Allow multiplication like binary operators to be applied on type couples supported by scalar_product_traits

This commit is contained in:
Gael Guennebaud 2013-03-20 21:19:16 +01:00
parent f350f34560
commit c519be2bac
4 changed files with 26 additions and 13 deletions

View File

@ -94,8 +94,8 @@ struct traits<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >
// So allowing mixing different types gives very unexpected errors when enabling vectorization, when the user tries to
// add together a float matrix and a double matrix.
#define EIGEN_CHECK_BINARY_COMPATIBILIY(BINOP,LHS,RHS) \
EIGEN_STATIC_ASSERT((internal::functor_allows_mixing_real_and_complex<BINOP>::ret \
? int(internal::is_same<typename NumTraits<LHS>::Real, typename NumTraits<RHS>::Real>::value) \
EIGEN_STATIC_ASSERT((internal::functor_is_product_like<BINOP>::ret \
? int(internal::scalar_product_traits<LHS, RHS>::Defined) \
: int(internal::is_same<LHS, RHS>::value)), \
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)

View File

@ -648,13 +648,14 @@ template <typename Scalar, bool RandomAccess> struct linspaced_op
template<typename Functor> struct functor_has_linear_access { enum { ret = 1 }; };
template<typename Scalar> struct functor_has_linear_access<scalar_identity_op<Scalar> > { enum { ret = 0 }; };
// in CwiseBinaryOp, we require the Lhs and Rhs to have the same scalar type, except for multiplication
// where we only require them to have the same _real_ scalar type so one may multiply, say, float by complex<float>.
// In Eigen, any binary op (Product, CwiseBinaryOp) require the Lhs and Rhs to have the same scalar type, except for multiplication
// where the mixing of different types is handled by scalar_product_traits
// In particular, real * complex<real> is allowed.
// FIXME move this to functor_traits adding a functor_default
template<typename Functor> struct functor_allows_mixing_real_and_complex { enum { ret = 0 }; };
template<typename LhsScalar,typename RhsScalar> struct functor_allows_mixing_real_and_complex<scalar_product_op<LhsScalar,RhsScalar> > { enum { ret = 1 }; };
template<typename LhsScalar,typename RhsScalar> struct functor_allows_mixing_real_and_complex<scalar_conj_product_op<LhsScalar,RhsScalar> > { enum { ret = 1 }; };
template<typename LhsScalar,typename RhsScalar> struct functor_allows_mixing_real_and_complex<scalar_quotient_op<LhsScalar,RhsScalar> > { enum { ret = 1 }; };
template<typename Functor> struct functor_is_product_like { enum { ret = 0 }; };
template<typename LhsScalar,typename RhsScalar> struct functor_is_product_like<scalar_product_op<LhsScalar,RhsScalar> > { enum { ret = 1 }; };
template<typename LhsScalar,typename RhsScalar> struct functor_is_product_like<scalar_conj_product_op<LhsScalar,RhsScalar> > { enum { ret = 1 }; };
template<typename LhsScalar,typename RhsScalar> struct functor_is_product_like<scalar_quotient_op<LhsScalar,RhsScalar> > { enum { ret = 1 }; };
/** \internal

View File

@ -150,7 +150,7 @@ class CoeffBasedProduct
{
// we don't allow taking products of matrices of different real types, as that wouldn't be vectorizable.
// We still allow to mix T and complex<T>.
EIGEN_STATIC_ASSERT((internal::is_same<typename Lhs::RealScalar, typename Rhs::RealScalar>::value),
EIGEN_STATIC_ASSERT((internal::scalar_product_traits<typename Lhs::RealScalar, typename Rhs::RealScalar>::Defined),
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
eigen_assert(lhs.cols() == rhs.rows()
&& "invalid matrix product"

View File

@ -186,23 +186,35 @@ template<int Y, int InfX, int SupX>
class meta_sqrt<Y, InfX, SupX, true> { public: enum { ret = (SupX*SupX <= Y) ? SupX : InfX }; };
/** \internal determines whether the product of two numeric types is allowed and what the return type is */
template<typename T, typename U> struct scalar_product_traits;
template<typename T, typename U> struct scalar_product_traits
{
enum { Defined = 0 };
};
template<typename T> struct scalar_product_traits<T,T>
{
//enum { Cost = NumTraits<T>::MulCost };
enum {
// Cost = NumTraits<T>::MulCost,
Defined = 1
};
typedef T ReturnType;
};
template<typename T> struct scalar_product_traits<T,std::complex<T> >
{
//enum { Cost = 2*NumTraits<T>::MulCost };
enum {
// Cost = 2*NumTraits<T>::MulCost,
Defined = 1
};
typedef std::complex<T> ReturnType;
};
template<typename T> struct scalar_product_traits<std::complex<T>, T>
{
//enum { Cost = 2*NumTraits<T>::MulCost };
enum {
// Cost = 2*NumTraits<T>::MulCost,
Defined = 1
};
typedef std::complex<T> ReturnType;
};