diff --git a/Eigen/src/Core/MatrixBase.h b/Eigen/src/Core/MatrixBase.h index 7b8850eb7..25a26304f 100644 --- a/Eigen/src/Core/MatrixBase.h +++ b/Eigen/src/Core/MatrixBase.h @@ -165,6 +165,9 @@ template class MatrixBase template Derived& lazyAssign(const MatrixPowerProductBase& other); + + template + Derived& lazyAssign(const KroneckerProduct& other); #endif // not EIGEN_PARSED_BY_DOXYGEN template diff --git a/Eigen/src/Core/util/ForwardDeclarations.h b/Eigen/src/Core/util/ForwardDeclarations.h index b114b3745..61d092ba8 100644 --- a/Eigen/src/Core/util/ForwardDeclarations.h +++ b/Eigen/src/Core/util/ForwardDeclarations.h @@ -282,6 +282,9 @@ struct stem_function }; } +// KroneckerProduct module +template class KroneckerProduct; +template class KroneckerProductSparse; #ifdef EIGEN2_SUPPORT template class Cwise; diff --git a/Eigen/src/SparseCore/SparseMatrixBase.h b/Eigen/src/SparseCore/SparseMatrixBase.h index 2ef841616..0e431815f 100644 --- a/Eigen/src/SparseCore/SparseMatrixBase.h +++ b/Eigen/src/SparseCore/SparseMatrixBase.h @@ -259,6 +259,9 @@ template class SparseMatrixBase : public EigenBase template inline Derived& operator=(const SparseSparseProduct& product); + template + inline Derived& operator=(const KroneckerProductSparse& product); + friend std::ostream & operator << (std::ostream & s, const SparseMatrixBase& m) { typedef typename Derived::Nested Nested; diff --git a/unsupported/Eigen/src/KroneckerProduct/KroneckerTensorProduct.h b/unsupported/Eigen/src/KroneckerProduct/KroneckerTensorProduct.h index 14502f03f..a7cb5215b 100644 --- a/unsupported/Eigen/src/KroneckerProduct/KroneckerTensorProduct.h +++ b/unsupported/Eigen/src/KroneckerProduct/KroneckerTensorProduct.h @@ -3,138 +3,230 @@ // // Copyright (C) 2011 Kolja Brix // Copyright (C) 2011 Andreas Platen +// Copyright (C) 2012 Chen-Pang He // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - #ifndef KRONECKER_TENSOR_PRODUCT_H #define KRONECKER_TENSOR_PRODUCT_H +#define EIGEN_SIZE_PRODUCT(a,b) (!((int)a && (int)b) ? 0 \ + : ((int)a == Dynamic || (int)b == Dynamic) ? Dynamic \ + : (int)a * (int)b) namespace Eigen { namespace internal { -/*! - * Kronecker tensor product helper function for dense matrices - * - * \param A Dense matrix A - * \param B Dense matrix B - * \param AB_ Kronecker tensor product of A and B - */ -template -void kroneckerProduct_full(const Derived_A& A, const Derived_B& B, Derived_AB & AB) +template +struct traits > { - const unsigned int Ar = A.rows(), - Ac = A.cols(), - Br = B.rows(), - Bc = B.cols(); - AB.resize(Ar*Br,Ac*Bc); - - for (unsigned int i=0; i::type Lhs; + typedef typename remove_all<_Rhs>::type Rhs; + typedef typename scalar_product_traits::ReturnType Scalar; + typedef Dense StorageKind; + typedef typename promote_index_type::type Index; + + enum { + RowsAtCompileTime = EIGEN_SIZE_PRODUCT(traits::RowsAtCompileTime, traits::RowsAtCompileTime), + ColsAtCompileTime = EIGEN_SIZE_PRODUCT(traits::ColsAtCompileTime, traits::ColsAtCompileTime), + MaxRowsAtCompileTime = EIGEN_SIZE_PRODUCT(traits::MaxRowsAtCompileTime, traits::MaxRowsAtCompileTime), + MaxColsAtCompileTime = EIGEN_SIZE_PRODUCT(traits::MaxColsAtCompileTime, traits::MaxColsAtCompileTime), + Flags = (MaxRowsAtCompileTime==1 ? RowMajorBit : 0) + | EvalBeforeNestingBit | EvalBeforeAssigningBit | NestByRefBit, + CoeffReadCost = Lhs::CoeffReadCost + Rhs::CoeffReadCost + NumTraits::MulCost + }; +}; + +template +struct traits > +{ + typedef MatrixXpr XprKind; + typedef typename remove_all<_Lhs>::type Lhs; + typedef typename remove_all<_Rhs>::type Rhs; + typedef typename scalar_product_traits::ReturnType Scalar; + typedef Sparse StorageKind; + typedef typename promote_index_type::type Index; + + enum { + LhsFlags = Lhs::Flags, + RhsFlags = Rhs::Flags, + + RowsAtCompileTime = EIGEN_SIZE_PRODUCT(traits::RowsAtCompileTime, traits::RowsAtCompileTime), + ColsAtCompileTime = EIGEN_SIZE_PRODUCT(traits::ColsAtCompileTime, traits::ColsAtCompileTime), + MaxRowsAtCompileTime = EIGEN_SIZE_PRODUCT(traits::MaxRowsAtCompileTime, traits::MaxRowsAtCompileTime), + MaxColsAtCompileTime = EIGEN_SIZE_PRODUCT(traits::MaxColsAtCompileTime, traits::MaxColsAtCompileTime), + + EvalToRowMajor = (LhsFlags & RhsFlags & RowMajorBit), + RemovedBits = ~(EvalToRowMajor ? 0 : RowMajorBit), + + Flags = ((LhsFlags | RhsFlags) & HereditaryBits & RemovedBits) + | EvalBeforeNestingBit | EvalBeforeAssigningBit, + CoeffReadCost = Dynamic + }; +}; + +} // end namespace internal + +/*! + * \brief Kronecker tensor product helper class for dense matrices + * + * This class is the return value of kroneckerProduct(MatrixBase, + * MatrixBase). Use the function rather than construct this class + * directly to avoid specifying template prarameters. + * + * \tparam Lhs Type of the left-hand side, a matrix expression. + * \tparam Rhs Type of the rignt-hand side, a matrix expression. + */ +template +class KroneckerProduct : public MatrixBase > +{ + public: + typedef MatrixBase Base; + EIGEN_DENSE_PUBLIC_INTERFACE(KroneckerProduct) + + /*! \brief Constructor. */ + KroneckerProduct(const Lhs& A, const Rhs& B) + : m_A(A), m_B(B) + {} + + /*! \brief Evaluate the Kronecker tensor product. */ + template void evalTo(Dest& dst) const; + + inline Index rows() const { return m_A.rows() * m_B.rows(); } + inline Index cols() const { return m_A.cols() * m_B.cols(); } + + typename Base::CoeffReturnType coeff(Index row, Index col) const + { + return m_A.coeff(row / m_A.cols(), col / m_A.rows()) * + m_B.coeff(row % m_A.cols(), col % m_A.rows()); + } + + typename Base::CoeffReturnType coeff(Index i) const + { + EIGEN_STATIC_ASSERT_VECTOR_ONLY(KroneckerProduct); + return m_A.coeff(i / m_A.size()) * m_B.coeff(i % m_A.size()); + } + +#ifndef EIGEN_PARSED_BY_DOXYGEN + struct Unusable {}; + Unusable& coeffRef(Index) { return *reinterpret_cast(this); } + Unusable& coeffRef(Index,Index) { return *reinterpret_cast(this); } +#endif + + private: + typename Lhs::Nested m_A; + typename Rhs::Nested m_B; +}; + +template +class KroneckerProductSparse : public SparseMatrixBase > +{ + public: + typedef SparseMatrixBase Base; + EIGEN_DENSE_PUBLIC_INTERFACE(KroneckerProductSparse) + + /*! \brief Constructor. */ + KroneckerProductSparse(const Lhs& A, const Rhs& B) + : m_A(A), m_B(B) + {} + + /*! \brief Evaluate the Kronecker tensor product. */ + template void evalTo(Dest& dst) const; + + inline Index rows() const { return m_A.rows() * m_B.rows(); } + inline Index cols() const { return m_A.cols() * m_B.cols(); } + + private: + typename Lhs::Nested m_A; + typename Rhs::Nested m_B; +}; + +template +template +void KroneckerProduct::evalTo(Dest& dst) const +{ + const int BlockRows = Rhs::RowsAtCompileTime, + BlockCols = Rhs::ColsAtCompileTime; + const Index Br = m_B.rows(), + Bc = m_B.cols(); + for (Index i=0; i < m_A.rows(); ++i) + for (Index j=0; j < m_A.cols(); ++j) + Block(dst,i*Br,j*Bc,Br,Bc) = m_A.coeff(i,j) * m_B; } - -/*! - * Kronecker tensor product helper function for matrices, where at least one is sparse - * - * \param A Matrix A - * \param B Matrix B - * \param AB_ Kronecker tensor product of A and B - */ -template -void kroneckerProduct_sparse(const Derived_A &A, const Derived_B &B, Derived_AB &AB) +template +template +void KroneckerProductSparse::evalTo(Dest& dst) const { - const unsigned int Ar = A.rows(), - Ac = A.cols(), - Br = B.rows(), - Bc = B.cols(); - AB.resize(Ar*Br,Ac*Bc); - AB.resizeNonZeros(0); - AB.reserve(A.nonZeros()*B.nonZeros()); + const Index Br = m_B.rows(), + Bc = m_B.cols(); + dst.resize(rows(),cols()); + dst.resizeNonZeros(0); + dst.reserve(m_A.nonZeros() * m_B.nonZeros()); - for (int kA=0; kA -void kroneckerProduct(const MatrixBase& a, const MatrixBase& b, const MatrixBase& c) +template +KroneckerProduct kroneckerProduct(const MatrixBase& a, const MatrixBase& b) { - internal::kroneckerProduct_full(a.derived(), b.derived(), c.const_cast_derived()); + return KroneckerProduct(a.derived(), b.derived()); } /*! - * Computes Kronecker tensor product of a dense and a sparse matrix + * Computes Kronecker tensor product of two matrices, at least one of + * which is sparse. * - * \param a Dense matrix a - * \param b Sparse matrix b - * \param c Kronecker tensor product of a and b + * \param a Dense/sparse matrix a + * \param b Dense/sparse matrix b + * \return Kronecker tensor product of a and b, stored in a sparse + * matrix */ -template -void kroneckerProduct(const MatrixBase& a, const SparseMatrixBase& b, SparseMatrixBase& c) +template +KroneckerProductSparse kroneckerProduct(const EigenBase& a, const EigenBase& b) { - internal::kroneckerProduct_sparse(a.derived(), b.derived(), c.derived()); + return KroneckerProductSparse(a.derived(), b.derived()); } -/*! - * Computes Kronecker tensor product of a sparse and a dense matrix - * - * \param a Sparse matrix a - * \param b Dense matrix b - * \param c Kronecker tensor product of a and b - */ -template -void kroneckerProduct(const SparseMatrixBase& a, const MatrixBase& b, SparseMatrixBase& c) +template +template +Derived& MatrixBase::lazyAssign(const KroneckerProduct& other) { - internal::kroneckerProduct_sparse(a.derived(), b.derived(), c.derived()); + other.evalTo(derived()); + return derived(); } -/*! - * Computes Kronecker tensor product of two sparse matrices - * - * \param a Sparse matrix a - * \param b Sparse matrix b - * \param c Kronecker tensor product of a and b - */ -template -void kroneckerProduct(const SparseMatrixBase& a, const SparseMatrixBase& b, SparseMatrixBase& c) +template +template +Derived& SparseMatrixBase::operator=(const KroneckerProductSparse& product) { - internal::kroneckerProduct_sparse(a.derived(), b.derived(), c.derived()); + product.evalTo(derived()); + return derived(); } } // end namespace Eigen diff --git a/unsupported/test/kronecker_product.cpp b/unsupported/test/kronecker_product.cpp index a60bd3022..68fde8aa5 100644 --- a/unsupported/test/kronecker_product.cpp +++ b/unsupported/test/kronecker_product.cpp @@ -3,6 +3,7 @@ // // Copyright (C) 2011 Kolja Brix // Copyright (C) 2011 Andreas Platen +// Copyright (C) 2012 Chen-Pang He // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed @@ -89,64 +90,55 @@ void test_kronecker_product() MatrixXd DM_b(3,2); SparseMatrix SM_a(2,3); SparseMatrix SM_b(3,2); - SM_a.insert(0,0) = DM_a(0,0) = -0.4461540300782201; - SM_a.insert(0,1) = DM_a(0,1) = -0.8057364375283049; - SM_a.insert(0,2) = DM_a(0,2) = 0.3896572459516341; - SM_a.insert(1,0) = DM_a(1,0) = -0.9076572187376921; - SM_a.insert(1,1) = DM_a(1,1) = 0.6469156566545853; - SM_a.insert(1,2) = DM_a(1,2) = -0.3658010398782789; - SM_b.insert(0,0) = DM_b(0,0) = 0.9004440976767099; - SM_b.insert(0,1) = DM_b(0,1) = -0.2368830858139832; - SM_b.insert(1,0) = DM_b(1,0) = -0.9311078389941825; - SM_b.insert(1,1) = DM_b(1,1) = 0.5310335762980047; - SM_b.insert(2,0) = DM_b(2,0) = -0.1225112806872035; - SM_b.insert(2,1) = DM_b(2,1) = 0.5903998022741264; + SM_a.insert(0,0) = DM_a.coeffRef(0,0) = -0.4461540300782201; + SM_a.insert(0,1) = DM_a.coeffRef(0,1) = -0.8057364375283049; + SM_a.insert(0,2) = DM_a.coeffRef(0,2) = 0.3896572459516341; + SM_a.insert(1,0) = DM_a.coeffRef(1,0) = -0.9076572187376921; + SM_a.insert(1,1) = DM_a.coeffRef(1,1) = 0.6469156566545853; + SM_a.insert(1,2) = DM_a.coeffRef(1,2) = -0.3658010398782789; + SM_b.insert(0,0) = DM_b.coeffRef(0,0) = 0.9004440976767099; + SM_b.insert(0,1) = DM_b.coeffRef(0,1) = -0.2368830858139832; + SM_b.insert(1,0) = DM_b.coeffRef(1,0) = -0.9311078389941825; + SM_b.insert(1,1) = DM_b.coeffRef(1,1) = 0.5310335762980047; + SM_b.insert(2,0) = DM_b.coeffRef(2,0) = -0.1225112806872035; + SM_b.insert(2,1) = DM_b.coeffRef(2,1) = 0.5903998022741264; SparseMatrix SM_row_a(SM_a), SM_row_b(SM_b); // test kroneckerProduct(DM_block,DM,DM_fixedSize) - Matrix DM_fix_ab; - DM_fix_ab(0,0)=37.0; - kroneckerProduct(DM_a.block(0,0,2,3),DM_b,DM_fix_ab); + Matrix DM_fix_ab = kroneckerProduct(DM_a.topLeftCorner<2,3>(),DM_b); CALL_SUBTEST(check_kronecker_product(DM_fix_ab)); // test kroneckerProduct(DM,DM,DM_block) MatrixXd DM_block_ab(10,15); - DM_block_ab(0,0)=37.0; - kroneckerProduct(DM_a,DM_b,DM_block_ab.block(2,5,6,6)); - CALL_SUBTEST(check_kronecker_product(DM_block_ab.block(2,5,6,6))); + DM_block_ab.block<6,6>(2,5) = kroneckerProduct(DM_a,DM_b); + CALL_SUBTEST(check_kronecker_product(DM_block_ab.block<6,6>(2,5))); // test kroneckerProduct(DM,DM,DM) - MatrixXd DM_ab(1,5); - DM_ab(0,0)=37.0; - kroneckerProduct(DM_a,DM_b,DM_ab); + MatrixXd DM_ab = kroneckerProduct(DM_a,DM_b); CALL_SUBTEST(check_kronecker_product(DM_ab)); // test kroneckerProduct(SM,DM,SM) - SparseMatrix SM_ab(1,20); - SM_ab.insert(0,0)=37.0; - kroneckerProduct(SM_a,DM_b,SM_ab); + SparseMatrix SM_ab = kroneckerProduct(SM_a,DM_b); CALL_SUBTEST(check_kronecker_product(SM_ab)); - SparseMatrix SM_ab2(10,3); - SM_ab2.insert(0,0)=37.0; - kroneckerProduct(SM_a,DM_b,SM_ab2); + SparseMatrix SM_ab2 = kroneckerProduct(SM_a,DM_b); CALL_SUBTEST(check_kronecker_product(SM_ab2)); // test kroneckerProduct(DM,SM,SM) SM_ab.insert(0,0)=37.0; - kroneckerProduct(DM_a,SM_b,SM_ab); + SM_ab = kroneckerProduct(DM_a,SM_b); CALL_SUBTEST(check_kronecker_product(SM_ab)); SM_ab2.insert(0,0)=37.0; - kroneckerProduct(DM_a,SM_b,SM_ab2); + SM_ab2 = kroneckerProduct(DM_a,SM_b); CALL_SUBTEST(check_kronecker_product(SM_ab2)); // test kroneckerProduct(SM,SM,SM) SM_ab.resize(2,33); SM_ab.insert(0,0)=37.0; - kroneckerProduct(SM_a,SM_b,SM_ab); + SM_ab = kroneckerProduct(SM_a,SM_b); CALL_SUBTEST(check_kronecker_product(SM_ab)); SM_ab2.resize(5,11); SM_ab2.insert(0,0)=37.0; - kroneckerProduct(SM_a,SM_b,SM_ab2); + SM_ab2 = kroneckerProduct(SM_a,SM_b); CALL_SUBTEST(check_kronecker_product(SM_ab2)); // test kroneckerProduct(SM,SM,SM) with sparse pattern @@ -163,17 +155,16 @@ void test_kronecker_product() SM_b.finalize(); SM_ab.resize(1,1); SM_ab.insert(0,0)=37.0; - kroneckerProduct(SM_a,SM_b,SM_ab); + SM_ab = kroneckerProduct(SM_a,SM_b); CALL_SUBTEST(check_sparse_kronecker_product(SM_ab)); // test dimension of result of kroneckerProduct(DM,DM,DM) MatrixXd DM_a2(2,1); MatrixXd DM_b2(5,4); - MatrixXd DM_ab2; - kroneckerProduct(DM_a2,DM_b2,DM_ab2); + MatrixXd DM_ab2 = kroneckerProduct(DM_a2,DM_b2); CALL_SUBTEST(check_dimension(DM_ab2,2*5,1*4)); DM_a2.resize(10,9); DM_b2.resize(4,8); - kroneckerProduct(DM_a2,DM_b2,DM_ab2); + DM_ab2 = kroneckerProduct(DM_a2,DM_b2); CALL_SUBTEST(check_dimension(DM_ab2,10*4,9*8)); }