Improved the performance of inner reductions.

This commit is contained in:
Benoit Steiner 2016-05-26 11:53:59 -07:00
parent 22d02c9855
commit c1c7f06c35
3 changed files with 142 additions and 46 deletions

View File

@ -321,9 +321,12 @@ __global__ void FullReductionKernel(R, const S, I, typename S::CoeffReturnType*)
#ifdef EIGEN_HAS_CUDA_FP16 #ifdef EIGEN_HAS_CUDA_FP16
template <typename S, typename R, typename I> template <typename S, typename R, typename I>
__global__ void ReductionInitKernelHalfFloat(R, const S, I, half2*); __global__ void ReductionInitFullReduxKernelHalfFloat(R, const S, I, half2*);
template <int B, int N, typename S, typename R, typename I> template <int B, int N, typename S, typename R, typename I>
__global__ void FullReductionKernelHalfFloat(R, const S, I, half*, half2*); __global__ void FullReductionKernelHalfFloat(R, const S, I, half*, half2*);
template <int NPT, typename S, typename R, typename I>
__global__ void InnerReductionKernelHalfFloat(R, const S, I, I, half*);
#endif #endif
template <int NPT, typename S, typename R, typename I> template <int NPT, typename S, typename R, typename I>
@ -615,13 +618,17 @@ struct TensorEvaluator<const TensorReductionOp<Op, Dims, ArgType>, Device>
#if defined(EIGEN_USE_GPU) && defined(__CUDACC__) #if defined(EIGEN_USE_GPU) && defined(__CUDACC__)
template <int B, int N, typename S, typename R, typename I> friend void internal::FullReductionKernel(R, const S, I, typename S::CoeffReturnType*); template <int B, int N, typename S, typename R, typename I> friend void internal::FullReductionKernel(R, const S, I, typename S::CoeffReturnType*);
#ifdef EIGEN_HAS_CUDA_FP16 #ifdef EIGEN_HAS_CUDA_FP16
template <typename S, typename R, typename I> friend void internal::ReductionInitKernelHalfFloat(R, const S, I, half2*); template <typename S, typename R, typename I> friend void internal::ReductionInitFullReduxKernelHalfFloat(R, const S, I, half2*);
template <int B, int N, typename S, typename R, typename I> friend void internal::FullReductionKernelHalfFloat(R, const S, I, half*, half2*); template <int B, int N, typename S, typename R, typename I> friend void internal::FullReductionKernelHalfFloat(R, const S, I, half*, half2*);
template <int NPT, typename S, typename R, typename I> friend void internal::InnerReductionKernelHalfFloat(R, const S, I, I, half*);
#endif #endif
template <int NPT, typename S, typename R, typename I> friend void internal::InnerReductionKernel(R, const S, I, I, typename S::CoeffReturnType*); template <int NPT, typename S, typename R, typename I> friend void internal::InnerReductionKernel(R, const S, I, I, typename S::CoeffReturnType*);
template <int NPT, typename S, typename R, typename I> friend void internal::OuterReductionKernel(R, const S, I, I, typename S::CoeffReturnType*); template <int NPT, typename S, typename R, typename I> friend void internal::OuterReductionKernel(R, const S, I, I, typename S::CoeffReturnType*);
#endif #endif
template <typename S, typename O, typename D> friend struct internal::InnerReducer;
// Returns the Index in the input tensor of the first value that needs to be // Returns the Index in the input tensor of the first value that needs to be
// used to compute the reduction at output index "index". // used to compute the reduction at output index "index".
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index firstInput(Index index) const { EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index firstInput(Index index) const {

View File

@ -147,8 +147,9 @@ __global__ void FullReductionKernel(Reducer reducer, const Self input, Index num
#ifdef EIGEN_HAS_CUDA_FP16 #ifdef EIGEN_HAS_CUDA_FP16
template <typename Self, template <typename Self,
typename Reducer, typename Index> typename Reducer, typename Index>
__global__ void ReductionInitKernelHalfFloat(Reducer reducer, const Self input, Index num_coeffs, half2* scratch) { __global__ void ReductionInitFullReduxKernelHalfFloat(Reducer reducer, const Self input, Index num_coeffs, half2* scratch) {
eigen_assert(threadIdx.x == 1); eigen_assert(blockDim.x == 1);
eigen_assert(gridDim.x == 1);
if (num_coeffs % 2 != 0) { if (num_coeffs % 2 != 0) {
half last = input.m_impl.coeff(num_coeffs-1); half last = input.m_impl.coeff(num_coeffs-1);
*scratch = __halves2half2(last, reducer.initialize()); *scratch = __halves2half2(last, reducer.initialize());
@ -157,6 +158,21 @@ __global__ void ReductionInitKernelHalfFloat(Reducer reducer, const Self input,
} }
} }
template <typename Self,
typename Reducer, typename Index>
__global__ void ReductionInitKernelHalfFloat(Reducer reducer, const Self input, Index num_coeffs, half* output) {
const Index thread_id = blockIdx.x * blockDim.x + threadIdx.x;
const Index num_threads = blockDim.x * gridDim.x;
const Index num_packets = num_coeffs / 2;
for (Index i = thread_id; i < num_packets; i += num_threads) {
((half2*)output)[i] = reducer.template initializePacket<half2>();
}
if (thread_id == 0 && num_coeffs % 2 != 0) {
output[num_coeffs-1] = reducer.initialize();
}
}
template <int BlockSize, int NumPerThread, typename Self, template <int BlockSize, int NumPerThread, typename Self,
typename Reducer, typename Index> typename Reducer, typename Index>
__global__ void FullReductionKernelHalfFloat(Reducer reducer, const Self input, Index num_coeffs, __global__ void FullReductionKernelHalfFloat(Reducer reducer, const Self input, Index num_coeffs,
@ -251,7 +267,7 @@ struct FullReductionLauncher {
if (num_blocks > 1) { if (num_blocks > 1) {
// We initialize the output and the scrathpad outside the reduction kernel when we can't be sure that there // We initialize the output and the scrathpad outside the reduction kernel when we can't be sure that there
// won't be a race conditions between multiple thread blocks. // won't be a race conditions between multiple thread blocks.
LAUNCH_CUDA_KERNEL((ReductionInitKernelHalfFloat<Self, Op, Index>), LAUNCH_CUDA_KERNEL((ReductionInitFullReduxKernelHalfFloat<Self, Op, Index>),
1, 1, 0, device, reducer, self, num_coeffs, scratch); 1, 1, 0, device, reducer, self, num_coeffs, scratch);
} }
@ -361,11 +377,11 @@ __global__ void InnerReductionKernel(Reducer reducer, const Self input, Index nu
} }
#ifdef EIGEN_HAS_CUDA_FP16 #ifdef EIGEN_HAS_CUDA_FP16
/*
template <int NumPerThread, typename Self, template <int NumPerThread, typename Self,
typename Reducer, typename Index> typename Reducer, typename Index>
__global__ void InnerReductionKernelHalfFloat(Reducer reducer, const Self input, Index num_coeffs_to_reduce, Index num_preserved_coeffs, __global__ void InnerReductionKernelHalfFloat(Reducer reducer, const Self input, Index num_coeffs_to_reduce, Index num_preserved_coeffs,
half* output, half2* scratch) { half* output) {
eigen_assert(blockDim.y == 1); eigen_assert(blockDim.y == 1);
eigen_assert(blockDim.z == 1); eigen_assert(blockDim.z == 1);
eigen_assert(gridDim.y == 1); eigen_assert(gridDim.y == 1);
@ -375,101 +391,105 @@ __global__ void InnerReductionKernelHalfFloat(Reducer reducer, const Self input,
eigen_assert(NumPerThread % unroll_times == 0); eigen_assert(NumPerThread % unroll_times == 0);
eigen_assert(unroll_times % 2 == 0); eigen_assert(unroll_times % 2 == 0);
const Index input_col_blocks = divup<Index>(num_coeffs_to_reduce, blockDim.x * NumPerThread); const Index input_col_blocks = divup<Index>(num_coeffs_to_reduce, blockDim.x * NumPerThread * 2);
const Index num_input_blocks = input_col_blocks * num_preserved_coeffs; const Index num_input_blocks = divup<Index>(input_col_blocks * num_preserved_coeffs, 2);
const Index num_threads = blockDim.x * gridDim.x; const Index num_threads = blockDim.x * gridDim.x;
const Index thread_id = blockIdx.x * blockDim.x + threadIdx.x; const Index thread_id = blockIdx.x * blockDim.x + threadIdx.x;
// Initialize the output values if they weren't initialized by the ReductionInitKernel // Initialize the output values if they weren't initialized by the ReductionInitKernel
if (gridDim.x == 1) { if (gridDim.x == 1) {
Index i = thread_id; Index i = 2*thread_id;
for (; i < num_preserved_coeffs; i += 2*num_threads) { for (; i + 1 < num_preserved_coeffs; i += 2*num_threads) {
((half2*)output)[i] = reducer.initializePacket(); half* loc = output + i;
*((half2*)loc) = reducer.template initializePacket<half2>();
} }
if (i + 1 < num_preserved_coeffs) { if (i < num_preserved_coeffs) {
output[i] = reducer.initialize(); output[i] = reducer.initialize();
} }
__syncthreads(); __syncthreads();
} }
for (Index i = blockIdx.x; i < num_input_blocks; i += gridDim.x) { for (Index i = blockIdx.x; i < num_input_blocks; i += gridDim.x) {
const Index row = i / input_col_blocks; const Index row = 2 * (i / input_col_blocks);
if (row + 1 < num_preserved_coeffs) { if (row + 1 < num_preserved_coeffs) {
const Index col_block = i % input_col_blocks; const Index col_block = i % input_col_blocks;
const Index col_begin = col_block * blockDim.x * NumPerThread + threadIdx.x; const Index col_begin = 2 * (col_block * blockDim.x * NumPerThread + threadIdx.x);
half2 reduced_val1 = reducer.initializePacket(); half2 reduced_val1 = reducer.template initializePacket<half2>();
half2 reduced_val2 = reducer.initializePacket(); half2 reduced_val2 = reducer.template initializePacket<half2>();
for (Index j = 0; j < NumPerThread; j += unroll_times) { for (Index j = 0; j < NumPerThread; j += unroll_times) {
const Index last_col = col_begin + blockDim.x * (j + unroll_times - 1); const Index last_col = col_begin + blockDim.x * (j + unroll_times - 1) * 2;
if (last_col >= num_coeffs_to_reduce) { if (last_col >= num_coeffs_to_reduce) {
Index col = col_begin + blockDim.x * j; Index col = col_begin + blockDim.x * j;
for (; col + 1 < num_coeffs_to_reduce; col += blockDim.x) { for (; col + 1 < num_coeffs_to_reduce; col += blockDim.x) {
const half2 val = input.m_impl.packet(row * num_coeffs_to_reduce + col); const half2 val1 = input.m_impl.template packet<Unaligned>(row * num_coeffs_to_reduce + col);
reducer.reduce(val, &reduced_val); reducer.reducePacket(val1, &reduced_val1);
// do the same for reduce val2 here const half2 val2 = input.m_impl.template packet<Unaligned>((row+1) * num_coeffs_to_reduce + col);
reducer.reducePacket(val2, &reduced_val2);
} }
if (col < num_coeffs_to_reduce) { if (col < num_coeffs_to_reduce) {
// Peel; // Peel;
const half last = input.m_impl.coeff(row * num_coeffs_to_reduce + col+1); const half last1 = input.m_impl.coeff(row * num_coeffs_to_reduce + col);
const half2 val = __halves2half2(last, reducer.initialize()); const half2 val1 = __halves2half2(last1, reducer.initialize());
reducer.reducePacket(val, &reduced_val); reducer.reducePacket(val1, &reduced_val1);
const half last2 = input.m_impl.coeff((row+1) * num_coeffs_to_reduce + col);
const half2 val2 = __halves2half2(last2, reducer.initialize());
reducer.reducePacket(val2, &reduced_val2);
} }
break; break;
} else { } else {
// Faster version of the loop with no branches after unrolling. // Faster version of the loop with no branches after unrolling.
#pragma unroll #pragma unroll
for (int k = 0; k < unroll_times; ++k) { for (int k = 0; k < unroll_times; ++k) {
const Index col = col_begin + blockDim.x * (j + k); const Index col = col_begin + blockDim.x * (j + k) * 2;
reducer.reduce(input.m_impl.packet(row * num_coeffs_to_reduce + col), &reduced_val); reducer.reducePacket(input.m_impl.template packet<Unaligned>(row * num_coeffs_to_reduce + col), &reduced_val1);
reducer.reducePacket(input.m_impl.template packet<Unaligned>((row + 1)* num_coeffs_to_reduce + col), &reduced_val2);
} }
} }
} }
#pragma unroll #pragma unroll
for (int offset = warpSize/2; offset > 0; offset /= 2) { for (int offset = warpSize/2; offset > 0; offset /= 2) {
reducer.reducePacket(__shfl_down(reduced_val, offset, warpSize), &reduced_val); reducer.reducePacket(__shfl_down(reduced_val1, offset, warpSize), &reduced_val1);
reducer.reducePacket(__shfl_down(reduced_val2, offset, warpSize), &reduced_val2);
} }
half val1 = __low2half(reduced_val1);
reducer.reduce(__high2half(reduced_val1), &val1);
half val2 = __low2half(reduced_val2);
reducer.reduce(__high2half(reduced_val2), &val2);
half2 val = __halves2half2(val1, val2);
if ((threadIdx.x & (warpSize - 1)) == 0) { if ((threadIdx.x & (warpSize - 1)) == 0) {
if (row + 1 < num_preserved_coeffs) { half* loc = output + row;
atomicReduce(&(output[row]), reduced_val, reducer); atomicReduce((half2*)loc, val, reducer);
}
else {
atomicReduce(scratch, reduced_val, reducer);
}
} }
} }
} }
} }
*/
#endif #endif
template <typename Self, typename Op> template <typename Self, typename Op>
struct InnerReducer<Self, Op, GpuDevice> { struct InnerReductionLauncher {
// Unfortunately nvidia doesn't support well exotic types such as complex, // Unfortunately nvidia doesn't support well exotic types such as complex,
// so reduce the scope of the optimized version of the code to the simple case // so reduce the scope of the optimized version of the code to the simple case
// of floats. // of floats.
static const bool HasOptimizedImplementation = !Op::IsStateful && static const bool HasOptimizedImplementation = !Op::IsStateful &&
internal::is_same<typename Self::CoeffReturnType, float>::value; internal::is_same<typename Self::CoeffReturnType, float>::value;
template <typename Device, typename OutputType> template <typename OutputType>
static EIGEN_DEVICE_FUNC bool run(const Self&, Op&, const Device&, OutputType*, typename Self::Index, typename Self::Index) { static EIGEN_DEVICE_FUNC bool run(const Self&, Op&, const GpuDevice&, OutputType*, typename Self::Index, typename Self::Index) {
assert(false && "Should only be called to reduce floats on a gpu device"); assert(false && "Should only be called to reduce floats and half floats on a gpu device");
return true; return true;
} }
static bool run(const Self& self, Op& reducer, const GpuDevice& device, float* output, typename Self::Index num_coeffs_to_reduce, typename Self::Index num_preserved_vals) { static bool run(const Self& self, Op& reducer, const GpuDevice& device, float* output, typename Self::Index num_coeffs_to_reduce, typename Self::Index num_preserved_vals) {
typedef typename Self::Index Index; typedef typename Self::Index Index;
// It's faster to use the usual code.
if (num_coeffs_to_reduce <= 32) {
return true;
}
const Index num_coeffs = num_coeffs_to_reduce * num_preserved_vals; const Index num_coeffs = num_coeffs_to_reduce * num_preserved_vals;
const int block_size = 256; const int block_size = 256;
const int num_per_thread = 128; const int num_per_thread = 128;
@ -495,9 +515,75 @@ struct InnerReducer<Self, Op, GpuDevice> {
return false; return false;
} }
#ifdef EIGEN_HAS_CUDA_FP16
static bool run(const Self& self, Op& reducer, const GpuDevice& device, half* output, typename Self::Index num_coeffs_to_reduce, typename Self::Index num_preserved_vals) {
typedef typename Self::Index Index;
if (num_preserved_vals % 2 != 0) {
// Not supported yet, revert to the slower code path
std::cout << "BYPASSING OPTIMIZED CODE PATH" << std::endl;
return true;
}
const Index num_coeffs = num_coeffs_to_reduce * num_preserved_vals;
const int block_size = /*256*/128;
const int num_per_thread = /*128*/64;
const int dyn_blocks = divup<int>(num_coeffs, block_size * num_per_thread);
const int max_blocks = device.getNumCudaMultiProcessors() *
device.maxCudaThreadsPerMultiProcessor() / block_size;
const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks);
if (num_blocks > 1) {
// We initialize the outputs outside the reduction kernel when we can't be sure that there
// won't be a race conditions between multiple thread blocks.
const int dyn_blocks = divup<int>(num_preserved_vals, 1024);
const int max_blocks = device.getNumCudaMultiProcessors() *
device.maxCudaThreadsPerMultiProcessor() / 1024;
const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks);
LAUNCH_CUDA_KERNEL((ReductionInitKernelHalfFloat<Self, Op, Index>),
1, 1, 0, device, reducer, self, num_preserved_vals, output);
}
LAUNCH_CUDA_KERNEL((InnerReductionKernelHalfFloat<num_per_thread, Self, Op, Index>),
num_blocks, block_size, 0, device, reducer, self, num_coeffs_to_reduce, num_preserved_vals, output);
return false;
}
#endif
}; };
template <typename Self, typename Op>
struct InnerReducer<Self, Op, GpuDevice> {
// Unfortunately nvidia doesn't support well exotic types such as complex,
// so reduce the scope of the optimized version of the code to the simple case
// of floats and half floats.
#ifdef EIGEN_HAS_CUDA_FP16
static const bool HasOptimizedImplementation = !Op::IsStateful &&
(internal::is_same<typename Self::CoeffReturnType, float>::value ||
internal::is_same<typename Self::CoeffReturnType, Eigen::half>::value);
#else
static const bool HasOptimizedImplementation = !Op::IsStateful &&
internal::is_same<typename Self::CoeffReturnType, float>::value;
#endif
template <typename OutputType>
static bool run(const Self& self, Op& reducer, const GpuDevice& device, OutputType* output, typename Self::Index num_coeffs_to_reduce, typename Self::Index num_preserved_vals) {
assert(HasOptimizedImplementation && "Should only be called on floats or half floats");
const Index num_coeffs = array_prod(self.m_impl.dimensions());
// Don't crash when we're called with an input tensor of size 0.
if (num_coeffs == 0) {
return true;
}
// It's faster to use the usual code.
if (num_coeffs_to_reduce <= 128) {
return true;
}
return InnerReductionLauncher<Self, Op>::run(self, reducer, device, output, num_coeffs_to_reduce, num_preserved_vals);
}
};
template <int NumPerThread, typename Self, template <int NumPerThread, typename Self,
typename Reducer, typename Index> typename Reducer, typename Index>
__global__ void OuterReductionKernel(Reducer reducer, const Self input, Index num_coeffs_to_reduce, Index num_preserved_coeffs, __global__ void OuterReductionKernel(Reducer reducer, const Self input, Index num_coeffs_to_reduce, Index num_preserved_coeffs,

View File

@ -249,6 +249,10 @@ void test_cuda_contractions() {
void test_cuda_reductions(int size1, int size2, int redux) { void test_cuda_reductions(int size1, int size2, int redux) {
std::cout << "Reducing " << size1 << " by " << size2
<< " tensor along dim " << redux << std::endl;
Eigen::CudaStreamDevice stream; Eigen::CudaStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream); Eigen::GpuDevice gpu_device(&stream);
int num_elem = size1*size2; int num_elem = size1*size2;
@ -268,8 +272,8 @@ void test_cuda_reductions(int size1, int size2, int redux) {
Eigen::TensorMap<Eigen::Tensor<Eigen::half, 1>, Eigen::Aligned> gpu_res_float( Eigen::TensorMap<Eigen::Tensor<Eigen::half, 1>, Eigen::Aligned> gpu_res_float(
d_res_float, result_size); d_res_float, result_size);
gpu_float1.device(gpu_device) = gpu_float1.random(); gpu_float1.device(gpu_device) = gpu_float1.random() - 0.5f;
gpu_float2.device(gpu_device) = gpu_float2.random(); gpu_float2.device(gpu_device) = gpu_float2.random() - 0.5f;
Eigen::array<int, 1> redux_dim = {{redux}}; Eigen::array<int, 1> redux_dim = {{redux}};
gpu_res_float.device(gpu_device) = gpu_float1.sum(redux_dim).cast<Eigen::half>(); gpu_res_float.device(gpu_device) = gpu_float1.sum(redux_dim).cast<Eigen::half>();
@ -282,7 +286,6 @@ void test_cuda_reductions(int size1, int size2, int redux) {
gpu_device.synchronize(); gpu_device.synchronize();
for (int i = 0; i < result_size; ++i) { for (int i = 0; i < result_size; ++i) {
std::cout << "Checking redux " << i << std::endl;
VERIFY_IS_APPROX(full_prec(i), half_prec(i)); VERIFY_IS_APPROX(full_prec(i), half_prec(i));
} }