mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-08-12 03:39:01 +08:00
Improved the performance of inner reductions.
This commit is contained in:
parent
22d02c9855
commit
c1c7f06c35
@ -321,9 +321,12 @@ __global__ void FullReductionKernel(R, const S, I, typename S::CoeffReturnType*)
|
|||||||
|
|
||||||
#ifdef EIGEN_HAS_CUDA_FP16
|
#ifdef EIGEN_HAS_CUDA_FP16
|
||||||
template <typename S, typename R, typename I>
|
template <typename S, typename R, typename I>
|
||||||
__global__ void ReductionInitKernelHalfFloat(R, const S, I, half2*);
|
__global__ void ReductionInitFullReduxKernelHalfFloat(R, const S, I, half2*);
|
||||||
template <int B, int N, typename S, typename R, typename I>
|
template <int B, int N, typename S, typename R, typename I>
|
||||||
__global__ void FullReductionKernelHalfFloat(R, const S, I, half*, half2*);
|
__global__ void FullReductionKernelHalfFloat(R, const S, I, half*, half2*);
|
||||||
|
template <int NPT, typename S, typename R, typename I>
|
||||||
|
__global__ void InnerReductionKernelHalfFloat(R, const S, I, I, half*);
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
template <int NPT, typename S, typename R, typename I>
|
template <int NPT, typename S, typename R, typename I>
|
||||||
@ -615,13 +618,17 @@ struct TensorEvaluator<const TensorReductionOp<Op, Dims, ArgType>, Device>
|
|||||||
#if defined(EIGEN_USE_GPU) && defined(__CUDACC__)
|
#if defined(EIGEN_USE_GPU) && defined(__CUDACC__)
|
||||||
template <int B, int N, typename S, typename R, typename I> friend void internal::FullReductionKernel(R, const S, I, typename S::CoeffReturnType*);
|
template <int B, int N, typename S, typename R, typename I> friend void internal::FullReductionKernel(R, const S, I, typename S::CoeffReturnType*);
|
||||||
#ifdef EIGEN_HAS_CUDA_FP16
|
#ifdef EIGEN_HAS_CUDA_FP16
|
||||||
template <typename S, typename R, typename I> friend void internal::ReductionInitKernelHalfFloat(R, const S, I, half2*);
|
template <typename S, typename R, typename I> friend void internal::ReductionInitFullReduxKernelHalfFloat(R, const S, I, half2*);
|
||||||
template <int B, int N, typename S, typename R, typename I> friend void internal::FullReductionKernelHalfFloat(R, const S, I, half*, half2*);
|
template <int B, int N, typename S, typename R, typename I> friend void internal::FullReductionKernelHalfFloat(R, const S, I, half*, half2*);
|
||||||
|
template <int NPT, typename S, typename R, typename I> friend void internal::InnerReductionKernelHalfFloat(R, const S, I, I, half*);
|
||||||
#endif
|
#endif
|
||||||
template <int NPT, typename S, typename R, typename I> friend void internal::InnerReductionKernel(R, const S, I, I, typename S::CoeffReturnType*);
|
template <int NPT, typename S, typename R, typename I> friend void internal::InnerReductionKernel(R, const S, I, I, typename S::CoeffReturnType*);
|
||||||
|
|
||||||
template <int NPT, typename S, typename R, typename I> friend void internal::OuterReductionKernel(R, const S, I, I, typename S::CoeffReturnType*);
|
template <int NPT, typename S, typename R, typename I> friend void internal::OuterReductionKernel(R, const S, I, I, typename S::CoeffReturnType*);
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
template <typename S, typename O, typename D> friend struct internal::InnerReducer;
|
||||||
|
|
||||||
// Returns the Index in the input tensor of the first value that needs to be
|
// Returns the Index in the input tensor of the first value that needs to be
|
||||||
// used to compute the reduction at output index "index".
|
// used to compute the reduction at output index "index".
|
||||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index firstInput(Index index) const {
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index firstInput(Index index) const {
|
||||||
|
@ -147,8 +147,9 @@ __global__ void FullReductionKernel(Reducer reducer, const Self input, Index num
|
|||||||
#ifdef EIGEN_HAS_CUDA_FP16
|
#ifdef EIGEN_HAS_CUDA_FP16
|
||||||
template <typename Self,
|
template <typename Self,
|
||||||
typename Reducer, typename Index>
|
typename Reducer, typename Index>
|
||||||
__global__ void ReductionInitKernelHalfFloat(Reducer reducer, const Self input, Index num_coeffs, half2* scratch) {
|
__global__ void ReductionInitFullReduxKernelHalfFloat(Reducer reducer, const Self input, Index num_coeffs, half2* scratch) {
|
||||||
eigen_assert(threadIdx.x == 1);
|
eigen_assert(blockDim.x == 1);
|
||||||
|
eigen_assert(gridDim.x == 1);
|
||||||
if (num_coeffs % 2 != 0) {
|
if (num_coeffs % 2 != 0) {
|
||||||
half last = input.m_impl.coeff(num_coeffs-1);
|
half last = input.m_impl.coeff(num_coeffs-1);
|
||||||
*scratch = __halves2half2(last, reducer.initialize());
|
*scratch = __halves2half2(last, reducer.initialize());
|
||||||
@ -157,6 +158,21 @@ __global__ void ReductionInitKernelHalfFloat(Reducer reducer, const Self input,
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
template <typename Self,
|
||||||
|
typename Reducer, typename Index>
|
||||||
|
__global__ void ReductionInitKernelHalfFloat(Reducer reducer, const Self input, Index num_coeffs, half* output) {
|
||||||
|
const Index thread_id = blockIdx.x * blockDim.x + threadIdx.x;
|
||||||
|
const Index num_threads = blockDim.x * gridDim.x;
|
||||||
|
const Index num_packets = num_coeffs / 2;
|
||||||
|
for (Index i = thread_id; i < num_packets; i += num_threads) {
|
||||||
|
((half2*)output)[i] = reducer.template initializePacket<half2>();
|
||||||
|
}
|
||||||
|
|
||||||
|
if (thread_id == 0 && num_coeffs % 2 != 0) {
|
||||||
|
output[num_coeffs-1] = reducer.initialize();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
template <int BlockSize, int NumPerThread, typename Self,
|
template <int BlockSize, int NumPerThread, typename Self,
|
||||||
typename Reducer, typename Index>
|
typename Reducer, typename Index>
|
||||||
__global__ void FullReductionKernelHalfFloat(Reducer reducer, const Self input, Index num_coeffs,
|
__global__ void FullReductionKernelHalfFloat(Reducer reducer, const Self input, Index num_coeffs,
|
||||||
@ -251,7 +267,7 @@ struct FullReductionLauncher {
|
|||||||
if (num_blocks > 1) {
|
if (num_blocks > 1) {
|
||||||
// We initialize the output and the scrathpad outside the reduction kernel when we can't be sure that there
|
// We initialize the output and the scrathpad outside the reduction kernel when we can't be sure that there
|
||||||
// won't be a race conditions between multiple thread blocks.
|
// won't be a race conditions between multiple thread blocks.
|
||||||
LAUNCH_CUDA_KERNEL((ReductionInitKernelHalfFloat<Self, Op, Index>),
|
LAUNCH_CUDA_KERNEL((ReductionInitFullReduxKernelHalfFloat<Self, Op, Index>),
|
||||||
1, 1, 0, device, reducer, self, num_coeffs, scratch);
|
1, 1, 0, device, reducer, self, num_coeffs, scratch);
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -361,11 +377,11 @@ __global__ void InnerReductionKernel(Reducer reducer, const Self input, Index nu
|
|||||||
}
|
}
|
||||||
|
|
||||||
#ifdef EIGEN_HAS_CUDA_FP16
|
#ifdef EIGEN_HAS_CUDA_FP16
|
||||||
/*
|
|
||||||
template <int NumPerThread, typename Self,
|
template <int NumPerThread, typename Self,
|
||||||
typename Reducer, typename Index>
|
typename Reducer, typename Index>
|
||||||
__global__ void InnerReductionKernelHalfFloat(Reducer reducer, const Self input, Index num_coeffs_to_reduce, Index num_preserved_coeffs,
|
__global__ void InnerReductionKernelHalfFloat(Reducer reducer, const Self input, Index num_coeffs_to_reduce, Index num_preserved_coeffs,
|
||||||
half* output, half2* scratch) {
|
half* output) {
|
||||||
eigen_assert(blockDim.y == 1);
|
eigen_assert(blockDim.y == 1);
|
||||||
eigen_assert(blockDim.z == 1);
|
eigen_assert(blockDim.z == 1);
|
||||||
eigen_assert(gridDim.y == 1);
|
eigen_assert(gridDim.y == 1);
|
||||||
@ -375,101 +391,105 @@ __global__ void InnerReductionKernelHalfFloat(Reducer reducer, const Self input,
|
|||||||
eigen_assert(NumPerThread % unroll_times == 0);
|
eigen_assert(NumPerThread % unroll_times == 0);
|
||||||
eigen_assert(unroll_times % 2 == 0);
|
eigen_assert(unroll_times % 2 == 0);
|
||||||
|
|
||||||
const Index input_col_blocks = divup<Index>(num_coeffs_to_reduce, blockDim.x * NumPerThread);
|
const Index input_col_blocks = divup<Index>(num_coeffs_to_reduce, blockDim.x * NumPerThread * 2);
|
||||||
const Index num_input_blocks = input_col_blocks * num_preserved_coeffs;
|
const Index num_input_blocks = divup<Index>(input_col_blocks * num_preserved_coeffs, 2);
|
||||||
|
|
||||||
const Index num_threads = blockDim.x * gridDim.x;
|
const Index num_threads = blockDim.x * gridDim.x;
|
||||||
const Index thread_id = blockIdx.x * blockDim.x + threadIdx.x;
|
const Index thread_id = blockIdx.x * blockDim.x + threadIdx.x;
|
||||||
|
|
||||||
// Initialize the output values if they weren't initialized by the ReductionInitKernel
|
// Initialize the output values if they weren't initialized by the ReductionInitKernel
|
||||||
if (gridDim.x == 1) {
|
if (gridDim.x == 1) {
|
||||||
Index i = thread_id;
|
Index i = 2*thread_id;
|
||||||
for (; i < num_preserved_coeffs; i += 2*num_threads) {
|
for (; i + 1 < num_preserved_coeffs; i += 2*num_threads) {
|
||||||
((half2*)output)[i] = reducer.initializePacket();
|
half* loc = output + i;
|
||||||
|
*((half2*)loc) = reducer.template initializePacket<half2>();
|
||||||
}
|
}
|
||||||
if (i + 1 < num_preserved_coeffs) {
|
if (i < num_preserved_coeffs) {
|
||||||
output[i] = reducer.initialize();
|
output[i] = reducer.initialize();
|
||||||
}
|
}
|
||||||
__syncthreads();
|
__syncthreads();
|
||||||
}
|
}
|
||||||
|
|
||||||
for (Index i = blockIdx.x; i < num_input_blocks; i += gridDim.x) {
|
for (Index i = blockIdx.x; i < num_input_blocks; i += gridDim.x) {
|
||||||
const Index row = i / input_col_blocks;
|
const Index row = 2 * (i / input_col_blocks);
|
||||||
|
|
||||||
if (row + 1 < num_preserved_coeffs) {
|
if (row + 1 < num_preserved_coeffs) {
|
||||||
const Index col_block = i % input_col_blocks;
|
const Index col_block = i % input_col_blocks;
|
||||||
const Index col_begin = col_block * blockDim.x * NumPerThread + threadIdx.x;
|
const Index col_begin = 2 * (col_block * blockDim.x * NumPerThread + threadIdx.x);
|
||||||
|
|
||||||
half2 reduced_val1 = reducer.initializePacket();
|
half2 reduced_val1 = reducer.template initializePacket<half2>();
|
||||||
half2 reduced_val2 = reducer.initializePacket();
|
half2 reduced_val2 = reducer.template initializePacket<half2>();
|
||||||
|
|
||||||
for (Index j = 0; j < NumPerThread; j += unroll_times) {
|
for (Index j = 0; j < NumPerThread; j += unroll_times) {
|
||||||
const Index last_col = col_begin + blockDim.x * (j + unroll_times - 1);
|
const Index last_col = col_begin + blockDim.x * (j + unroll_times - 1) * 2;
|
||||||
if (last_col >= num_coeffs_to_reduce) {
|
if (last_col >= num_coeffs_to_reduce) {
|
||||||
Index col = col_begin + blockDim.x * j;
|
Index col = col_begin + blockDim.x * j;
|
||||||
for (; col + 1 < num_coeffs_to_reduce; col += blockDim.x) {
|
for (; col + 1 < num_coeffs_to_reduce; col += blockDim.x) {
|
||||||
const half2 val = input.m_impl.packet(row * num_coeffs_to_reduce + col);
|
const half2 val1 = input.m_impl.template packet<Unaligned>(row * num_coeffs_to_reduce + col);
|
||||||
reducer.reduce(val, &reduced_val);
|
reducer.reducePacket(val1, &reduced_val1);
|
||||||
// do the same for reduce val2 here
|
const half2 val2 = input.m_impl.template packet<Unaligned>((row+1) * num_coeffs_to_reduce + col);
|
||||||
|
reducer.reducePacket(val2, &reduced_val2);
|
||||||
}
|
}
|
||||||
if (col < num_coeffs_to_reduce) {
|
if (col < num_coeffs_to_reduce) {
|
||||||
// Peel;
|
// Peel;
|
||||||
const half last = input.m_impl.coeff(row * num_coeffs_to_reduce + col+1);
|
const half last1 = input.m_impl.coeff(row * num_coeffs_to_reduce + col);
|
||||||
const half2 val = __halves2half2(last, reducer.initialize());
|
const half2 val1 = __halves2half2(last1, reducer.initialize());
|
||||||
reducer.reducePacket(val, &reduced_val);
|
reducer.reducePacket(val1, &reduced_val1);
|
||||||
|
const half last2 = input.m_impl.coeff((row+1) * num_coeffs_to_reduce + col);
|
||||||
|
const half2 val2 = __halves2half2(last2, reducer.initialize());
|
||||||
|
reducer.reducePacket(val2, &reduced_val2);
|
||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
} else {
|
} else {
|
||||||
// Faster version of the loop with no branches after unrolling.
|
// Faster version of the loop with no branches after unrolling.
|
||||||
#pragma unroll
|
#pragma unroll
|
||||||
for (int k = 0; k < unroll_times; ++k) {
|
for (int k = 0; k < unroll_times; ++k) {
|
||||||
const Index col = col_begin + blockDim.x * (j + k);
|
const Index col = col_begin + blockDim.x * (j + k) * 2;
|
||||||
reducer.reduce(input.m_impl.packet(row * num_coeffs_to_reduce + col), &reduced_val);
|
reducer.reducePacket(input.m_impl.template packet<Unaligned>(row * num_coeffs_to_reduce + col), &reduced_val1);
|
||||||
|
reducer.reducePacket(input.m_impl.template packet<Unaligned>((row + 1)* num_coeffs_to_reduce + col), &reduced_val2);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
#pragma unroll
|
#pragma unroll
|
||||||
for (int offset = warpSize/2; offset > 0; offset /= 2) {
|
for (int offset = warpSize/2; offset > 0; offset /= 2) {
|
||||||
reducer.reducePacket(__shfl_down(reduced_val, offset, warpSize), &reduced_val);
|
reducer.reducePacket(__shfl_down(reduced_val1, offset, warpSize), &reduced_val1);
|
||||||
|
reducer.reducePacket(__shfl_down(reduced_val2, offset, warpSize), &reduced_val2);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
half val1 = __low2half(reduced_val1);
|
||||||
|
reducer.reduce(__high2half(reduced_val1), &val1);
|
||||||
|
half val2 = __low2half(reduced_val2);
|
||||||
|
reducer.reduce(__high2half(reduced_val2), &val2);
|
||||||
|
half2 val = __halves2half2(val1, val2);
|
||||||
|
|
||||||
if ((threadIdx.x & (warpSize - 1)) == 0) {
|
if ((threadIdx.x & (warpSize - 1)) == 0) {
|
||||||
if (row + 1 < num_preserved_coeffs) {
|
half* loc = output + row;
|
||||||
atomicReduce(&(output[row]), reduced_val, reducer);
|
atomicReduce((half2*)loc, val, reducer);
|
||||||
}
|
|
||||||
else {
|
|
||||||
atomicReduce(scratch, reduced_val, reducer);
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
|
||||||
*/
|
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
template <typename Self, typename Op>
|
template <typename Self, typename Op>
|
||||||
struct InnerReducer<Self, Op, GpuDevice> {
|
struct InnerReductionLauncher {
|
||||||
// Unfortunately nvidia doesn't support well exotic types such as complex,
|
// Unfortunately nvidia doesn't support well exotic types such as complex,
|
||||||
// so reduce the scope of the optimized version of the code to the simple case
|
// so reduce the scope of the optimized version of the code to the simple case
|
||||||
// of floats.
|
// of floats.
|
||||||
static const bool HasOptimizedImplementation = !Op::IsStateful &&
|
static const bool HasOptimizedImplementation = !Op::IsStateful &&
|
||||||
internal::is_same<typename Self::CoeffReturnType, float>::value;
|
internal::is_same<typename Self::CoeffReturnType, float>::value;
|
||||||
|
|
||||||
template <typename Device, typename OutputType>
|
template <typename OutputType>
|
||||||
static EIGEN_DEVICE_FUNC bool run(const Self&, Op&, const Device&, OutputType*, typename Self::Index, typename Self::Index) {
|
static EIGEN_DEVICE_FUNC bool run(const Self&, Op&, const GpuDevice&, OutputType*, typename Self::Index, typename Self::Index) {
|
||||||
assert(false && "Should only be called to reduce floats on a gpu device");
|
assert(false && "Should only be called to reduce floats and half floats on a gpu device");
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
static bool run(const Self& self, Op& reducer, const GpuDevice& device, float* output, typename Self::Index num_coeffs_to_reduce, typename Self::Index num_preserved_vals) {
|
static bool run(const Self& self, Op& reducer, const GpuDevice& device, float* output, typename Self::Index num_coeffs_to_reduce, typename Self::Index num_preserved_vals) {
|
||||||
typedef typename Self::Index Index;
|
typedef typename Self::Index Index;
|
||||||
|
|
||||||
// It's faster to use the usual code.
|
|
||||||
if (num_coeffs_to_reduce <= 32) {
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
|
|
||||||
const Index num_coeffs = num_coeffs_to_reduce * num_preserved_vals;
|
const Index num_coeffs = num_coeffs_to_reduce * num_preserved_vals;
|
||||||
const int block_size = 256;
|
const int block_size = 256;
|
||||||
const int num_per_thread = 128;
|
const int num_per_thread = 128;
|
||||||
@ -495,9 +515,75 @@ struct InnerReducer<Self, Op, GpuDevice> {
|
|||||||
|
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#ifdef EIGEN_HAS_CUDA_FP16
|
||||||
|
static bool run(const Self& self, Op& reducer, const GpuDevice& device, half* output, typename Self::Index num_coeffs_to_reduce, typename Self::Index num_preserved_vals) {
|
||||||
|
typedef typename Self::Index Index;
|
||||||
|
|
||||||
|
if (num_preserved_vals % 2 != 0) {
|
||||||
|
// Not supported yet, revert to the slower code path
|
||||||
|
std::cout << "BYPASSING OPTIMIZED CODE PATH" << std::endl;
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
const Index num_coeffs = num_coeffs_to_reduce * num_preserved_vals;
|
||||||
|
const int block_size = /*256*/128;
|
||||||
|
const int num_per_thread = /*128*/64;
|
||||||
|
const int dyn_blocks = divup<int>(num_coeffs, block_size * num_per_thread);
|
||||||
|
const int max_blocks = device.getNumCudaMultiProcessors() *
|
||||||
|
device.maxCudaThreadsPerMultiProcessor() / block_size;
|
||||||
|
const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks);
|
||||||
|
|
||||||
|
if (num_blocks > 1) {
|
||||||
|
// We initialize the outputs outside the reduction kernel when we can't be sure that there
|
||||||
|
// won't be a race conditions between multiple thread blocks.
|
||||||
|
const int dyn_blocks = divup<int>(num_preserved_vals, 1024);
|
||||||
|
const int max_blocks = device.getNumCudaMultiProcessors() *
|
||||||
|
device.maxCudaThreadsPerMultiProcessor() / 1024;
|
||||||
|
const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks);
|
||||||
|
LAUNCH_CUDA_KERNEL((ReductionInitKernelHalfFloat<Self, Op, Index>),
|
||||||
|
1, 1, 0, device, reducer, self, num_preserved_vals, output);
|
||||||
|
}
|
||||||
|
|
||||||
|
LAUNCH_CUDA_KERNEL((InnerReductionKernelHalfFloat<num_per_thread, Self, Op, Index>),
|
||||||
|
num_blocks, block_size, 0, device, reducer, self, num_coeffs_to_reduce, num_preserved_vals, output);
|
||||||
|
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
#endif
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|
||||||
|
template <typename Self, typename Op>
|
||||||
|
struct InnerReducer<Self, Op, GpuDevice> {
|
||||||
|
// Unfortunately nvidia doesn't support well exotic types such as complex,
|
||||||
|
// so reduce the scope of the optimized version of the code to the simple case
|
||||||
|
// of floats and half floats.
|
||||||
|
#ifdef EIGEN_HAS_CUDA_FP16
|
||||||
|
static const bool HasOptimizedImplementation = !Op::IsStateful &&
|
||||||
|
(internal::is_same<typename Self::CoeffReturnType, float>::value ||
|
||||||
|
internal::is_same<typename Self::CoeffReturnType, Eigen::half>::value);
|
||||||
|
#else
|
||||||
|
static const bool HasOptimizedImplementation = !Op::IsStateful &&
|
||||||
|
internal::is_same<typename Self::CoeffReturnType, float>::value;
|
||||||
|
#endif
|
||||||
|
|
||||||
|
template <typename OutputType>
|
||||||
|
static bool run(const Self& self, Op& reducer, const GpuDevice& device, OutputType* output, typename Self::Index num_coeffs_to_reduce, typename Self::Index num_preserved_vals) {
|
||||||
|
assert(HasOptimizedImplementation && "Should only be called on floats or half floats");
|
||||||
|
const Index num_coeffs = array_prod(self.m_impl.dimensions());
|
||||||
|
// Don't crash when we're called with an input tensor of size 0.
|
||||||
|
if (num_coeffs == 0) {
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
// It's faster to use the usual code.
|
||||||
|
if (num_coeffs_to_reduce <= 128) {
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
return InnerReductionLauncher<Self, Op>::run(self, reducer, device, output, num_coeffs_to_reduce, num_preserved_vals);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
template <int NumPerThread, typename Self,
|
template <int NumPerThread, typename Self,
|
||||||
typename Reducer, typename Index>
|
typename Reducer, typename Index>
|
||||||
__global__ void OuterReductionKernel(Reducer reducer, const Self input, Index num_coeffs_to_reduce, Index num_preserved_coeffs,
|
__global__ void OuterReductionKernel(Reducer reducer, const Self input, Index num_coeffs_to_reduce, Index num_preserved_coeffs,
|
||||||
|
@ -249,6 +249,10 @@ void test_cuda_contractions() {
|
|||||||
|
|
||||||
|
|
||||||
void test_cuda_reductions(int size1, int size2, int redux) {
|
void test_cuda_reductions(int size1, int size2, int redux) {
|
||||||
|
|
||||||
|
std::cout << "Reducing " << size1 << " by " << size2
|
||||||
|
<< " tensor along dim " << redux << std::endl;
|
||||||
|
|
||||||
Eigen::CudaStreamDevice stream;
|
Eigen::CudaStreamDevice stream;
|
||||||
Eigen::GpuDevice gpu_device(&stream);
|
Eigen::GpuDevice gpu_device(&stream);
|
||||||
int num_elem = size1*size2;
|
int num_elem = size1*size2;
|
||||||
@ -268,8 +272,8 @@ void test_cuda_reductions(int size1, int size2, int redux) {
|
|||||||
Eigen::TensorMap<Eigen::Tensor<Eigen::half, 1>, Eigen::Aligned> gpu_res_float(
|
Eigen::TensorMap<Eigen::Tensor<Eigen::half, 1>, Eigen::Aligned> gpu_res_float(
|
||||||
d_res_float, result_size);
|
d_res_float, result_size);
|
||||||
|
|
||||||
gpu_float1.device(gpu_device) = gpu_float1.random();
|
gpu_float1.device(gpu_device) = gpu_float1.random() - 0.5f;
|
||||||
gpu_float2.device(gpu_device) = gpu_float2.random();
|
gpu_float2.device(gpu_device) = gpu_float2.random() - 0.5f;
|
||||||
|
|
||||||
Eigen::array<int, 1> redux_dim = {{redux}};
|
Eigen::array<int, 1> redux_dim = {{redux}};
|
||||||
gpu_res_float.device(gpu_device) = gpu_float1.sum(redux_dim).cast<Eigen::half>();
|
gpu_res_float.device(gpu_device) = gpu_float1.sum(redux_dim).cast<Eigen::half>();
|
||||||
@ -282,7 +286,6 @@ void test_cuda_reductions(int size1, int size2, int redux) {
|
|||||||
gpu_device.synchronize();
|
gpu_device.synchronize();
|
||||||
|
|
||||||
for (int i = 0; i < result_size; ++i) {
|
for (int i = 0; i < result_size; ++i) {
|
||||||
std::cout << "Checking redux " << i << std::endl;
|
|
||||||
VERIFY_IS_APPROX(full_prec(i), half_prec(i));
|
VERIFY_IS_APPROX(full_prec(i), half_prec(i));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user