typename MatrixType::Index Index;
|
||||
|
||||
const Index size = m.rows();
|
||||
for (int i = 0; i < g_repeat; i++) {
|
||||
|
@ -318,10 +318,6 @@ EIGEN_DECLARE_TEST(openglsupport)
|
||||
|
||||
GLint prg_id = createShader(vtx,frg);
|
||||
|
||||
typedef Vector2d Vector2d;
|
||||
typedef Vector3d Vector3d;
|
||||
typedef Vector4d Vector4d;
|
||||
|
||||
VERIFY_UNIFORM(dv,v2d, Vector2d);
|
||||
VERIFY_UNIFORM(dv,v3d, Vector3d);
|
||||
VERIFY_UNIFORM(dv,v4d, Vector4d);
|
||||
|
@ -30,7 +30,6 @@ struct increment_if_fixed_size
|
||||
template<int Deg, typename POLYNOMIAL, typename SOLVER>
|
||||
bool aux_evalSolver( const POLYNOMIAL& pols, SOLVER& psolve )
|
||||
{
|
||||
typedef typename POLYNOMIAL::Index Index;
|
||||
typedef typename POLYNOMIAL::Scalar Scalar;
|
||||
typedef typename POLYNOMIAL::RealScalar RealScalar;
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user