Merged eigen/eigen into default

This commit is contained in:
Rasmus Larsen 2016-04-07 20:23:03 -07:00
commit c34e55c62b
30 changed files with 1830 additions and 114 deletions

View File

@ -250,7 +250,11 @@ if(NOT MSVC)
message(STATUS "Enabling NEON in tests/examples")
endif()
option(EIGEN_TEST_ZVECTOR "Enable/Disable S390X(zEC13) ZVECTOR in tests/examples" OFF)
if(EIGEN_TEST_ZVECTOR)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -march=z13 -mzvector")
message(STATUS "Enabling S390X(zEC13) ZVECTOR in tests/examples")
endif()
check_cxx_compiler_flag("-fopenmp" COMPILER_SUPPORT_OPENMP)
if(COMPILER_SUPPORT_OPENMP)

View File

@ -197,9 +197,18 @@
#define EIGEN_VECTORIZE
#define EIGEN_VECTORIZE_NEON
#include <arm_neon.h>
#elif (defined __s390x__ && defined __VEC__)
#define EIGEN_VECTORIZE
#define EIGEN_VECTORIZE_ZVECTOR
#include <vecintrin.h>
#endif
#endif
#if defined(__F16C__)
// We can use the optimized fp16 to float and float to fp16 conversion routines
#define EIGEN_HAS_FP16_C
#endif
#if defined __CUDACC__
#define EIGEN_VECTORIZE_CUDA
#include <vector_types.h>
@ -270,6 +279,8 @@ inline static const char *SimdInstructionSetsInUse(void) {
return "VSX";
#elif defined(EIGEN_VECTORIZE_NEON)
return "ARM NEON";
#elif defined(EIGEN_VECTORIZE_ZVECTOR)
return "S390X ZVECTOR";
#else
return "None";
#endif
@ -332,6 +343,10 @@ using std::ptrdiff_t;
#include "src/Core/arch/NEON/PacketMath.h"
#include "src/Core/arch/NEON/MathFunctions.h"
#include "src/Core/arch/NEON/Complex.h"
#elif defined EIGEN_VECTORIZE_ZVECTOR
#include "src/Core/arch/ZVector/PacketMath.h"
#include "src/Core/arch/ZVector/MathFunctions.h"
#include "src/Core/arch/ZVector/Complex.h"
#endif
#include "src/Core/arch/CUDA/Half.h"

View File

@ -76,6 +76,8 @@ struct default_packet_traits
HasTanh = 0,
HasLGamma = 0,
HasDiGamma = 0,
HasZeta = 0,
HasPolygamma = 0,
HasErf = 0,
HasErfc = 0,
HasIGamma = 0,
@ -450,6 +452,14 @@ Packet plgamma(const Packet& a) { using numext::lgamma; return lgamma(a); }
/** \internal \returns the derivative of lgamma, psi(\a a) (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet pdigamma(const Packet& a) { using numext::digamma; return digamma(a); }
/** \internal \returns the zeta function of two arguments (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet pzeta(const Packet& x, const Packet& q) { using numext::zeta; return zeta(x, q); }
/** \internal \returns the polygamma function (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet ppolygamma(const Packet& n, const Packet& x) { using numext::polygamma; return polygamma(n, x); }
/** \internal \returns the erf(\a a) (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS

View File

@ -51,6 +51,8 @@ namespace Eigen
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(tanh,scalar_tanh_op)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(lgamma,scalar_lgamma_op)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(digamma,scalar_digamma_op)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(zeta,scalar_zeta_op)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(polygamma,scalar_polygamma_op)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(erf,scalar_erf_op)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(erfc,scalar_erfc_op)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(exp,scalar_exp_op)

View File

@ -23,7 +23,7 @@ double abs(double x) { return (fabs(x)); }
float abs(float x) { return (fabsf(x)); }
long double abs(long double x) { return (fabsl(x)); }
#endif
namespace internal {
/** \internal \class global_math_functions_filtering_base
@ -704,7 +704,9 @@ EIGEN_DEVICE_FUNC
typename internal::enable_if<(!internal::is_integral<T>::value)&&(!NumTraits<T>::IsComplex),bool>::type
isfinite_impl(const T& x)
{
#if EIGEN_USE_STD_FPCLASSIFY
#ifdef __CUDA_ARCH__
return (isfinite)(x);
#elif EIGEN_USE_STD_FPCLASSIFY
using std::isfinite;
return isfinite EIGEN_NOT_A_MACRO (x);
#else
@ -717,7 +719,9 @@ EIGEN_DEVICE_FUNC
typename internal::enable_if<(!internal::is_integral<T>::value)&&(!NumTraits<T>::IsComplex),bool>::type
isinf_impl(const T& x)
{
#if EIGEN_USE_STD_FPCLASSIFY
#ifdef __CUDA_ARCH__
return (isinf)(x);
#elif EIGEN_USE_STD_FPCLASSIFY
using std::isinf;
return isinf EIGEN_NOT_A_MACRO (x);
#else
@ -730,7 +734,9 @@ EIGEN_DEVICE_FUNC
typename internal::enable_if<(!internal::is_integral<T>::value)&&(!NumTraits<T>::IsComplex),bool>::type
isnan_impl(const T& x)
{
#if EIGEN_USE_STD_FPCLASSIFY
#ifdef __CUDA_ARCH__
return (isnan)(x);
#elif EIGEN_USE_STD_FPCLASSIFY
using std::isnan;
return isnan EIGEN_NOT_A_MACRO (x);
#else
@ -780,9 +786,9 @@ template<> EIGEN_TMP_NOOPT_ATTRIB bool isinf_impl(const long double& x) { return
#endif
// The following overload are defined at the end of this file
template<typename T> bool isfinite_impl(const std::complex<T>& x);
template<typename T> bool isnan_impl(const std::complex<T>& x);
template<typename T> bool isinf_impl(const std::complex<T>& x);
template<typename T> EIGEN_DEVICE_FUNC bool isfinite_impl(const std::complex<T>& x);
template<typename T> EIGEN_DEVICE_FUNC bool isnan_impl(const std::complex<T>& x);
template<typename T> EIGEN_DEVICE_FUNC bool isinf_impl(const std::complex<T>& x);
} // end namespace internal
@ -1089,19 +1095,19 @@ double fmod(const double& a, const double& b) {
namespace internal {
template<typename T>
bool isfinite_impl(const std::complex<T>& x)
EIGEN_DEVICE_FUNC bool isfinite_impl(const std::complex<T>& x)
{
return (numext::isfinite)(numext::real(x)) && (numext::isfinite)(numext::imag(x));
}
template<typename T>
bool isnan_impl(const std::complex<T>& x)
EIGEN_DEVICE_FUNC bool isnan_impl(const std::complex<T>& x)
{
return (numext::isnan)(numext::real(x)) || (numext::isnan)(numext::imag(x));
}
template<typename T>
bool isinf_impl(const std::complex<T>& x)
EIGEN_DEVICE_FUNC bool isinf_impl(const std::complex<T>& x)
{
return ((numext::isinf)(numext::real(x)) || (numext::isinf)(numext::imag(x))) && (!(numext::isnan)(x));
}

View File

@ -722,6 +722,268 @@ struct igamma_impl {
#endif // EIGEN_HAS_C99_MATH
/****************************************************************************
* Implementation of Riemann zeta function of two arguments *
****************************************************************************/
template <typename Scalar>
struct zeta_retval {
typedef Scalar type;
};
#ifndef EIGEN_HAS_C99_MATH
template <typename Scalar>
struct zeta_impl {
EIGEN_DEVICE_FUNC
static Scalar run(Scalar x, Scalar q) {
EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
THIS_TYPE_IS_NOT_SUPPORTED);
return Scalar(0);
}
};
#else
template <typename Scalar>
struct zeta_impl_series {
EIGEN_DEVICE_FUNC
static EIGEN_STRONG_INLINE Scalar run(const Scalar) {
EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
THIS_TYPE_IS_NOT_SUPPORTED);
return Scalar(0);
}
};
template <>
struct zeta_impl_series<float> {
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
static bool run(float& a, float& b, float& s, const float x, const float machep) {
int i = 0;
while(i < 9)
{
i += 1;
a += 1.0f;
b = numext::pow( a, -x );
s += b;
if( numext::abs(b/s) < machep )
return true;
}
//Return whether we are done
return false;
}
};
template <>
struct zeta_impl_series<double> {
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
static bool run(double& a, double& b, double& s, const double x, const double machep) {
int i = 0;
while( (i < 9) || (a <= 9.0) )
{
i += 1;
a += 1.0;
b = numext::pow( a, -x );
s += b;
if( numext::abs(b/s) < machep )
return true;
}
//Return whether we are done
return false;
}
};
template <typename Scalar>
struct zeta_impl {
EIGEN_DEVICE_FUNC
static Scalar run(Scalar x, Scalar q) {
/* zeta.c
*
* Riemann zeta function of two arguments
*
*
*
* SYNOPSIS:
*
* double x, q, y, zeta();
*
* y = zeta( x, q );
*
*
*
* DESCRIPTION:
*
*
*
* inf.
* - -x
* zeta(x,q) = > (k+q)
* -
* k=0
*
* where x > 1 and q is not a negative integer or zero.
* The Euler-Maclaurin summation formula is used to obtain
* the expansion
*
* n
* - -x
* zeta(x,q) = > (k+q)
* -
* k=1
*
* 1-x inf. B x(x+1)...(x+2j)
* (n+q) 1 - 2j
* + --------- - ------- + > --------------------
* x-1 x - x+2j+1
* 2(n+q) j=1 (2j)! (n+q)
*
* where the B2j are Bernoulli numbers. Note that (see zetac.c)
* zeta(x,1) = zetac(x) + 1.
*
*
*
* ACCURACY:
*
* Relative error for single precision:
* arithmetic domain # trials peak rms
* IEEE 0,25 10000 6.9e-7 1.0e-7
*
* Large arguments may produce underflow in powf(), in which
* case the results are inaccurate.
*
* REFERENCE:
*
* Gradshteyn, I. S., and I. M. Ryzhik, Tables of Integrals,
* Series, and Products, p. 1073; Academic Press, 1980.
*
*/
int i;
Scalar p, r, a, b, k, s, t, w;
const Scalar A[] = {
Scalar(12.0),
Scalar(-720.0),
Scalar(30240.0),
Scalar(-1209600.0),
Scalar(47900160.0),
Scalar(-1.8924375803183791606e9), /*1.307674368e12/691*/
Scalar(7.47242496e10),
Scalar(-2.950130727918164224e12), /*1.067062284288e16/3617*/
Scalar(1.1646782814350067249e14), /*5.109094217170944e18/43867*/
Scalar(-4.5979787224074726105e15), /*8.028576626982912e20/174611*/
Scalar(1.8152105401943546773e17), /*1.5511210043330985984e23/854513*/
Scalar(-7.1661652561756670113e18) /*1.6938241367317436694528e27/236364091*/
};
const Scalar maxnum = NumTraits<Scalar>::infinity();
const Scalar zero = 0.0, half = 0.5, one = 1.0;
const Scalar machep = igamma_helper<Scalar>::machep();
if( x == one )
return maxnum;
if( x < one )
{
return zero;
}
if( q <= zero )
{
if(q == numext::floor(q))
{
return maxnum;
}
p = x;
r = numext::floor(p);
if (p != r)
return zero;
}
/* Permit negative q but continue sum until n+q > +9 .
* This case should be handled by a reflection formula.
* If q<0 and x is an integer, there is a relation to
* the polygamma function.
*/
s = numext::pow( q, -x );
a = q;
b = zero;
// Run the summation in a helper function that is specific to the floating precision
if (zeta_impl_series<Scalar>::run(a, b, s, x, machep)) {
return s;
}
w = a;
s += b*w/(x-one);
s -= half * b;
a = one;
k = zero;
for( i=0; i<12; i++ )
{
a *= x + k;
b /= w;
t = a*b/A[i];
s = s + t;
t = numext::abs(t/s);
if( t < machep )
return s;
k += one;
a *= x + k;
b /= w;
k += one;
}
return s;
}
};
#endif // EIGEN_HAS_C99_MATH
/****************************************************************************
* Implementation of polygamma function *
****************************************************************************/
template <typename Scalar>
struct polygamma_retval {
typedef Scalar type;
};
#ifndef EIGEN_HAS_C99_MATH
template <typename Scalar>
struct polygamma_impl {
EIGEN_DEVICE_FUNC
static Scalar run(Scalar n, Scalar x) {
EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
THIS_TYPE_IS_NOT_SUPPORTED);
return Scalar(0);
}
};
#else
template <typename Scalar>
struct polygamma_impl {
EIGEN_DEVICE_FUNC
static Scalar run(Scalar n, Scalar x) {
Scalar zero = 0.0, one = 1.0;
Scalar nplus = n + one;
// Just return the digamma function for n = 1
if (n == zero) {
return digamma_impl<Scalar>::run(x);
}
// Use the same implementation as scipy
else {
Scalar factorial = numext::exp(lgamma_impl<Scalar>::run(nplus));
return numext::pow(-one, nplus) * factorial * zeta_impl<Scalar>::run(nplus, x);
}
}
};
#endif // EIGEN_HAS_C99_MATH
} // end namespace internal
namespace numext {
@ -737,6 +999,18 @@ EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(digamma, Scalar)
digamma(const Scalar& x) {
return EIGEN_MATHFUNC_IMPL(digamma, Scalar)::run(x);
}
template <typename Scalar>
EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(zeta, Scalar)
zeta(const Scalar& x, const Scalar& q) {
return EIGEN_MATHFUNC_IMPL(zeta, Scalar)::run(x, q);
}
template <typename Scalar>
EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(polygamma, Scalar)
polygamma(const Scalar& n, const Scalar& x) {
return EIGEN_MATHFUNC_IMPL(polygamma, Scalar)::run(n, x);
}
template <typename Scalar>
EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(erf, Scalar)

View File

@ -55,9 +55,9 @@ namespace Eigen {
namespace internal {
static inline EIGEN_DEVICE_FUNC __half raw_uint16_to_half(unsigned short x);
static inline EIGEN_DEVICE_FUNC __half float_to_half_rtne(float ff);
static inline EIGEN_DEVICE_FUNC float half_to_float(__half h);
static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC __half raw_uint16_to_half(unsigned short x);
static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC __half float_to_half_rtne(float ff);
static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC float half_to_float(__half h);
} // end namespace internal
@ -83,7 +83,7 @@ struct half : public __half {
EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(bool) const {
// +0.0 and -0.0 become false, everything else becomes true.
return static_cast<bool>(x & 0x7fff);
return (x & 0x7fff) != 0;
}
EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(signed char) const {
return static_cast<signed char>(internal::half_to_float(*this));
@ -175,68 +175,80 @@ __device__ bool operator != (const half& a, const half& b) {
return __hne(a, b);
}
__device__ bool operator < (const half& a, const half& b) {
return __hlt(a, b);
}
__device__ bool operator <= (const half& a, const half& b) {
return __hle(a, b);
}
__device__ bool operator > (const half& a, const half& b) {
return __hgt(a, b);
}
__device__ bool operator >= (const half& a, const half& b) {
return __hge(a, b);
}
#else // Emulate support for half floats
// Definitions for CPUs and older CUDA, mostly working through conversion
// to/from fp32.
static inline EIGEN_DEVICE_FUNC half operator + (const half& a, const half& b) {
static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator + (const half& a, const half& b) {
return half(float(a) + float(b));
}
static inline EIGEN_DEVICE_FUNC half operator * (const half& a, const half& b) {
static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator * (const half& a, const half& b) {
return half(float(a) * float(b));
}
static inline EIGEN_DEVICE_FUNC half operator - (const half& a, const half& b) {
static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator - (const half& a, const half& b) {
return half(float(a) - float(b));
}
static inline EIGEN_DEVICE_FUNC half operator / (const half& a, const half& b) {
static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator / (const half& a, const half& b) {
return half(float(a) / float(b));
}
static inline EIGEN_DEVICE_FUNC half operator - (const half& a) {
static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator - (const half& a) {
half result;
result.x = a.x ^ 0x8000;
return result;
}
static inline EIGEN_DEVICE_FUNC half& operator += (half& a, const half& b) {
static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator += (half& a, const half& b) {
a = half(float(a) + float(b));
return a;
}
static inline EIGEN_DEVICE_FUNC half& operator *= (half& a, const half& b) {
static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator *= (half& a, const half& b) {
a = half(float(a) * float(b));
return a;
}
static inline EIGEN_DEVICE_FUNC half& operator -= (half& a, const half& b) {
static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator -= (half& a, const half& b) {
a = half(float(a) - float(b));
return a;
}
static inline EIGEN_DEVICE_FUNC half& operator /= (half& a, const half& b) {
static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator /= (half& a, const half& b) {
a = half(float(a) / float(b));
return a;
}
static inline EIGEN_DEVICE_FUNC bool operator == (const half& a, const half& b) {
static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator == (const half& a, const half& b) {
return float(a) == float(b);
}
static inline EIGEN_DEVICE_FUNC bool operator != (const half& a, const half& b) {
static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator != (const half& a, const half& b) {
return float(a) != float(b);
}
static inline EIGEN_DEVICE_FUNC bool operator < (const half& a, const half& b) {
static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator < (const half& a, const half& b) {
return float(a) < float(b);
}
static inline EIGEN_DEVICE_FUNC bool operator > (const half& a, const half& b) {
static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator <= (const half& a, const half& b) {
return float(a) <= float(b);
}
static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator > (const half& a, const half& b) {
return float(a) > float(b);
}
static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator >= (const half& a, const half& b) {
return float(a) >= float(b);
}
#endif // Emulate support for half floats
// Division by an index. Do it in full float precision to avoid accuracy
// issues in converting the denominator to half.
static inline EIGEN_DEVICE_FUNC half operator / (const half& a, Index b) {
static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator / (const half& a, Index b) {
return Eigen::half(static_cast<float>(a) / static_cast<float>(b));
}
@ -247,7 +259,7 @@ static inline EIGEN_DEVICE_FUNC half operator / (const half& a, Index b) {
namespace internal {
static inline EIGEN_DEVICE_FUNC __half raw_uint16_to_half(unsigned short x) {
static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC __half raw_uint16_to_half(unsigned short x) {
__half h;
h.x = x;
return h;
@ -258,9 +270,15 @@ union FP32 {
float f;
};
static inline EIGEN_DEVICE_FUNC __half float_to_half_rtne(float ff) {
static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC __half float_to_half_rtne(float ff) {
#if defined(EIGEN_HAS_CUDA_FP16) && defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 300
return __float2half(ff);
#elif defined(EIGEN_HAS_FP16_C)
__half h;
h.x = _cvtss_sh(ff, 0);
return h;
#else
FP32 f; f.f = ff;
@ -306,9 +324,13 @@ static inline EIGEN_DEVICE_FUNC __half float_to_half_rtne(float ff) {
#endif
}
static inline EIGEN_DEVICE_FUNC float half_to_float(__half h) {
static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC float half_to_float(__half h) {
#if defined(EIGEN_HAS_CUDA_FP16) && defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 300
return __half2float(h);
#elif defined(EIGEN_HAS_FP16_C)
return _cvtsh_ss(h.x);
#else
const FP32 magic = { 113 << 23 };
const unsigned int shifted_exp = 0x7c00 << 13; // exponent mask after shift
@ -344,11 +366,11 @@ template<> struct is_arithmetic<half> { enum { value = true }; };
template<> struct NumTraits<Eigen::half>
: GenericNumTraits<Eigen::half>
{
EIGEN_DEVICE_FUNC static inline float dummy_precision() { return 1e-3f; }
EIGEN_DEVICE_FUNC static inline Eigen::half highest() {
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE float dummy_precision() { return 1e-3f; }
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Eigen::half highest() {
return internal::raw_uint16_to_half(0x7bff);
}
EIGEN_DEVICE_FUNC static inline Eigen::half lowest() {
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Eigen::half lowest() {
return internal::raw_uint16_to_half(0xfbff);
}
};
@ -357,69 +379,83 @@ template<> struct NumTraits<Eigen::half>
namespace numext {
static inline EIGEN_DEVICE_FUNC bool (isinf)(const Eigen::half& a) {
static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool (isinf)(const Eigen::half& a) {
return (a.x & 0x7fff) == 0x7c00;
}
static inline EIGEN_DEVICE_FUNC bool (isnan)(const Eigen::half& a) {
static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool (isnan)(const Eigen::half& a) {
#if defined(EIGEN_HAS_CUDA_FP16) && defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 530
return __hisnan(a);
#else
return (a.x & 0x7fff) > 0x7c00;
#endif
}
static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool (isfinite)(const Eigen::half& a) {
return !(Eigen::numext::isinf)(a) && !(Eigen::numext::isnan)(a);
}
template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half abs(const Eigen::half& a) {
Eigen::half result;
result.x = a.x & 0x7FFF;
return result;
}
template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half exp(const Eigen::half& a) {
return Eigen::half(::expf(float(a)));
}
template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half log(const Eigen::half& a) {
return Eigen::half(::logf(float(a)));
}
template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half sqrt(const Eigen::half& a) {
return Eigen::half(::sqrtf(float(a)));
}
template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half floor(const Eigen::half& a) {
return Eigen::half(::floorf(float(a)));
}
template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half ceil(const Eigen::half& a) {
return Eigen::half(::ceilf(float(a)));
}
} // end namespace numext
} // end namespace Eigen
// Standard mathematical functions and trancendentals.
static inline EIGEN_DEVICE_FUNC Eigen::half abs(const Eigen::half& a) {
static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half fabsh(const Eigen::half& a) {
Eigen::half result;
result.x = a.x & 0x7FFF;
return result;
}
static inline EIGEN_DEVICE_FUNC Eigen::half exp(const Eigen::half& a) {
static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half exph(const Eigen::half& a) {
return Eigen::half(::expf(float(a)));
}
static inline EIGEN_DEVICE_FUNC Eigen::half log(const Eigen::half& a) {
static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half logh(const Eigen::half& a) {
return Eigen::half(::logf(float(a)));
}
static inline EIGEN_DEVICE_FUNC Eigen::half sqrt(const Eigen::half& a) {
static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half sqrth(const Eigen::half& a) {
return Eigen::half(::sqrtf(float(a)));
}
static inline EIGEN_DEVICE_FUNC Eigen::half floor(const Eigen::half& a) {
static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half floorh(const Eigen::half& a) {
return Eigen::half(::floorf(float(a)));
}
static inline EIGEN_DEVICE_FUNC Eigen::half ceil(const Eigen::half& a) {
static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half ceilh(const Eigen::half& a) {
return Eigen::half(::ceilf(float(a)));
}
static inline EIGEN_DEVICE_FUNC bool (isnan)(const Eigen::half& a) {
static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC int (isnan)(const Eigen::half& a) {
return (Eigen::numext::isnan)(a);
}
static inline EIGEN_DEVICE_FUNC bool (isinf)(const Eigen::half& a) {
static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC int (isinf)(const Eigen::half& a) {
return (Eigen::numext::isinf)(a);
}
static inline EIGEN_DEVICE_FUNC bool (isfinite)(const Eigen::half& a) {
static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC int (isfinite)(const Eigen::half& a) {
return !(Eigen::numext::isinf)(a) && !(Eigen::numext::isnan)(a);
}
namespace std {
// Import the standard mathematical functions and trancendentals into the
// into the std namespace.
using ::abs;
using ::exp;
using ::log;
using ::sqrt;
using ::floor;
using ::ceil;
#if __cplusplus > 199711L
template <>
struct hash<Eigen::half> {
size_t operator()(const Eigen::half& a) const {
return std::hash<unsigned short>()(a.x);
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::size_t operator()(const Eigen::half& a) const {
return static_cast<std::size_t>(a.x);
}
};
#endif
@ -429,14 +465,14 @@ struct hash<Eigen::half> {
// Add the missing shfl_xor intrinsic
#if defined(EIGEN_HAS_CUDA_FP16) && defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 300
__device__ inline Eigen::half __shfl_xor(Eigen::half var, int laneMask, int width=warpSize) {
__device__ EIGEN_STRONG_INLINE Eigen::half __shfl_xor(Eigen::half var, int laneMask, int width=warpSize) {
return static_cast<Eigen::half>(__shfl_xor(static_cast<float>(var), laneMask, width));
}
#endif
// ldg() has an overload for __half, but we also need one for Eigen::half.
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 320
static inline EIGEN_DEVICE_FUNC Eigen::half __ldg(const Eigen::half* ptr) {
static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half __ldg(const Eigen::half* ptr) {
return Eigen::internal::raw_uint16_to_half(
__ldg(reinterpret_cast<const unsigned short*>(ptr)));
}

View File

@ -91,6 +91,34 @@ double2 pdigamma<double2>(const double2& a)
using numext::digamma;
return make_double2(digamma(a.x), digamma(a.y));
}
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
float4 pzeta<float4>(const float4& x, const float4& q)
{
using numext::zeta;
return make_float4(zeta(x.x, q.x), zeta(x.y, q.y), zeta(x.z, q.z), zeta(x.w, q.w));
}
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
double2 pzeta<double2>(const double2& x, const double2& q)
{
using numext::zeta;
return make_double2(zeta(x.x, q.x), zeta(x.y, q.y));
}
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
float4 ppolygamma<float4>(const float4& n, const float4& x)
{
using numext::polygamma;
return make_float4(polygamma(n.x, x.x), polygamma(n.y, x.y), polygamma(n.z, x.z), polygamma(n.w, x.w));
}
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
double2 ppolygamma<double2>(const double2& n, const double2& x)
{
using numext::polygamma;
return make_double2(polygamma(n.x, x.x), polygamma(n.y, x.y));
}
template<> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
float4 perf<float4>(const float4& a)

View File

@ -40,6 +40,8 @@ template<> struct packet_traits<float> : default_packet_traits
HasRsqrt = 1,
HasLGamma = 1,
HasDiGamma = 1,
HasZeta = 1,
HasPolygamma = 1,
HasErf = 1,
HasErfc = 1,
HasIgamma = 1,

View File

@ -39,10 +39,6 @@ template<> struct packet_traits<half> : default_packet_traits
HasExp = 1,
HasSqrt = 1,
HasRsqrt = 1,
HasLGamma = 1,
HasDiGamma = 1,
HasErf = 1,
HasErfc = 1,
HasBlend = 0,
};

View File

@ -0,0 +1,6 @@
FILE(GLOB Eigen_Core_arch_ZVector_SRCS "*.h")
INSTALL(FILES
${Eigen_Core_arch_ZVector_SRCS}
DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/Core/arch/ZVector COMPONENT Devel
)

View File

@ -0,0 +1,201 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_COMPLEX32_ALTIVEC_H
#define EIGEN_COMPLEX32_ALTIVEC_H
namespace Eigen {
namespace internal {
static Packet2ul p2ul_CONJ_XOR1 = (Packet2ul) vec_sld((Packet4ui) p2d_ZERO_, (Packet4ui) p2l_ZERO, 8);//{ 0x8000000000000000, 0x0000000000000000 };
static Packet2ul p2ul_CONJ_XOR2 = (Packet2ul) vec_sld((Packet4ui) p2l_ZERO, (Packet4ui) p2d_ZERO_, 8);//{ 0x8000000000000000, 0x0000000000000000 };
struct Packet1cd
{
EIGEN_STRONG_INLINE Packet1cd() {}
EIGEN_STRONG_INLINE explicit Packet1cd(const Packet2d& a) : v(a) {}
Packet2d v;
};
template<> struct packet_traits<std::complex<double> > : default_packet_traits
{
typedef Packet1cd type;
typedef Packet1cd half;
enum {
Vectorizable = 1,
AlignedOnScalar = 0,
size = 1,
HasHalfPacket = 0,
HasAdd = 1,
HasSub = 1,
HasMul = 1,
HasDiv = 1,
HasNegate = 1,
HasAbs = 0,
HasAbs2 = 0,
HasMin = 0,
HasMax = 0,
HasSetLinear = 0
};
};
template<> struct unpacket_traits<Packet1cd> { typedef std::complex<double> type; enum {size=1, alignment=Aligned16}; typedef Packet1cd half; };
template<> EIGEN_STRONG_INLINE Packet1cd pload <Packet1cd>(const std::complex<double>* from) { EIGEN_DEBUG_ALIGNED_LOAD return Packet1cd(pload<Packet2d>((const double*)from)); }
template<> EIGEN_STRONG_INLINE Packet1cd ploadu<Packet1cd>(const std::complex<double>* from) { EIGEN_DEBUG_UNALIGNED_LOAD return Packet1cd(ploadu<Packet2d>((const double*)from)); }
template<> EIGEN_STRONG_INLINE void pstore <std::complex<double> >(std::complex<double> * to, const Packet1cd& from) { EIGEN_DEBUG_ALIGNED_STORE pstore((double*)to, from.v); }
template<> EIGEN_STRONG_INLINE void pstoreu<std::complex<double> >(std::complex<double> * to, const Packet1cd& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu((double*)to, from.v); }
template<> EIGEN_STRONG_INLINE Packet1cd pset1<Packet1cd>(const std::complex<double>& from)
{ /* here we really have to use unaligned loads :( */ return ploadu<Packet1cd>(&from); }
template<> EIGEN_DEVICE_FUNC inline Packet1cd pgather<std::complex<double>, Packet1cd>(const std::complex<double>* from, Index stride)
{
std::complex<double> EIGEN_ALIGN16 af[2];
af[0] = from[0*stride];
af[1] = from[1*stride];
return pload<Packet1cd>(af);
}
template<> EIGEN_DEVICE_FUNC inline void pscatter<std::complex<double>, Packet1cd>(std::complex<double>* to, const Packet1cd& from, Index stride)
{
std::complex<double> EIGEN_ALIGN16 af[2];
pstore<std::complex<double> >(af, from);
to[0*stride] = af[0];
to[1*stride] = af[1];
}
template<> EIGEN_STRONG_INLINE Packet1cd padd<Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(a.v + b.v); }
template<> EIGEN_STRONG_INLINE Packet1cd psub<Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(a.v - b.v); }
template<> EIGEN_STRONG_INLINE Packet1cd pnegate(const Packet1cd& a) { return Packet1cd(pnegate(Packet2d(a.v))); }
template<> EIGEN_STRONG_INLINE Packet1cd pconj(const Packet1cd& a) { return Packet1cd((Packet2d)vec_xor((Packet2d)a.v, (Packet2d)p2ul_CONJ_XOR2)); }
template<> EIGEN_STRONG_INLINE Packet1cd pmul<Packet1cd>(const Packet1cd& a, const Packet1cd& b)
{
Packet2d a_re, a_im, v1, v2;
// Permute and multiply the real parts of a and b
a_re = vec_perm(a.v, a.v, p16uc_PSET64_HI);
// Get the imaginary parts of a
a_im = vec_perm(a.v, a.v, p16uc_PSET64_LO);
// multiply a_re * b
v1 = vec_madd(a_re, b.v, p2d_ZERO);
// multiply a_im * b and get the conjugate result
v2 = vec_madd(a_im, b.v, p2d_ZERO);
v2 = (Packet2d) vec_sld((Packet4ui)v2, (Packet4ui)v2, 8);
v2 = (Packet2d) vec_xor((Packet2d)v2, (Packet2d) p2ul_CONJ_XOR1);
return Packet1cd(v1 + v2);
}
template<> EIGEN_STRONG_INLINE Packet1cd pand <Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(vec_and(a.v,b.v)); }
template<> EIGEN_STRONG_INLINE Packet1cd por <Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(vec_or(a.v,b.v)); }
template<> EIGEN_STRONG_INLINE Packet1cd pxor <Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(vec_xor(a.v,b.v)); }
template<> EIGEN_STRONG_INLINE Packet1cd pandnot<Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(vec_and(a.v, vec_nor(b.v,b.v))); }
template<> EIGEN_STRONG_INLINE Packet1cd ploaddup<Packet1cd>(const std::complex<double>* from)
{
return pset1<Packet1cd>(*from);
}
template<> EIGEN_STRONG_INLINE void prefetch<std::complex<double> >(const std::complex<double> * addr) { EIGEN_ZVECTOR_PREFETCH(addr); }
template<> EIGEN_STRONG_INLINE std::complex<double> pfirst<Packet1cd>(const Packet1cd& a)
{
std::complex<double> EIGEN_ALIGN16 res[2];
pstore<std::complex<double> >(res, a);
return res[0];
}
template<> EIGEN_STRONG_INLINE Packet1cd preverse(const Packet1cd& a) { return a; }
template<> EIGEN_STRONG_INLINE std::complex<double> predux<Packet1cd>(const Packet1cd& a)
{
return pfirst(a);
}
template<> EIGEN_STRONG_INLINE Packet1cd preduxp<Packet1cd>(const Packet1cd* vecs)
{
return vecs[0];
}
template<> EIGEN_STRONG_INLINE std::complex<double> predux_mul<Packet1cd>(const Packet1cd& a)
{
return pfirst(a);
}
template<int Offset>
struct palign_impl<Offset,Packet1cd>
{
static EIGEN_STRONG_INLINE void run(Packet1cd& /*first*/, const Packet1cd& /*second*/)
{
// FIXME is it sure we never have to align a Packet1cd?
// Even though a std::complex<double> has 16 bytes, it is not necessarily aligned on a 16 bytes boundary...
}
};
template<> struct conj_helper<Packet1cd, Packet1cd, false,true>
{
EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet1cd& x, const Packet1cd& y, const Packet1cd& c) const
{ return padd(pmul(x,y),c); }
EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& a, const Packet1cd& b) const
{
return internal::pmul(a, pconj(b));
}
};
template<> struct conj_helper<Packet1cd, Packet1cd, true,false>
{
EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet1cd& x, const Packet1cd& y, const Packet1cd& c) const
{ return padd(pmul(x,y),c); }
EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& a, const Packet1cd& b) const
{
return internal::pmul(pconj(a), b);
}
};
template<> struct conj_helper<Packet1cd, Packet1cd, true,true>
{
EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet1cd& x, const Packet1cd& y, const Packet1cd& c) const
{ return padd(pmul(x,y),c); }
EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& a, const Packet1cd& b) const
{
return pconj(internal::pmul(a, b));
}
};
template<> EIGEN_STRONG_INLINE Packet1cd pdiv<Packet1cd>(const Packet1cd& a, const Packet1cd& b)
{
// TODO optimize it for AltiVec
Packet1cd res = conj_helper<Packet1cd,Packet1cd,false,true>().pmul(a,b);
Packet2d s = vec_madd(b.v, b.v, p2d_ZERO_);
return Packet1cd(pdiv(res.v, s + vec_perm(s, s, p16uc_REVERSE64)));
}
EIGEN_STRONG_INLINE Packet1cd pcplxflip/*<Packet1cd>*/(const Packet1cd& x)
{
return Packet1cd(preverse(Packet2d(x.v)));
}
EIGEN_STRONG_INLINE void ptranspose(PacketBlock<Packet1cd,2>& kernel)
{
Packet2d tmp = vec_perm(kernel.packet[0].v, kernel.packet[1].v, p16uc_TRANSPOSE64_HI);
kernel.packet[1].v = vec_perm(kernel.packet[0].v, kernel.packet[1].v, p16uc_TRANSPOSE64_LO);
kernel.packet[0].v = tmp;
}
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_COMPLEX32_ALTIVEC_H

View File

@ -0,0 +1,110 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2007 Julien Pommier
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
/* The sin, cos, exp, and log functions of this file come from
* Julien Pommier's sse math library: http://gruntthepeon.free.fr/ssemath/
*/
#ifndef EIGEN_MATH_FUNCTIONS_ALTIVEC_H
#define EIGEN_MATH_FUNCTIONS_ALTIVEC_H
namespace Eigen {
namespace internal {
template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
Packet2d pexp<Packet2d>(const Packet2d& _x)
{
Packet2d x = _x;
_EIGEN_DECLARE_CONST_Packet2d(1 , 1.0);
_EIGEN_DECLARE_CONST_Packet2d(2 , 2.0);
_EIGEN_DECLARE_CONST_Packet2d(half, 0.5);
_EIGEN_DECLARE_CONST_Packet2d(exp_hi, 709.437);
_EIGEN_DECLARE_CONST_Packet2d(exp_lo, -709.436139303);
_EIGEN_DECLARE_CONST_Packet2d(cephes_LOG2EF, 1.4426950408889634073599);
_EIGEN_DECLARE_CONST_Packet2d(cephes_exp_p0, 1.26177193074810590878e-4);
_EIGEN_DECLARE_CONST_Packet2d(cephes_exp_p1, 3.02994407707441961300e-2);
_EIGEN_DECLARE_CONST_Packet2d(cephes_exp_p2, 9.99999999999999999910e-1);
_EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q0, 3.00198505138664455042e-6);
_EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q1, 2.52448340349684104192e-3);
_EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q2, 2.27265548208155028766e-1);
_EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q3, 2.00000000000000000009e0);
_EIGEN_DECLARE_CONST_Packet2d(cephes_exp_C1, 0.693145751953125);
_EIGEN_DECLARE_CONST_Packet2d(cephes_exp_C2, 1.42860682030941723212e-6);
Packet2d tmp, fx;
Packet2l emm0;
// clamp x
x = pmax(pmin(x, p2d_exp_hi), p2d_exp_lo);
/* express exp(x) as exp(g + n*log(2)) */
fx = pmadd(p2d_cephes_LOG2EF, x, p2d_half);
fx = vec_floor(fx);
tmp = pmul(fx, p2d_cephes_exp_C1);
Packet2d z = pmul(fx, p2d_cephes_exp_C2);
x = psub(x, tmp);
x = psub(x, z);
Packet2d x2 = pmul(x,x);
Packet2d px = p2d_cephes_exp_p0;
px = pmadd(px, x2, p2d_cephes_exp_p1);
px = pmadd(px, x2, p2d_cephes_exp_p2);
px = pmul (px, x);
Packet2d qx = p2d_cephes_exp_q0;
qx = pmadd(qx, x2, p2d_cephes_exp_q1);
qx = pmadd(qx, x2, p2d_cephes_exp_q2);
qx = pmadd(qx, x2, p2d_cephes_exp_q3);
x = pdiv(px,psub(qx,px));
x = pmadd(p2d_2,x,p2d_1);
// build 2^n
emm0 = vec_ctsl(fx, 0);
static const Packet2l p2l_1023 = { 1023, 1023 };
static const Packet2ul p2ul_52 = { 52, 52 };
emm0 = emm0 + p2l_1023;
emm0 = emm0 << reinterpret_cast<Packet2l>(p2ul_52);
// Altivec's max & min operators just drop silent NaNs. Check NaNs in
// inputs and return them unmodified.
Packet2ul isnumber_mask = reinterpret_cast<Packet2ul>(vec_cmpeq(_x, _x));
return vec_sel(_x, pmax(pmul(x, reinterpret_cast<Packet2d>(emm0)), _x),
isnumber_mask);
}
template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
Packet2d psqrt<Packet2d>(const Packet2d& x)
{
return __builtin_s390_vfsqdb(x);
}
template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
Packet2d prsqrt<Packet2d>(const Packet2d& x) {
// Unfortunately we can't use the much faster mm_rqsrt_pd since it only provides an approximation.
return pset1<Packet2d>(1.0) / psqrt<Packet2d>(x);
}
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_MATH_FUNCTIONS_ALTIVEC_H

View File

@ -0,0 +1,575 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2016 Konstantinos Margaritis <markos@freevec.org>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_PACKET_MATH_ZVECTOR_H
#define EIGEN_PACKET_MATH_ZVECTOR_H
#include <stdint.h>
namespace Eigen {
namespace internal {
#ifndef EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
#define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 4
#endif
#ifndef EIGEN_HAS_SINGLE_INSTRUCTION_MADD
#define EIGEN_HAS_SINGLE_INSTRUCTION_MADD
#endif
#ifndef EIGEN_HAS_SINGLE_INSTRUCTION_CJMADD
#define EIGEN_HAS_SINGLE_INSTRUCTION_CJMADD
#endif
// NOTE Altivec has 32 registers, but Eigen only accepts a value of 8 or 16
#ifndef EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS
#define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS 32
#endif
typedef __vector int Packet4i;
typedef __vector unsigned int Packet4ui;
typedef __vector __bool int Packet4bi;
typedef __vector short int Packet8i;
typedef __vector unsigned char Packet16uc;
typedef __vector double Packet2d;
typedef __vector unsigned long long Packet2ul;
typedef __vector long long Packet2l;
typedef union {
int32_t i[4];
uint32_t ui[4];
int64_t l[2];
uint64_t ul[2];
double d[2];
Packet4i v4i;
Packet4ui v4ui;
Packet2l v2l;
Packet2ul v2ul;
Packet2d v2d;
} Packet;
// We don't want to write the same code all the time, but we need to reuse the constants
// and it doesn't really work to declare them global, so we define macros instead
#define _EIGEN_DECLARE_CONST_FAST_Packet4i(NAME,X) \
Packet4i p4i_##NAME = reinterpret_cast<Packet4i>(vec_splat_s32(X))
#define _EIGEN_DECLARE_CONST_FAST_Packet2d(NAME,X) \
Packet2d p2d_##NAME = reinterpret_cast<Packet2d>(vec_splat_s64(X))
#define _EIGEN_DECLARE_CONST_FAST_Packet2l(NAME,X) \
Packet2l p2l_##NAME = reinterpret_cast<Packet2l>(vec_splat_s64(X))
#define _EIGEN_DECLARE_CONST_Packet4i(NAME,X) \
Packet4i p4i_##NAME = pset1<Packet4i>(X)
#define _EIGEN_DECLARE_CONST_Packet2d(NAME,X) \
Packet2d p2d_##NAME = pset1<Packet2d>(X)
#define _EIGEN_DECLARE_CONST_Packet2l(NAME,X) \
Packet2l p2l_##NAME = pset1<Packet2l>(X)
// These constants are endian-agnostic
//static _EIGEN_DECLARE_CONST_FAST_Packet4i(ZERO, 0); //{ 0, 0, 0, 0,}
static _EIGEN_DECLARE_CONST_FAST_Packet4i(ONE, 1); //{ 1, 1, 1, 1}
static _EIGEN_DECLARE_CONST_FAST_Packet2d(ZERO, 0);
static _EIGEN_DECLARE_CONST_FAST_Packet2l(ZERO, 0);
static _EIGEN_DECLARE_CONST_FAST_Packet2l(ONE, 1);
static Packet2d p2d_ONE = { 1.0, 1.0 };
static Packet2d p2d_ZERO_ = { -0.0, -0.0 };
static Packet4i p4i_COUNTDOWN = { 0, 1, 2, 3 };
static Packet2d p2d_COUNTDOWN = reinterpret_cast<Packet2d>(vec_sld(reinterpret_cast<Packet16uc>(p2d_ZERO), reinterpret_cast<Packet16uc>(p2d_ONE), 8));
static Packet16uc p16uc_PSET64_HI = { 0,1,2,3, 4,5,6,7, 0,1,2,3, 4,5,6,7 };
static Packet16uc p16uc_DUPLICATE32_HI = { 0,1,2,3, 0,1,2,3, 4,5,6,7, 4,5,6,7 };
// Mask alignment
#define _EIGEN_MASK_ALIGNMENT 0xfffffffffffffff0
#define _EIGEN_ALIGNED_PTR(x) ((ptrdiff_t)(x) & _EIGEN_MASK_ALIGNMENT)
// Handle endianness properly while loading constants
// Define global static constants:
static Packet16uc p16uc_FORWARD = { 0,1,2,3, 4,5,6,7, 8,9,10,11, 12,13,14,15 };
static Packet16uc p16uc_REVERSE32 = { 12,13,14,15, 8,9,10,11, 4,5,6,7, 0,1,2,3 };
static Packet16uc p16uc_REVERSE64 = { 8,9,10,11, 12,13,14,15, 0,1,2,3, 4,5,6,7 };
static Packet16uc p16uc_PSET32_WODD = vec_sld((Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 0), (Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 2), 8);//{ 0,1,2,3, 0,1,2,3, 8,9,10,11, 8,9,10,11 };
static Packet16uc p16uc_PSET32_WEVEN = vec_sld(p16uc_DUPLICATE32_HI, (Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 3), 8);//{ 4,5,6,7, 4,5,6,7, 12,13,14,15, 12,13,14,15 };
/*static Packet16uc p16uc_HALF64_0_16 = vec_sld((Packet16uc)p4i_ZERO, vec_splat((Packet16uc) vec_abs(p4i_MINUS16), 3), 8); //{ 0,0,0,0, 0,0,0,0, 16,16,16,16, 16,16,16,16};
static Packet16uc p16uc_PSET64_HI = (Packet16uc) vec_mergeh((Packet4ui)p16uc_PSET32_WODD, (Packet4ui)p16uc_PSET32_WEVEN); //{ 0,1,2,3, 4,5,6,7, 0,1,2,3, 4,5,6,7 };*/
static Packet16uc p16uc_PSET64_LO = (Packet16uc) vec_mergel((Packet4ui)p16uc_PSET32_WODD, (Packet4ui)p16uc_PSET32_WEVEN); //{ 8,9,10,11, 12,13,14,15, 8,9,10,11, 12,13,14,15 };
/*static Packet16uc p16uc_TRANSPOSE64_HI = vec_add(p16uc_PSET64_HI, p16uc_HALF64_0_16); //{ 0,1,2,3, 4,5,6,7, 16,17,18,19, 20,21,22,23};
static Packet16uc p16uc_TRANSPOSE64_LO = vec_add(p16uc_PSET64_LO, p16uc_HALF64_0_16); //{ 8,9,10,11, 12,13,14,15, 24,25,26,27, 28,29,30,31};*/
static Packet16uc p16uc_TRANSPOSE64_HI = { 0,1,2,3, 4,5,6,7, 16,17,18,19, 20,21,22,23};
static Packet16uc p16uc_TRANSPOSE64_LO = { 8,9,10,11, 12,13,14,15, 24,25,26,27, 28,29,30,31};
//static Packet16uc p16uc_COMPLEX32_REV = vec_sld(p16uc_REVERSE32, p16uc_REVERSE32, 8); //{ 4,5,6,7, 0,1,2,3, 12,13,14,15, 8,9,10,11 };
//static Packet16uc p16uc_COMPLEX32_REV2 = vec_sld(p16uc_FORWARD, p16uc_FORWARD, 8); //{ 8,9,10,11, 12,13,14,15, 0,1,2,3, 4,5,6,7 };
#if EIGEN_HAS_BUILTIN(__builtin_prefetch) || EIGEN_COMP_GNUC
#define EIGEN_ZVECTOR_PREFETCH(ADDR) __builtin_prefetch(ADDR);
#else
#define EIGEN_ZVECTOR_PREFETCH(ADDR) asm( " pfd [%[addr]]\n" :: [addr] "r" (ADDR) : "cc" );
#endif
template<> struct packet_traits<int> : default_packet_traits
{
typedef Packet4i type;
typedef Packet4i half;
enum {
// FIXME check the Has*
Vectorizable = 1,
AlignedOnScalar = 1,
size = 4,
HasHalfPacket = 0,
// FIXME check the Has*
HasAdd = 1,
HasSub = 1,
HasMul = 1,
HasDiv = 1,
HasBlend = 1
};
};
template<> struct packet_traits<double> : default_packet_traits
{
typedef Packet2d type;
typedef Packet2d half;
enum {
Vectorizable = 1,
AlignedOnScalar = 1,
size=2,
HasHalfPacket = 1,
// FIXME check the Has*
HasAdd = 1,
HasSub = 1,
HasMul = 1,
HasDiv = 1,
HasMin = 1,
HasMax = 1,
HasAbs = 1,
HasSin = 0,
HasCos = 0,
HasLog = 0,
HasExp = 1,
HasSqrt = 1,
HasRsqrt = 1,
HasRound = 1,
HasFloor = 1,
HasCeil = 1,
HasNegate = 1,
HasBlend = 1
};
};
template<> struct unpacket_traits<Packet4i> { typedef int type; enum {size=4, alignment=Aligned16}; typedef Packet4i half; };
template<> struct unpacket_traits<Packet2d> { typedef double type; enum {size=2, alignment=Aligned16}; typedef Packet2d half; };
inline std::ostream & operator <<(std::ostream & s, const Packet4i & v)
{
Packet vt;
vt.v4i = v;
s << vt.i[0] << ", " << vt.i[1] << ", " << vt.i[2] << ", " << vt.i[3];
return s;
}
inline std::ostream & operator <<(std::ostream & s, const Packet4ui & v)
{
Packet vt;
vt.v4ui = v;
s << vt.ui[0] << ", " << vt.ui[1] << ", " << vt.ui[2] << ", " << vt.ui[3];
return s;
}
inline std::ostream & operator <<(std::ostream & s, const Packet2l & v)
{
Packet vt;
vt.v2l = v;
s << vt.l[0] << ", " << vt.l[1];
return s;
}
inline std::ostream & operator <<(std::ostream & s, const Packet2ul & v)
{
Packet vt;
vt.v2ul = v;
s << vt.ul[0] << ", " << vt.ul[1] ;
return s;
}
inline std::ostream & operator <<(std::ostream & s, const Packet2d & v)
{
Packet vt;
vt.v2d = v;
s << vt.d[0] << ", " << vt.d[1];
return s;
}
template<int Offset>
struct palign_impl<Offset,Packet4i>
{
static EIGEN_STRONG_INLINE void run(Packet4i& first, const Packet4i& second)
{
switch (Offset % 4) {
case 1:
first = vec_sld(first, second, 4); break;
case 2:
first = vec_sld(first, second, 8); break;
case 3:
first = vec_sld(first, second, 12); break;
}
}
};
template<int Offset>
struct palign_impl<Offset,Packet2d>
{
static EIGEN_STRONG_INLINE void run(Packet2d& first, const Packet2d& second)
{
if (Offset == 1)
first = reinterpret_cast<Packet2d>(vec_sld(reinterpret_cast<Packet4i>(first), reinterpret_cast<Packet4i>(second), 8));
}
};
template<> EIGEN_STRONG_INLINE Packet4i pload<Packet4i>(const int* from)
{
// FIXME: No intrinsic yet
EIGEN_DEBUG_ALIGNED_LOAD
Packet *vfrom;
vfrom = (Packet *) from;
return vfrom->v4i;
}
template<> EIGEN_STRONG_INLINE Packet2d pload<Packet2d>(const double* from)
{
// FIXME: No intrinsic yet
EIGEN_DEBUG_ALIGNED_LOAD
Packet *vfrom;
vfrom = (Packet *) from;
return vfrom->v2d;
}
template<> EIGEN_STRONG_INLINE void pstore<int>(int* to, const Packet4i& from)
{
// FIXME: No intrinsic yet
EIGEN_DEBUG_ALIGNED_STORE
Packet *vto;
vto = (Packet *) to;
vto->v4i = from;
}
template<> EIGEN_STRONG_INLINE void pstore<double>(double* to, const Packet2d& from)
{
// FIXME: No intrinsic yet
EIGEN_DEBUG_ALIGNED_STORE
Packet *vto;
vto = (Packet *) to;
vto->v2d = from;
}
template<> EIGEN_STRONG_INLINE Packet4i pset1<Packet4i>(const int& from)
{
return vec_splats(from);
}
template<> EIGEN_STRONG_INLINE Packet2d pset1<Packet2d>(const double& from) {
return vec_splats(from);
}
template<> EIGEN_STRONG_INLINE void
pbroadcast4<Packet4i>(const int *a,
Packet4i& a0, Packet4i& a1, Packet4i& a2, Packet4i& a3)
{
a3 = pload<Packet4i>(a);
a0 = vec_splat(a3, 0);
a1 = vec_splat(a3, 1);
a2 = vec_splat(a3, 2);
a3 = vec_splat(a3, 3);
}
template<> EIGEN_STRONG_INLINE void
pbroadcast4<Packet2d>(const double *a,
Packet2d& a0, Packet2d& a1, Packet2d& a2, Packet2d& a3)
{
a1 = pload<Packet2d>(a);
a0 = vec_splat(a1, 0);
a1 = vec_splat(a1, 1);
a3 = pload<Packet2d>(a+2);
a2 = vec_splat(a3, 0);
a3 = vec_splat(a3, 1);
}
template<> EIGEN_DEVICE_FUNC inline Packet4i pgather<int, Packet4i>(const int* from, Index stride)
{
int EIGEN_ALIGN16 ai[4];
ai[0] = from[0*stride];
ai[1] = from[1*stride];
ai[2] = from[2*stride];
ai[3] = from[3*stride];
return pload<Packet4i>(ai);
}
template<> EIGEN_DEVICE_FUNC inline Packet2d pgather<double, Packet2d>(const double* from, Index stride)
{
double EIGEN_ALIGN16 af[2];
af[0] = from[0*stride];
af[1] = from[1*stride];
return pload<Packet2d>(af);
}
template<> EIGEN_DEVICE_FUNC inline void pscatter<int, Packet4i>(int* to, const Packet4i& from, Index stride)
{
int EIGEN_ALIGN16 ai[4];
pstore<int>((int *)ai, from);
to[0*stride] = ai[0];
to[1*stride] = ai[1];
to[2*stride] = ai[2];
to[3*stride] = ai[3];
}
template<> EIGEN_DEVICE_FUNC inline void pscatter<double, Packet2d>(double* to, const Packet2d& from, Index stride)
{
double EIGEN_ALIGN16 af[2];
pstore<double>(af, from);
to[0*stride] = af[0];
to[1*stride] = af[1];
}
template<> EIGEN_STRONG_INLINE Packet4i padd<Packet4i>(const Packet4i& a, const Packet4i& b) { return (a + b); }
template<> EIGEN_STRONG_INLINE Packet2d padd<Packet2d>(const Packet2d& a, const Packet2d& b) { return (a + b); }
template<> EIGEN_STRONG_INLINE Packet4i psub<Packet4i>(const Packet4i& a, const Packet4i& b) { return (a - b); }
template<> EIGEN_STRONG_INLINE Packet2d psub<Packet2d>(const Packet2d& a, const Packet2d& b) { return (a - b); }
template<> EIGEN_STRONG_INLINE Packet4i pmul<Packet4i>(const Packet4i& a, const Packet4i& b) { return (a * b); }
template<> EIGEN_STRONG_INLINE Packet2d pmul<Packet2d>(const Packet2d& a, const Packet2d& b) { return (a * b); }
template<> EIGEN_STRONG_INLINE Packet4i pdiv<Packet4i>(const Packet4i& a, const Packet4i& b) { return (a / b); }
template<> EIGEN_STRONG_INLINE Packet2d pdiv<Packet2d>(const Packet2d& a, const Packet2d& b) { return (a / b); }
template<> EIGEN_STRONG_INLINE Packet4i pnegate(const Packet4i& a) { return (-a); }
template<> EIGEN_STRONG_INLINE Packet2d pnegate(const Packet2d& a) { return (-a); }
template<> EIGEN_STRONG_INLINE Packet4i pconj(const Packet4i& a) { return a; }
template<> EIGEN_STRONG_INLINE Packet2d pconj(const Packet2d& a) { return a; }
template<> EIGEN_STRONG_INLINE Packet4i pmadd(const Packet4i& a, const Packet4i& b, const Packet4i& c) { return padd<Packet4i>(pmul<Packet4i>(a, b), c); }
template<> EIGEN_STRONG_INLINE Packet2d pmadd(const Packet2d& a, const Packet2d& b, const Packet2d& c) { return vec_madd(a, b, c); }
template<> EIGEN_STRONG_INLINE Packet4i plset<Packet4i>(const int& a) { return padd<Packet4i>(pset1<Packet4i>(a), p4i_COUNTDOWN); }
template<> EIGEN_STRONG_INLINE Packet2d plset<Packet2d>(const double& a) { return padd<Packet2d>(pset1<Packet2d>(a), p2d_COUNTDOWN); }
template<> EIGEN_STRONG_INLINE Packet4i pmin<Packet4i>(const Packet4i& a, const Packet4i& b) { return vec_min(a, b); }
template<> EIGEN_STRONG_INLINE Packet2d pmin<Packet2d>(const Packet2d& a, const Packet2d& b) { return vec_min(a, b); }
template<> EIGEN_STRONG_INLINE Packet4i pmax<Packet4i>(const Packet4i& a, const Packet4i& b) { return vec_max(a, b); }
template<> EIGEN_STRONG_INLINE Packet2d pmax<Packet2d>(const Packet2d& a, const Packet2d& b) { return vec_max(a, b); }
template<> EIGEN_STRONG_INLINE Packet4i pand<Packet4i>(const Packet4i& a, const Packet4i& b) { return vec_and(a, b); }
template<> EIGEN_STRONG_INLINE Packet2d pand<Packet2d>(const Packet2d& a, const Packet2d& b) { return vec_and(a, b); }
template<> EIGEN_STRONG_INLINE Packet4i por<Packet4i>(const Packet4i& a, const Packet4i& b) { return vec_or(a, b); }
template<> EIGEN_STRONG_INLINE Packet2d por<Packet2d>(const Packet2d& a, const Packet2d& b) { return vec_or(a, b); }
template<> EIGEN_STRONG_INLINE Packet4i pxor<Packet4i>(const Packet4i& a, const Packet4i& b) { return vec_xor(a, b); }
template<> EIGEN_STRONG_INLINE Packet2d pxor<Packet2d>(const Packet2d& a, const Packet2d& b) { return vec_xor(a, b); }
template<> EIGEN_STRONG_INLINE Packet4i pandnot<Packet4i>(const Packet4i& a, const Packet4i& b) { return pand<Packet4i>(a, vec_nor(b, b)); }
template<> EIGEN_STRONG_INLINE Packet2d pandnot<Packet2d>(const Packet2d& a, const Packet2d& b) { return vec_and(a, vec_nor(b, b)); }
template<> EIGEN_STRONG_INLINE Packet2d pround<Packet2d>(const Packet2d& a) { return vec_round(a); }
template<> EIGEN_STRONG_INLINE Packet2d pceil<Packet2d>(const Packet2d& a) { return vec_ceil(a); }
template<> EIGEN_STRONG_INLINE Packet2d pfloor<Packet2d>(const Packet2d& a) { return vec_floor(a); }
template<> EIGEN_STRONG_INLINE Packet4i ploadu<Packet4i>(const int* from) { return pload<Packet4i>(from); }
template<> EIGEN_STRONG_INLINE Packet2d ploadu<Packet2d>(const double* from) { return pload<Packet2d>(from); }
template<> EIGEN_STRONG_INLINE Packet4i ploaddup<Packet4i>(const int* from)
{
Packet4i p = pload<Packet4i>(from);
return vec_perm(p, p, p16uc_DUPLICATE32_HI);
}
template<> EIGEN_STRONG_INLINE Packet2d ploaddup<Packet2d>(const double* from)
{
Packet2d p = pload<Packet2d>(from);
return vec_perm(p, p, p16uc_PSET64_HI);
}
template<> EIGEN_STRONG_INLINE void pstoreu<int>(int* to, const Packet4i& from) { pstore<int>(to, from); }
template<> EIGEN_STRONG_INLINE void pstoreu<double>(double* to, const Packet2d& from) { pstore<double>(to, from); }
template<> EIGEN_STRONG_INLINE void prefetch<int>(const int* addr) { EIGEN_ZVECTOR_PREFETCH(addr); }
template<> EIGEN_STRONG_INLINE void prefetch<double>(const double* addr) { EIGEN_ZVECTOR_PREFETCH(addr); }
template<> EIGEN_STRONG_INLINE int pfirst<Packet4i>(const Packet4i& a) { int EIGEN_ALIGN16 x[4]; pstore(x, a); return x[0]; }
template<> EIGEN_STRONG_INLINE double pfirst<Packet2d>(const Packet2d& a) { double EIGEN_ALIGN16 x[2]; pstore(x, a); return x[0]; }
template<> EIGEN_STRONG_INLINE Packet4i preverse(const Packet4i& a)
{
return reinterpret_cast<Packet4i>(vec_perm(reinterpret_cast<Packet16uc>(a), reinterpret_cast<Packet16uc>(a), p16uc_REVERSE32));
}
template<> EIGEN_STRONG_INLINE Packet2d preverse(const Packet2d& a)
{
return reinterpret_cast<Packet2d>(vec_perm(reinterpret_cast<Packet16uc>(a), reinterpret_cast<Packet16uc>(a), p16uc_REVERSE64));
}
template<> EIGEN_STRONG_INLINE Packet4i pabs(const Packet4i& a) { return vec_abs(a); }
template<> EIGEN_STRONG_INLINE Packet2d pabs(const Packet2d& a) { return vec_abs(a); }
template<> EIGEN_STRONG_INLINE int predux<Packet4i>(const Packet4i& a)
{
Packet4i b, sum;
b = vec_sld(a, a, 8);
sum = padd<Packet4i>(a, b);
b = vec_sld(sum, sum, 4);
sum = padd<Packet4i>(sum, b);
return pfirst(sum);
}
template<> EIGEN_STRONG_INLINE double predux<Packet2d>(const Packet2d& a)
{
Packet2d b, sum;
b = reinterpret_cast<Packet2d>(vec_sld(reinterpret_cast<Packet4i>(a), reinterpret_cast<Packet4i>(a), 8));
sum = padd<Packet2d>(a, b);
return pfirst(sum);
}
template<> EIGEN_STRONG_INLINE Packet4i preduxp<Packet4i>(const Packet4i* vecs)
{
Packet4i v[4], sum[4];
// It's easier and faster to transpose then add as columns
// Check: http://www.freevec.org/function/matrix_4x4_transpose_floats for explanation
// Do the transpose, first set of moves
v[0] = vec_mergeh(vecs[0], vecs[2]);
v[1] = vec_mergel(vecs[0], vecs[2]);
v[2] = vec_mergeh(vecs[1], vecs[3]);
v[3] = vec_mergel(vecs[1], vecs[3]);
// Get the resulting vectors
sum[0] = vec_mergeh(v[0], v[2]);
sum[1] = vec_mergel(v[0], v[2]);
sum[2] = vec_mergeh(v[1], v[3]);
sum[3] = vec_mergel(v[1], v[3]);
// Now do the summation:
// Lines 0+1
sum[0] = padd<Packet4i>(sum[0], sum[1]);
// Lines 2+3
sum[1] = padd<Packet4i>(sum[2], sum[3]);
// Add the results
sum[0] = padd<Packet4i>(sum[0], sum[1]);
return sum[0];
}
template<> EIGEN_STRONG_INLINE Packet2d preduxp<Packet2d>(const Packet2d* vecs)
{
Packet2d v[2], sum;
v[0] = padd<Packet2d>(vecs[0], reinterpret_cast<Packet2d>(vec_sld(reinterpret_cast<Packet4ui>(vecs[0]), reinterpret_cast<Packet4ui>(vecs[0]), 8)));
v[1] = padd<Packet2d>(vecs[1], reinterpret_cast<Packet2d>(vec_sld(reinterpret_cast<Packet4ui>(vecs[1]), reinterpret_cast<Packet4ui>(vecs[1]), 8)));
sum = reinterpret_cast<Packet2d>(vec_sld(reinterpret_cast<Packet4ui>(v[0]), reinterpret_cast<Packet4ui>(v[1]), 8));
return sum;
}
// Other reduction functions:
// mul
template<> EIGEN_STRONG_INLINE int predux_mul<Packet4i>(const Packet4i& a)
{
EIGEN_ALIGN16 int aux[4];
pstore(aux, a);
return aux[0] * aux[1] * aux[2] * aux[3];
}
template<> EIGEN_STRONG_INLINE double predux_mul<Packet2d>(const Packet2d& a)
{
return pfirst(pmul(a, reinterpret_cast<Packet2d>(vec_sld(reinterpret_cast<Packet4i>(a), reinterpret_cast<Packet4i>(a), 8))));
}
// min
template<> EIGEN_STRONG_INLINE int predux_min<Packet4i>(const Packet4i& a)
{
Packet4i b, res;
b = pmin<Packet4i>(a, vec_sld(a, a, 8));
res = pmin<Packet4i>(b, vec_sld(b, b, 4));
return pfirst(res);
}
template<> EIGEN_STRONG_INLINE double predux_min<Packet2d>(const Packet2d& a)
{
return pfirst(pmin<Packet2d>(a, reinterpret_cast<Packet2d>(vec_sld(reinterpret_cast<Packet4i>(a), reinterpret_cast<Packet4i>(a), 8))));
}
// max
template<> EIGEN_STRONG_INLINE int predux_max<Packet4i>(const Packet4i& a)
{
Packet4i b, res;
b = pmax<Packet4i>(a, vec_sld(a, a, 8));
res = pmax<Packet4i>(b, vec_sld(b, b, 4));
return pfirst(res);
}
// max
template<> EIGEN_STRONG_INLINE double predux_max<Packet2d>(const Packet2d& a)
{
return pfirst(pmax<Packet2d>(a, reinterpret_cast<Packet2d>(vec_sld(reinterpret_cast<Packet4i>(a), reinterpret_cast<Packet4i>(a), 8))));
}
EIGEN_DEVICE_FUNC inline void
ptranspose(PacketBlock<Packet4i,4>& kernel) {
Packet4i t0 = vec_mergeh(kernel.packet[0], kernel.packet[2]);
Packet4i t1 = vec_mergel(kernel.packet[0], kernel.packet[2]);
Packet4i t2 = vec_mergeh(kernel.packet[1], kernel.packet[3]);
Packet4i t3 = vec_mergel(kernel.packet[1], kernel.packet[3]);
kernel.packet[0] = vec_mergeh(t0, t2);
kernel.packet[1] = vec_mergel(t0, t2);
kernel.packet[2] = vec_mergeh(t1, t3);
kernel.packet[3] = vec_mergel(t1, t3);
}
EIGEN_DEVICE_FUNC inline void
ptranspose(PacketBlock<Packet2d,2>& kernel) {
Packet2d t0 = vec_perm(kernel.packet[0], kernel.packet[1], p16uc_TRANSPOSE64_HI);
Packet2d t1 = vec_perm(kernel.packet[0], kernel.packet[1], p16uc_TRANSPOSE64_LO);
kernel.packet[0] = t0;
kernel.packet[1] = t1;
}
template<> EIGEN_STRONG_INLINE Packet4i pblend(const Selector<4>& ifPacket, const Packet4i& thenPacket, const Packet4i& elsePacket) {
Packet4ui select = { ifPacket.select[0], ifPacket.select[1], ifPacket.select[2], ifPacket.select[3] };
Packet4ui mask = vec_cmpeq(select, reinterpret_cast<Packet4ui>(p4i_ONE));
return vec_sel(elsePacket, thenPacket, mask);
}
template<> EIGEN_STRONG_INLINE Packet2d pblend(const Selector<2>& ifPacket, const Packet2d& thenPacket, const Packet2d& elsePacket) {
Packet2ul select = { ifPacket.select[0], ifPacket.select[1] };
Packet2ul mask = vec_cmpeq(select, reinterpret_cast<Packet2ul>(p2l_ONE));
return vec_sel(elsePacket, thenPacket, mask);
}
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_PACKET_MATH_ZVECTOR_H

View File

@ -73,7 +73,7 @@ template<typename Scalar, typename=void> struct abs_knowing_score
EIGEN_EMPTY_STRUCT_CTOR(abs_knowing_score)
typedef typename NumTraits<Scalar>::Real result_type;
template<typename Score>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a, const Score&) const { using std::abs; return abs(a); }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a, const Score&) const { return numext::abs(a); }
};
template<typename Scalar> struct abs_knowing_score<Scalar, typename scalar_score_coeff_op<Scalar>::Score_is_abs>
{
@ -230,7 +230,7 @@ struct functor_traits<scalar_imag_ref_op<Scalar> >
*/
template<typename Scalar> struct scalar_exp_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_exp_op)
EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { using std::exp; return exp(a); }
EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::exp(a); }
template <typename Packet>
EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pexp(a); }
};
@ -246,7 +246,7 @@ struct functor_traits<scalar_exp_op<Scalar> >
*/
template<typename Scalar> struct scalar_log_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_log_op)
EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { using std::log; return log(a); }
EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::log(a); }
template <typename Packet>
EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::plog(a); }
};
@ -276,7 +276,7 @@ struct functor_traits<scalar_log10_op<Scalar> >
*/
template<typename Scalar> struct scalar_sqrt_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_sqrt_op)
EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { using std::sqrt; return sqrt(a); }
EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::sqrt(a); }
template <typename Packet>
EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::psqrt(a); }
};
@ -294,7 +294,7 @@ struct functor_traits<scalar_sqrt_op<Scalar> >
*/
template<typename Scalar> struct scalar_rsqrt_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_rsqrt_op)
EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { using std::sqrt; return Scalar(1)/sqrt(a); }
EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return Scalar(1)/numext::sqrt(a); }
template <typename Packet>
EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::prsqrt(a); }
};
@ -448,6 +448,50 @@ struct functor_traits<scalar_digamma_op<Scalar> >
PacketAccess = packet_traits<Scalar>::HasDiGamma
};
};
/** \internal
* \brief Template functor to compute the Riemann Zeta function of two arguments.
* \sa class CwiseUnaryOp, Cwise::zeta()
*/
template<typename Scalar> struct scalar_zeta_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_zeta_op)
EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& x, const Scalar& q) const {
using numext::zeta; return zeta(x, q);
}
typedef typename packet_traits<Scalar>::type Packet;
EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& x, const Packet& q) const { return internal::pzeta(x, q); }
};
template<typename Scalar>
struct functor_traits<scalar_zeta_op<Scalar> >
{
enum {
// Guesstimate
Cost = 10 * NumTraits<Scalar>::MulCost + 5 * NumTraits<Scalar>::AddCost,
PacketAccess = packet_traits<Scalar>::HasZeta
};
};
/** \internal
* \brief Template functor to compute the polygamma function.
* \sa class CwiseUnaryOp, Cwise::polygamma()
*/
template<typename Scalar> struct scalar_polygamma_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_polygamma_op)
EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& n, const Scalar& x) const {
using numext::polygamma; return polygamma(n, x);
}
typedef typename packet_traits<Scalar>::type Packet;
EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& n, const Packet& x) const { return internal::ppolygamma(n, x); }
};
template<typename Scalar>
struct functor_traits<scalar_polygamma_op<Scalar> >
{
enum {
// Guesstimate
Cost = 10 * NumTraits<Scalar>::MulCost + 5 * NumTraits<Scalar>::AddCost,
PacketAccess = packet_traits<Scalar>::HasPolygamma
};
};
/** \internal
* \brief Template functor to compute the Gauss error function of a
@ -770,9 +814,8 @@ struct scalar_sign_op<Scalar,true> {
EIGEN_EMPTY_STRUCT_CTOR(scalar_sign_op)
EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const
{
using std::abs;
typedef typename NumTraits<Scalar>::Real real_type;
real_type aa = abs(a);
real_type aa = numext::abs(a);
if (aa==0)
return Scalar(0);
aa = 1./aa;

View File

@ -23,6 +23,8 @@ typedef CwiseUnaryOp<internal::scalar_sinh_op<Scalar>, const Derived> SinhReturn
typedef CwiseUnaryOp<internal::scalar_cosh_op<Scalar>, const Derived> CoshReturnType;
typedef CwiseUnaryOp<internal::scalar_lgamma_op<Scalar>, const Derived> LgammaReturnType;
typedef CwiseUnaryOp<internal::scalar_digamma_op<Scalar>, const Derived> DigammaReturnType;
typedef CwiseUnaryOp<internal::scalar_zeta_op<Scalar>, const Derived> ZetaReturnType;
typedef CwiseUnaryOp<internal::scalar_polygamma_op<Scalar>, const Derived> PolygammaReturnType;
typedef CwiseUnaryOp<internal::scalar_erf_op<Scalar>, const Derived> ErfReturnType;
typedef CwiseUnaryOp<internal::scalar_erfc_op<Scalar>, const Derived> ErfcReturnType;
typedef CwiseUnaryOp<internal::scalar_pow_op<Scalar>, const Derived> PowReturnType;
@ -329,6 +331,22 @@ digamma() const
return DigammaReturnType(derived());
}
/** \returns an expression of the coefficient-wise zeta function.
*/
inline const ZetaReturnType
zeta() const
{
return ZetaReturnType(derived());
}
/** \returns an expression of the coefficient-wise polygamma function.
*/
inline const PolygammaReturnType
polygamma() const
{
return PolygammaReturnType(derived());
}
/** \returns an expression of the coefficient-wise Gauss error
* function of *this.
*

View File

@ -248,7 +248,7 @@ template <typename Device, typename T> class BenchmarkSuite {
StartBenchmarkTiming();
for (int iter = 0; iter < num_iters; ++iter) {
C.device(device_) = A * A.constant(3.14) + B * B.constant(2.7);
C.device(device_) = A * A.constant(static_cast<T>(3.14)) + B * B.constant(static_cast<T>(2.7));
}
// Record the number of FLOP executed per second (2 multiplications and
// 1 addition per value)

View File

@ -302,14 +302,20 @@ macro(ei_testing_print_summary)
else()
message(STATUS "ARMv8 NEON: Using architecture defaults")
endif()
if(EIGEN_TEST_ZVECTOR)
message(STATUS "S390X ZVECTOR: ON")
else()
message(STATUS "S390X ZVECTOR: Using architecture defaults")
endif()
if(EIGEN_TEST_CXX11)
message(STATUS "C++11: ON")
else()
message(STATUS "C++11: OFF")
endif()
if(EIGEN_TEST_NVCC)
if(EIGEN_TEST_CUDA)
message(STATUS "CUDA: ON")
else()
message(STATUS "CUDA: OFF")
@ -446,6 +452,8 @@ macro(ei_get_cxxflags VAR)
set(${VAR} NEON)
elseif(EIGEN_TEST_NEON64)
set(${VAR} NEON)
elseif(EIGEN_TEST_ZVECTOR)
set(${VAR} ZVECTOR)
elseif(EIGEN_TEST_VSX)
set(${VAR} VSX)
elseif(EIGEN_TEST_ALTIVEC)

View File

@ -325,9 +325,9 @@ if(EIGEN_TEST_EIGEN2)
endif()
# NVCC unit tests
option(EIGEN_TEST_NVCC "Enable NVCC support in unit tests" OFF)
if(EIGEN_TEST_NVCC)
# CUDA unit tests
option(EIGEN_TEST_CUDA "Enable CUDA support in unit tests" OFF)
if(EIGEN_TEST_CUDA)
find_package(CUDA 5.0)
if(CUDA_FOUND)
@ -345,7 +345,7 @@ if(CUDA_FOUND)
endif(CUDA_FOUND)
endif(EIGEN_TEST_NVCC)
endif(EIGEN_TEST_CUDA)
file(MAKE_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/failtests)

View File

@ -322,6 +322,32 @@ template<typename ArrayType> void array_real(const ArrayType& m)
std::numeric_limits<RealScalar>::infinity());
VERIFY_IS_EQUAL(numext::digamma(Scalar(-1)),
std::numeric_limits<RealScalar>::infinity());
// Check the zeta function against scipy.special.zeta
VERIFY_IS_APPROX(numext::zeta(Scalar(1.5), Scalar(2)), RealScalar(1.61237534869));
VERIFY_IS_APPROX(numext::zeta(Scalar(4), Scalar(1.5)), RealScalar(0.234848505667));
VERIFY_IS_APPROX(numext::zeta(Scalar(10.5), Scalar(3)), RealScalar(1.03086757337e-5));
VERIFY_IS_APPROX(numext::zeta(Scalar(10000.5), Scalar(1.0001)), RealScalar(0.367879440865));
VERIFY_IS_APPROX(numext::zeta(Scalar(3), Scalar(-2.5)), RealScalar(0.054102025820864097));
VERIFY_IS_EQUAL(numext::zeta(Scalar(1), Scalar(1.2345)), // The second scalar does not matter
std::numeric_limits<RealScalar>::infinity());
// Check the polygamma against scipy.special.polygamma examples
VERIFY_IS_APPROX(numext::polygamma(Scalar(1), Scalar(2)), RealScalar(0.644934066848));
VERIFY_IS_APPROX(numext::polygamma(Scalar(1), Scalar(3)), RealScalar(0.394934066848));
VERIFY_IS_APPROX(numext::polygamma(Scalar(1), Scalar(25.5)), RealScalar(0.0399946696496));
// Check the polygamma function over a larger range of values
VERIFY_IS_APPROX(numext::polygamma(Scalar(17), Scalar(4.7)), RealScalar(293.334565435));
VERIFY_IS_APPROX(numext::polygamma(Scalar(31), Scalar(11.8)), RealScalar(0.445487887616));
VERIFY_IS_APPROX(numext::polygamma(Scalar(28), Scalar(17.7)), RealScalar(-2.47810300902e-07));
VERIFY_IS_APPROX(numext::polygamma(Scalar(8), Scalar(30.2)), RealScalar(-8.29668781082e-09));
/* The following tests only pass for doubles because floats cannot handle the large values of
the gamma function.
VERIFY_IS_APPROX(numext::polygamma(Scalar(42), Scalar(15.8)), RealScalar(-0.434562276666));
VERIFY_IS_APPROX(numext::polygamma(Scalar(147), Scalar(54.1)), RealScalar(0.567742190178));
VERIFY_IS_APPROX(numext::polygamma(Scalar(170), Scalar(64)), RealScalar(-0.0108615497927));
*/
{
// Test various propreties of igamma & igammac. These are normalized

View File

@ -177,7 +177,7 @@ template<typename Scalar> void packetmath()
internal::pstore(data2, internal::pset1<Packet>(data1[offset]));
VERIFY(areApprox(ref, data2, PacketSize) && "internal::pset1");
}
{
for (int i=0; i<PacketSize*4; ++i)
ref[i] = data1[i/PacketSize];
@ -199,9 +199,9 @@ template<typename Scalar> void packetmath()
internal::pstore(data2+1*PacketSize, A1);
VERIFY(areApprox(ref, data2, 2*PacketSize) && "internal::pbroadcast2");
}
VERIFY(internal::isApprox(data1[0], internal::pfirst(internal::pload<Packet>(data1))) && "internal::pfirst");
if(PacketSize>1)
{
for(int offset=0;offset<4;++offset)
@ -212,6 +212,7 @@ template<typename Scalar> void packetmath()
VERIFY(areApprox(ref, data2, PacketSize) && "ploaddup");
}
}
if(PacketSize>2)
{
for(int offset=0;offset<4;++offset)
@ -227,7 +228,7 @@ template<typename Scalar> void packetmath()
for (int i=0; i<PacketSize; ++i)
ref[0] += data1[i];
VERIFY(isApproxAbs(ref[0], internal::predux(internal::pload<Packet>(data1)), refvalue) && "internal::predux");
{
for (int i=0; i<4; ++i)
ref[i] = 0;
@ -431,6 +432,7 @@ template<typename Scalar> void packetmath_real()
VERIFY((numext::isnan)(data2[0]));
VERIFY((numext::isnan)(data2[1]));
#endif
}
}

View File

@ -133,6 +133,34 @@ class TensorBase<Derived, ReadOnlyAccessors>
return unaryExpr(internal::scalar_digamma_op<Scalar>());
}
// igamma(a = this, x = other)
template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const TensorCwiseBinaryOp<internal::scalar_igamma_op<Scalar>, const Derived, const OtherDerived>
igamma(const OtherDerived& other) const {
return binaryExpr(other.derived(), internal::scalar_igamma_op<Scalar>());
}
// igammac(a = this, x = other)
template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const TensorCwiseBinaryOp<internal::scalar_igammac_op<Scalar>, const Derived, const OtherDerived>
igammac(const OtherDerived& other) const {
return binaryExpr(other.derived(), internal::scalar_igammac_op<Scalar>());
}
// zeta(x = this, q = other)
template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const TensorCwiseBinaryOp<internal::scalar_zeta_op<Scalar>, const Derived, const OtherDerived>
zeta(const OtherDerived& other) const {
return binaryExpr(other.derived(), internal::scalar_zeta_op<Scalar>());
}
// polygamma(n = this, x = other)
template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const TensorCwiseBinaryOp<internal::scalar_polygamma_op<Scalar>, const Derived, const OtherDerived>
polygamma(const OtherDerived& other) const {
return binaryExpr(other.derived(), internal::scalar_polygamma_op<Scalar>());
}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_erf_op<Scalar>, const Derived>
erf() const {
@ -340,20 +368,6 @@ class TensorBase<Derived, ReadOnlyAccessors>
return binaryExpr(other.derived(), internal::scalar_cmp_op<Scalar, internal::cmp_NEQ>());
}
// igamma(a = this, x = other)
template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const TensorCwiseBinaryOp<internal::scalar_igamma_op<Scalar>, const Derived, const OtherDerived>
igamma(const OtherDerived& other) const {
return binaryExpr(other.derived(), internal::scalar_igamma_op<Scalar>());
}
// igammac(a = this, x = other)
template<typename OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const TensorCwiseBinaryOp<internal::scalar_igammac_op<Scalar>, const Derived, const OtherDerived>
igammac(const OtherDerived& other) const {
return binaryExpr(other.derived(), internal::scalar_igammac_op<Scalar>());
}
// comparisons and tests for Scalars
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE const TensorCwiseBinaryOp<internal::scalar_cmp_op<Scalar, internal::cmp_LT>, const Derived, const TensorCwiseNullaryOp<internal::scalar_constant_op<Scalar>, const Derived> >
@ -386,6 +400,23 @@ class TensorBase<Derived, ReadOnlyAccessors>
return operator!=(constant(threshold));
}
// Checks
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_isnan_op<Scalar>, const Derived>
(isnan)() const {
return unaryExpr(internal::scalar_isnan_op<Scalar>());
}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_isinf_op<Scalar>, const Derived>
(isinf)() const {
return unaryExpr(internal::scalar_isinf_op<Scalar>());
}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE const TensorCwiseUnaryOp<internal::scalar_isfinite_op<Scalar>, const Derived>
(isfinite)() const {
return unaryExpr(internal::scalar_isfinite_op<Scalar>());
}
// Coefficient-wise ternary operators.
template<typename ThenDerived, typename ElseDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const TensorSelectOp<const Derived, const ThenDerived, const ElseDerived>

View File

@ -87,6 +87,7 @@ struct PacketConverter<TensorEvaluator, SrcPacket, TgtPacket, 2, 1> {
template <typename TensorEvaluator, typename SrcPacket, typename TgtPacket>
struct PacketConverter<TensorEvaluator, SrcPacket, TgtPacket, 4, 1> {
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
PacketConverter(const TensorEvaluator& impl)
: m_impl(impl) {}

View File

@ -589,23 +589,24 @@ EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(log,
return ReturnType(log(x.value()),x.derivatives() * (Scalar(1)/x.value()));)
template<typename DerType>
inline const Eigen::AutoDiffScalar<Eigen::CwiseUnaryOp<Eigen::internal::scalar_multiple_op<typename Eigen::internal::traits<DerType>::Scalar>, const DerType> >
pow(const Eigen::AutoDiffScalar<DerType>& x, typename Eigen::internal::traits<DerType>::Scalar y)
inline const Eigen::AutoDiffScalar<Eigen::CwiseUnaryOp<Eigen::internal::scalar_multiple_op<typename internal::traits<typename internal::remove_all<DerType>::type>::Scalar>, const typename internal::remove_all<DerType>::type> >
pow(const Eigen::AutoDiffScalar<DerType>& x, typename internal::traits<typename internal::remove_all<DerType>::type>::Scalar y)
{
using namespace Eigen;
typedef typename Eigen::internal::traits<DerType>::Scalar Scalar;
return AutoDiffScalar<CwiseUnaryOp<Eigen::internal::scalar_multiple_op<Scalar>, const DerType> >(
typedef typename internal::remove_all<DerType>::type DerTypeCleaned;
typedef typename Eigen::internal::traits<DerTypeCleaned>::Scalar Scalar;
return AutoDiffScalar<CwiseUnaryOp<Eigen::internal::scalar_multiple_op<Scalar>, const DerTypeCleaned> >(
std::pow(x.value(),y),
x.derivatives() * (y * std::pow(x.value(),y-1)));
}
template<typename DerTypeA,typename DerTypeB>
inline const AutoDiffScalar<Matrix<typename internal::traits<DerTypeA>::Scalar,Dynamic,1> >
inline const AutoDiffScalar<Matrix<typename internal::traits<typename internal::remove_all<DerTypeA>::type>::Scalar,Dynamic,1> >
atan2(const AutoDiffScalar<DerTypeA>& a, const AutoDiffScalar<DerTypeB>& b)
{
using std::atan2;
typedef typename internal::traits<DerTypeA>::Scalar Scalar;
typedef typename internal::traits<typename internal::remove_all<DerTypeA>::type>::Scalar Scalar;
typedef AutoDiffScalar<Matrix<Scalar,Dynamic,1> > PlainADS;
PlainADS ret;
ret.value() = atan2(a.value(), b.value());

View File

@ -130,12 +130,12 @@ namespace Eigen
ParameterVectorType temporaryParameters(numParameters + 1);
KnotVectorType derivativeKnots(numInternalDerivatives);
for (unsigned int i = 0; i < numAverageKnots - 1; ++i)
for (DenseIndex i = 0; i < numAverageKnots - 1; ++i)
{
temporaryParameters[0] = averageKnots[i];
ParameterVectorType parameterIndices(numParameters);
int temporaryParameterIndex = 1;
for (int j = 0; j < numParameters; ++j)
for (DenseIndex j = 0; j < numParameters; ++j)
{
Scalar parameter = parameters[j];
if (parameter >= averageKnots[i] && parameter < averageKnots[i + 1])

View File

@ -110,6 +110,8 @@ ei_add_test(minres)
ei_add_test(levenberg_marquardt)
ei_add_test(kronecker_product)
ei_add_test(float16)
if(EIGEN_TEST_CXX11)
# It should be safe to always run these tests as there is some fallback code for
# older compiler that don't support cxx11.
@ -175,7 +177,7 @@ endif()
# These tests needs nvcc
find_package(CUDA 7.0)
if(CUDA_FOUND AND EIGEN_TEST_NVCC)
if(CUDA_FOUND AND EIGEN_TEST_CUDA)
# Make sure to compile without the -pedantic, -Wundef, -Wnon-virtual-dtor
# and -fno-check-new flags since they trigger thousands of compilation warnings
# in the CUDA runtime

View File

@ -16,7 +16,7 @@ EIGEN_DONT_INLINE Scalar foo(const Scalar& x, const Scalar& y)
using namespace std;
// return x+std::sin(y);
EIGEN_ASM_COMMENT("mybegin");
return static_cast<Scalar>(x*2 - pow(x,2) + 2*sqrt(y*y) - 4 * sin(x) + 2 * cos(y) - exp(-0.5*x*x));
return static_cast<Scalar>(x*2 - 1 + pow(1+x,2) + 2*sqrt(y*y+0) - 4 * sin(0+x) + 2 * cos(y+0) - exp(-0.5*x*x+0));
//return x+2*y*x;//x*2 -std::pow(x,2);//(2*y/x);// - y*2;
EIGEN_ASM_COMMENT("myend");
}

View File

@ -30,6 +30,10 @@ template<typename Scalar> void check_atan2()
VERIFY_IS_APPROX(res.value(), x.value());
VERIFY_IS_APPROX(res.derivatives(), x.derivatives());
res = atan2(r*s+0, r*c+0);
VERIFY_IS_APPROX(res.value(), x.value());
VERIFY_IS_APPROX(res.derivatives(), x.derivatives());
}

View File

@ -122,6 +122,43 @@ void test_cuda_elementwise()
cudaFree(d_out);
}
void test_cuda_props() {
Tensor<float, 1> in1(200);
Tensor<bool, 1> out(200);
in1.setRandom();
std::size_t in1_bytes = in1.size() * sizeof(float);
std::size_t out_bytes = out.size() * sizeof(bool);
float* d_in1;
bool* d_out;
cudaMalloc((void**)(&d_in1), in1_bytes);
cudaMalloc((void**)(&d_out), out_bytes);
cudaMemcpy(d_in1, in1.data(), in1_bytes, cudaMemcpyHostToDevice);
Eigen::CudaStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
Eigen::TensorMap<Eigen::Tensor<float, 1>, Eigen::Aligned> gpu_in1(
d_in1, 200);
Eigen::TensorMap<Eigen::Tensor<bool, 1>, Eigen::Aligned> gpu_out(
d_out, 200);
gpu_out.device(gpu_device) = (gpu_in1.isnan)();
assert(cudaMemcpyAsync(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost,
gpu_device.stream()) == cudaSuccess);
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
for (int i = 0; i < 200; ++i) {
VERIFY_IS_EQUAL(out(i), (std::isnan)(in1(i)));
}
cudaFree(d_in1);
cudaFree(d_out);
}
void test_cuda_reduction()
{
Tensor<float, 4> in1(72,53,97,113);
@ -626,6 +663,132 @@ void test_cuda_digamma()
}
}
template <typename Scalar>
void test_cuda_zeta()
{
Tensor<Scalar, 1> in_x(6);
Tensor<Scalar, 1> in_q(6);
Tensor<Scalar, 1> out(6);
Tensor<Scalar, 1> expected_out(6);
out.setZero();
in_x(0) = Scalar(1);
in_x(1) = Scalar(1.5);
in_x(2) = Scalar(4);
in_x(3) = Scalar(-10.5);
in_x(4) = Scalar(10000.5);
in_x(5) = Scalar(3);
in_q(0) = Scalar(1.2345);
in_q(1) = Scalar(2);
in_q(2) = Scalar(1.5);
in_q(3) = Scalar(3);
in_q(4) = Scalar(1.0001);
in_q(5) = Scalar(-2.5);
expected_out(0) = std::numeric_limits<Scalar>::infinity();
expected_out(1) = Scalar(1.61237534869);
expected_out(2) = Scalar(0.234848505667);
expected_out(3) = Scalar(1.03086757337e-5);
expected_out(4) = Scalar(0.367879440865);
expected_out(5) = Scalar(0.054102025820864097);
std::size_t bytes = in_x.size() * sizeof(Scalar);
Scalar* d_in_x;
Scalar* d_in_q;
Scalar* d_out;
cudaMalloc((void**)(&d_in_x), bytes);
cudaMalloc((void**)(&d_in_q), bytes);
cudaMalloc((void**)(&d_out), bytes);
cudaMemcpy(d_in_x, in_x.data(), bytes, cudaMemcpyHostToDevice);
cudaMemcpy(d_in_q, in_q.data(), bytes, cudaMemcpyHostToDevice);
Eigen::CudaStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
Eigen::TensorMap<Eigen::Tensor<Scalar, 1> > gpu_in_x(d_in_x, 6);
Eigen::TensorMap<Eigen::Tensor<Scalar, 1> > gpu_in_q(d_in_q, 6);
Eigen::TensorMap<Eigen::Tensor<Scalar, 1> > gpu_out(d_out, 6);
gpu_out.device(gpu_device) = gpu_in_x.zeta(gpu_in_q);
assert(cudaMemcpyAsync(out.data(), d_out, bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
VERIFY_IS_EQUAL(out(0), expected_out(0));
VERIFY_IS_APPROX_OR_LESS_THAN(out(3), expected_out(3));
for (int i = 1; i < 6; ++i) {
if (i != 3) {
VERIFY_IS_APPROX(out(i), expected_out(i));
}
}
}
template <typename Scalar>
void test_cuda_polygamma()
{
Tensor<Scalar, 1> in_x(7);
Tensor<Scalar, 1> in_n(7);
Tensor<Scalar, 1> out(7);
Tensor<Scalar, 1> expected_out(7);
out.setZero();
in_n(0) = Scalar(1);
in_n(1) = Scalar(1);
in_n(2) = Scalar(1);
in_n(3) = Scalar(17);
in_n(4) = Scalar(31);
in_n(5) = Scalar(28);
in_n(6) = Scalar(8);
in_x(0) = Scalar(2);
in_x(1) = Scalar(3);
in_x(2) = Scalar(25.5);
in_x(3) = Scalar(4.7);
in_x(4) = Scalar(11.8);
in_x(5) = Scalar(17.7);
in_x(6) = Scalar(30.2);
expected_out(0) = Scalar(0.644934066848);
expected_out(1) = Scalar(0.394934066848);
expected_out(2) = Scalar(0.0399946696496);
expected_out(3) = Scalar(293.334565435);
expected_out(4) = Scalar(0.445487887616);
expected_out(5) = Scalar(-2.47810300902e-07);
expected_out(6) = Scalar(-8.29668781082e-09);
std::size_t bytes = in_x.size() * sizeof(Scalar);
Scalar* d_in_x;
Scalar* d_in_n;
Scalar* d_out;
cudaMalloc((void**)(&d_in_x), bytes);
cudaMalloc((void**)(&d_in_n), bytes);
cudaMalloc((void**)(&d_out), bytes);
cudaMemcpy(d_in_x, in_x.data(), bytes, cudaMemcpyHostToDevice);
cudaMemcpy(d_in_n, in_n.data(), bytes, cudaMemcpyHostToDevice);
Eigen::CudaStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
Eigen::TensorMap<Eigen::Tensor<Scalar, 1> > gpu_in_x(d_in_x, 7);
Eigen::TensorMap<Eigen::Tensor<Scalar, 1> > gpu_in_n(d_in_n, 7);
Eigen::TensorMap<Eigen::Tensor<Scalar, 1> > gpu_out(d_out, 7);
gpu_out.device(gpu_device) = gpu_in_n.polygamma(gpu_in_x);
assert(cudaMemcpyAsync(out.data(), d_out, bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
for (int i = 0; i < 7; ++i) {
VERIFY_IS_APPROX(out(i), expected_out(i));
}
}
template <typename Scalar>
void test_cuda_igamma()
{
@ -841,6 +1004,7 @@ void test_cxx11_tensor_cuda()
{
CALL_SUBTEST_1(test_cuda_elementwise_small());
CALL_SUBTEST_1(test_cuda_elementwise());
CALL_SUBTEST_1(test_cuda_props());
CALL_SUBTEST_1(test_cuda_reduction());
CALL_SUBTEST_2(test_cuda_contraction<ColMajor>());
CALL_SUBTEST_2(test_cuda_contraction<RowMajor>());
@ -862,8 +1026,10 @@ void test_cxx11_tensor_cuda()
CALL_SUBTEST_4(test_cuda_lgamma<float>(0.01f));
CALL_SUBTEST_4(test_cuda_lgamma<float>(0.001f));
CALL_SUBTEST_4(test_cuda_digamma<float>());
CALL_SUBTEST_4(test_cuda_lgamma<double>(1.0));
CALL_SUBTEST_4(test_cuda_lgamma<double>(100.0));
CALL_SUBTEST_4(test_cuda_lgamma<double>(0.01));
CALL_SUBTEST_4(test_cuda_lgamma<double>(0.001));
CALL_SUBTEST_4(test_cuda_erf<float>(1.0f));
CALL_SUBTEST_4(test_cuda_erf<float>(100.0f));
@ -876,13 +1042,6 @@ void test_cxx11_tensor_cuda()
CALL_SUBTEST_4(test_cuda_erfc<float>(0.01f));
CALL_SUBTEST_4(test_cuda_erfc<float>(0.001f));
CALL_SUBTEST_4(test_cuda_lgamma<double>(1.0));
CALL_SUBTEST_4(test_cuda_lgamma<double>(100.0));
CALL_SUBTEST_4(test_cuda_lgamma<double>(0.01));
CALL_SUBTEST_4(test_cuda_lgamma<double>(0.001));
CALL_SUBTEST_4(test_cuda_digamma<double>());
CALL_SUBTEST_4(test_cuda_erf<double>(1.0));
CALL_SUBTEST_4(test_cuda_erf<double>(100.0));
CALL_SUBTEST_4(test_cuda_erf<double>(0.01));
@ -894,6 +1053,15 @@ void test_cxx11_tensor_cuda()
CALL_SUBTEST_4(test_cuda_erfc<double>(0.01));
CALL_SUBTEST_4(test_cuda_erfc<double>(0.001));
CALL_SUBTEST_5(test_cuda_digamma<float>());
CALL_SUBTEST_5(test_cuda_digamma<double>());
CALL_SUBTEST_5(test_cuda_polygamma<float>());
CALL_SUBTEST_5(test_cuda_polygamma<double>());
CALL_SUBTEST_5(test_cuda_zeta<float>());
CALL_SUBTEST_5(test_cuda_zeta<double>());
CALL_SUBTEST_5(test_cuda_igamma<float>());
CALL_SUBTEST_5(test_cuda_igammac<float>());

View File

@ -0,0 +1,147 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#define EIGEN_TEST_NO_LONGDOUBLE
#define EIGEN_TEST_NO_COMPLEX
#define EIGEN_TEST_FUNC float16
#include "main.h"
#include <Eigen/src/Core/arch/CUDA/Half.h>
using Eigen::half;
void test_conversion()
{
// Conversion from float.
VERIFY_IS_EQUAL(half(1.0f).x, 0x3c00);
VERIFY_IS_EQUAL(half(0.5f).x, 0x3800);
VERIFY_IS_EQUAL(half(0.33333f).x, 0x3555);
VERIFY_IS_EQUAL(half(0.0f).x, 0x0000);
VERIFY_IS_EQUAL(half(-0.0f).x, 0x8000);
VERIFY_IS_EQUAL(half(65504.0f).x, 0x7bff);
VERIFY_IS_EQUAL(half(65536.0f).x, 0x7c00); // Becomes infinity.
// Denormals.
VERIFY_IS_EQUAL(half(-5.96046e-08f).x, 0x8001);
VERIFY_IS_EQUAL(half(5.96046e-08f).x, 0x0001);
VERIFY_IS_EQUAL(half(1.19209e-07f).x, 0x0002);
// Verify round-to-nearest-even behavior.
float val1 = float(half(__half{0x3c00}));
float val2 = float(half(__half{0x3c01}));
float val3 = float(half(__half{0x3c02}));
VERIFY_IS_EQUAL(half(0.5 * (val1 + val2)).x, 0x3c00);
VERIFY_IS_EQUAL(half(0.5 * (val2 + val3)).x, 0x3c02);
// Conversion from int.
VERIFY_IS_EQUAL(half(-1).x, 0xbc00);
VERIFY_IS_EQUAL(half(0).x, 0x0000);
VERIFY_IS_EQUAL(half(1).x, 0x3c00);
VERIFY_IS_EQUAL(half(2).x, 0x4000);
VERIFY_IS_EQUAL(half(3).x, 0x4200);
// Conversion from bool.
VERIFY_IS_EQUAL(half(false).x, 0x0000);
VERIFY_IS_EQUAL(half(true).x, 0x3c00);
// Conversion to float.
VERIFY_IS_EQUAL(float(half(__half{0x0000})), 0.0f);
VERIFY_IS_EQUAL(float(half(__half{0x3c00})), 1.0f);
// Denormals.
VERIFY_IS_APPROX(float(half(__half{0x8001})), -5.96046e-08f);
VERIFY_IS_APPROX(float(half(__half{0x0001})), 5.96046e-08f);
VERIFY_IS_APPROX(float(half(__half{0x0002})), 1.19209e-07f);
// NaNs and infinities.
VERIFY(!(numext::isinf)(float(half(65504.0f)))); // Largest finite number.
VERIFY(!(numext::isnan)(float(half(0.0f))));
VERIFY((numext::isinf)(float(half(__half{0xfc00}))));
VERIFY((numext::isnan)(float(half(__half{0xfc01}))));
VERIFY((numext::isinf)(float(half(__half{0x7c00}))));
VERIFY((numext::isnan)(float(half(__half{0x7c01}))));
VERIFY((numext::isnan)(float(half(0.0 / 0.0))));
VERIFY((numext::isinf)(float(half(1.0 / 0.0))));
VERIFY((numext::isinf)(float(half(-1.0 / 0.0))));
// Exactly same checks as above, just directly on the half representation.
VERIFY(!(numext::isinf)(half(__half{0x7bff})));
VERIFY(!(numext::isnan)(half(__half{0x0000})));
VERIFY((numext::isinf)(half(__half{0xfc00})));
VERIFY((numext::isnan)(half(__half{0xfc01})));
VERIFY((numext::isinf)(half(__half{0x7c00})));
VERIFY((numext::isnan)(half(__half{0x7c01})));
VERIFY((numext::isnan)(half(0.0 / 0.0)));
VERIFY((numext::isinf)(half(1.0 / 0.0)));
VERIFY((numext::isinf)(half(-1.0 / 0.0)));
}
void test_arithmetic()
{
VERIFY_IS_EQUAL(float(half(2) + half(2)), 4);
VERIFY_IS_EQUAL(float(half(2) + half(-2)), 0);
VERIFY_IS_APPROX(float(half(0.33333f) + half(0.66667f)), 1.0f);
VERIFY_IS_EQUAL(float(half(2.0f) * half(-5.5f)), -11.0f);
VERIFY_IS_APPROX(float(half(1.0f) / half(3.0f)), 0.33333f);
VERIFY_IS_EQUAL(float(-half(4096.0f)), -4096.0f);
VERIFY_IS_EQUAL(float(-half(-4096.0f)), 4096.0f);
}
void test_comparison()
{
VERIFY(half(1.0f) > half(0.5f));
VERIFY(half(0.5f) < half(1.0f));
VERIFY(!(half(1.0f) < half(0.5f)));
VERIFY(!(half(0.5f) > half(1.0f)));
VERIFY(!(half(4.0f) > half(4.0f)));
VERIFY(!(half(4.0f) < half(4.0f)));
VERIFY(!(half(0.0f) < half(-0.0f)));
VERIFY(!(half(-0.0f) < half(0.0f)));
VERIFY(!(half(0.0f) > half(-0.0f)));
VERIFY(!(half(-0.0f) > half(0.0f)));
VERIFY(half(0.2f) > half(-1.0f));
VERIFY(half(-1.0f) < half(0.2f));
VERIFY(half(-16.0f) < half(-15.0f));
VERIFY(half(1.0f) == half(1.0f));
VERIFY(half(1.0f) != half(2.0f));
// Comparisons with NaNs and infinities.
VERIFY(!(half(0.0 / 0.0) == half(0.0 / 0.0)));
VERIFY(half(0.0 / 0.0) != half(0.0 / 0.0));
VERIFY(!(half(1.0) == half(0.0 / 0.0)));
VERIFY(!(half(1.0) < half(0.0 / 0.0)));
VERIFY(!(half(1.0) > half(0.0 / 0.0)));
VERIFY(half(1.0) != half(0.0 / 0.0));
VERIFY(half(1.0) < half(1.0 / 0.0));
VERIFY(half(1.0) > half(-1.0 / 0.0));
}
void test_functions()
{
VERIFY_IS_EQUAL(float(numext::abs(half(3.5f))), 3.5f);
VERIFY_IS_EQUAL(float(numext::abs(half(-3.5f))), 3.5f);
VERIFY_IS_EQUAL(float(numext::exp(half(0.0f))), 1.0f);
VERIFY_IS_APPROX(float(numext::exp(half(EIGEN_PI))), float(20.0 + EIGEN_PI));
VERIFY_IS_EQUAL(float(numext::log(half(1.0f))), 0.0f);
VERIFY_IS_APPROX(float(numext::log(half(10.0f))), 2.30273f);
}
void test_float16()
{
CALL_SUBTEST(test_conversion());
CALL_SUBTEST(test_arithmetic());
CALL_SUBTEST(test_comparison());
CALL_SUBTEST(test_functions());
}