Updates to the Sparse unsupported solvers module.

* change Sparse* specialization's signatures from <..., int Backend> to <..., typename Backend>. Update SparseExtra accordingly to use structs instead of the SparseBackend enum.
* add SparseLDLT Cholmod specialization
* for Cholmod and UmfPack, SparseLU, SparseLLT and SparseLDLT now use ei_solve_retval and have the new solve() method (to be closer to the 3.0 API).

* fix doc
This commit is contained in:
Romain Bossart 2010-10-04 20:56:54 +02:00
parent e3d01f85b2
commit c6503e03eb
15 changed files with 563 additions and 187 deletions

View File

@ -1,24 +0,0 @@
#include <iostream>
#include <Eigen/Dense>
using namespace std;
using namespace Eigen;
int main()
{
Eigen::MatrixXf m(2,4);
Eigen::VectorXf v(2);
m << 1, 2, 6, 9,
3, 1, 7, 2;
v << 2,
3;
MatrixXf::Index index;
// find nearest neighbour
(m.colwise() - v).colwise().squaredNorm().minCoeff(&index);
cout << "Nearest neighbour is column " << index << ":" << endl;
cout << m.col(index) << endl;
}

View File

@ -1,21 +0,0 @@
#include <iostream>
#include <Eigen/Dense>
using namespace std;
int main()
{
Eigen::MatrixXf mat(2,4);
Eigen::MatrixXf v(2);
mat << 1, 2, 6, 9,
3, 1, 7, 2;
v << 0,
1;
//add v to each column of m
mat.colwise() += v;
std::cout << "Broadcasting result: " << std::endl;
std::cout << mat << std::endl;
}

View File

@ -1,28 +0,0 @@
#include <Eigen/Dense>
#include <iostream>
using namespace std;
using namespace Eigen;
int main()
{
VectorXf v(2);
MatrixXf m(2,2), n(2,2);
v << 2,
5;
m << 0,2,
3,4;
n << 1,2,
3,4;
cout << "v.norm() = " << m.norm() << endl;
cout << "m.norm() = " << m.norm() << endl;
cout << "n.norm() = " << m.norm() << endl;
cout << endl;
cout << "v.squaredNorm() = " << v.squaredNorm() << endl;
cout << "m.squaredNorm() = " << m.squaredNorm() << endl;
cout << "n.squaredNorm() = " << n.squaredNorm() << endl;
}

View File

@ -1,26 +0,0 @@
#include <iostream>
#include <Eigen/Dense>
using namespace std;
using namespace Eigen;
int main()
{
Eigen::MatrixXf m(2,2);
m << 1, 2,
3, 4;
//get location of maximum
MatrixXf::Index maxRow, maxCol;
m.maxCoeff(&maxRow, &maxCol);
//get location of minimum
MatrixXf::Index minRow, minCol;
m.minCoeff(&minRow, &minCol);
cout << "Max at: " <<
maxRow << "," << maxCol << endl;
cout << "Min at: " <<
minRow << "," << minCol << endl;
}

View File

@ -3,7 +3,7 @@
#include "SparseExtra"
#include "src/Core/util/DisableMSVCWarnings.h"
#include "../../Eigen/src/Core/util/DisableMSVCWarnings.h"
extern "C" {
#include <cholmod.h>
@ -20,11 +20,13 @@ namespace Eigen {
* \endcode
*/
struct Cholmod {};
#include "src/SparseExtra/CholmodSupport.h"
} // namespace Eigen
#include "src/Core/util/EnableMSVCWarnings.h"
#include "../../Eigen/src/Core/util/EnableMSVCWarnings.h"
#endif // EIGEN_CHOLMODSUPPORT_MODULE_H

View File

@ -27,6 +27,9 @@ namespace Eigen {
* \endcode
*/
struct DefaultBackend {};
/*
enum SparseBackend {
DefaultBackend,
Taucs,
@ -34,6 +37,8 @@ enum SparseBackend {
SuperLU,
UmfPack
};
*/
// solver flags
enum {

View File

@ -3,7 +3,7 @@
#include "SparseExtra"
#include "src/Core/util/DisableMSVCWarnings.h"
#include "../../Eigen/src/Core/util/DisableMSVCWarnings.h"
typedef int int_t;
#include <slu_Cnames.h>
@ -36,10 +36,12 @@ namespace Eigen {
* \endcode
*/
struct SuperLU {};
#include "src/SparseExtra/SuperLUSupport.h"
} // namespace Eigen
#include "src/Core/util/EnableMSVCWarnings.h"
#include "../../Eigen/src/Core/util/EnableMSVCWarnings.h"
#endif // EIGEN_SUPERLUSUPPORT_MODULE_H

View File

@ -3,7 +3,7 @@
#include "SparseExtra"
#include "src/Core/util/DisableMSVCWarnings.h"
#include "../../Eigen/src/Core/util/DisableMSVCWarnings.h"
#include <umfpack.h>
@ -20,10 +20,12 @@ namespace Eigen {
* \endcode
*/
struct UmfPack {};
#include "src/SparseExtra/UmfPackSupport.h"
} // namespace Eigen
#include "src/Core/util/EnableMSVCWarnings.h"
#include "../../Eigen/src/Core/util/EnableMSVCWarnings.h"
#endif // EIGEN_UMFPACKSUPPORT_MODULE_H

View File

@ -25,6 +25,7 @@
#ifndef EIGEN_CHOLMODSUPPORT_H
#define EIGEN_CHOLMODSUPPORT_H
template<typename Scalar, typename CholmodType>
void ei_cholmod_configure_matrix(CholmodType& mat)
{
@ -54,10 +55,10 @@ void ei_cholmod_configure_matrix(CholmodType& mat)
}
}
template<typename MatrixType>
cholmod_sparse ei_asCholmodMatrix(MatrixType& mat)
template<typename _MatrixType>
cholmod_sparse ei_cholmod_map_eigen_to_sparse(_MatrixType& mat)
{
typedef typename MatrixType::Scalar Scalar;
typedef typename _MatrixType::Scalar Scalar;
cholmod_sparse res;
res.nzmax = mat.nonZeros();
res.nrow = mat.rows();;
@ -75,11 +76,11 @@ cholmod_sparse ei_asCholmodMatrix(MatrixType& mat)
ei_cholmod_configure_matrix<Scalar>(res);
if (MatrixType::Flags & SelfAdjoint)
if (_MatrixType::Flags & SelfAdjoint)
{
if (MatrixType::Flags & Upper)
if (_MatrixType::Flags & Upper)
res.stype = 1;
else if (MatrixType::Flags & Lower)
else if (_MatrixType::Flags & Lower)
res.stype = -1;
else
res.stype = 0;
@ -110,22 +111,23 @@ cholmod_dense ei_cholmod_map_eigen_to_dense(MatrixBase<Derived>& mat)
}
template<typename Scalar, int Flags, typename Index>
MappedSparseMatrix<Scalar,Flags,Index> ei_map_cholmod(cholmod_sparse& cm)
MappedSparseMatrix<Scalar,Flags,Index> ei_map_cholmod_sparse_to_eigen(cholmod_sparse& cm)
{
return MappedSparseMatrix<Scalar,Flags,Index>
(cm.nrow, cm.ncol, reinterpret_cast<Index*>(cm.p)[cm.ncol],
reinterpret_cast<Index*>(cm.p), reinterpret_cast<Index*>(cm.i),reinterpret_cast<Scalar*>(cm.x) );
}
template<typename MatrixType>
class SparseLLT<MatrixType,Cholmod> : public SparseLLT<MatrixType>
template<typename _MatrixType>
class SparseLLT<_MatrixType, Cholmod> : public SparseLLT<_MatrixType>
{
protected:
typedef SparseLLT<MatrixType> Base;
typedef SparseLLT<_MatrixType> Base;
typedef typename Base::Scalar Scalar;
typedef typename Base::RealScalar RealScalar;
typedef typename Base::CholMatrixType CholMatrixType;
typedef typename MatrixType::Index Index;
using Base::MatrixLIsDirty;
using Base::SupernodalFactorIsDirty;
using Base::m_flags;
@ -133,6 +135,8 @@ class SparseLLT<MatrixType,Cholmod> : public SparseLLT<MatrixType>
using Base::m_status;
public:
typedef _MatrixType MatrixType;
typedef typename MatrixType::Index Index;
SparseLLT(int flags = 0)
: Base(flags), m_cholmodFactor(0)
@ -159,15 +163,71 @@ class SparseLLT<MatrixType,Cholmod> : public SparseLLT<MatrixType>
template<typename Derived>
bool solveInPlace(MatrixBase<Derived> &b) const;
template<typename Rhs>
inline const ei_solve_retval<SparseLLT<MatrixType, Cholmod>, Rhs>
solve(const MatrixBase<Rhs>& b) const
{
ei_assert(true && "SparseLLT is not initialized.");
return ei_solve_retval<SparseLLT<MatrixType, Cholmod>, Rhs>(*this, b.derived());
}
void compute(const MatrixType& matrix);
inline Index cols() const { return m_matrix.cols(); }
inline Index rows() const { return m_matrix.rows(); }
inline const cholmod_factor* cholmodFactor() const
{ return m_cholmodFactor; }
inline cholmod_common* cholmodCommon() const
{ return &m_cholmod; }
bool succeeded() const;
protected:
mutable cholmod_common m_cholmod;
cholmod_factor* m_cholmodFactor;
};
template<typename MatrixType>
void SparseLLT<MatrixType,Cholmod>::compute(const MatrixType& a)
template<typename _MatrixType, typename Rhs>
struct ei_solve_retval<SparseLLT<_MatrixType, Cholmod>, Rhs>
: ei_solve_retval_base<SparseLLT<_MatrixType, Cholmod>, Rhs>
{
typedef SparseLLT<_MatrixType, Cholmod> SpLLTDecType;
EIGEN_MAKE_SOLVE_HELPERS(SpLLTDecType,Rhs)
template<typename Dest> void evalTo(Dest& dst) const
{
//Index size = dec().cholmodFactor()->n;
ei_assert((Index)dec().cholmodFactor()->n==rhs().rows());
cholmod_factor* cholmodFactor = const_cast<cholmod_factor*>(dec().cholmodFactor());
cholmod_common* cholmodCommon = const_cast<cholmod_common*>(dec().cholmodCommon());
// this uses Eigen's triangular sparse solver
// if (m_status & MatrixLIsDirty)
// matrixL();
// Base::solveInPlace(b);
// as long as our own triangular sparse solver is not fully optimal,
// let's use CHOLMOD's one:
cholmod_dense cdb = ei_cholmod_map_eigen_to_dense(rhs().const_cast_derived());
cholmod_dense* x = cholmod_solve(CHOLMOD_A, cholmodFactor, &cdb, cholmodCommon);
dst = Matrix<typename Base::Scalar,Dynamic,1>::Map(reinterpret_cast<typename Base::Scalar*>(x->x), rhs().rows());
cholmod_free_dense(&x, cholmodCommon);
}
};
template<typename _MatrixType>
void SparseLLT<_MatrixType,Cholmod>::compute(const _MatrixType& a)
{
if (m_cholmodFactor)
{
@ -175,7 +235,7 @@ void SparseLLT<MatrixType,Cholmod>::compute(const MatrixType& a)
m_cholmodFactor = 0;
}
cholmod_sparse A = ei_asCholmodMatrix(const_cast<MatrixType&>(a));
cholmod_sparse A = ei_cholmod_map_eigen_to_sparse(const_cast<_MatrixType&>(a));
// m_cholmod.supernodal = CHOLMOD_AUTO;
// TODO
// if (m_flags&IncompleteFactorization)
@ -197,16 +257,25 @@ void SparseLLT<MatrixType,Cholmod>::compute(const MatrixType& a)
m_status = (m_status & ~SupernodalFactorIsDirty) | MatrixLIsDirty;
}
template<typename MatrixType>
inline const typename SparseLLT<MatrixType,Cholmod>::CholMatrixType&
SparseLLT<MatrixType,Cholmod>::matrixL() const
// TODO
template<typename _MatrixType>
bool SparseLLT<_MatrixType,Cholmod>::succeeded() const
{ return true; }
template<typename _MatrixType>
inline const typename SparseLLT<_MatrixType,Cholmod>::CholMatrixType&
SparseLLT<_MatrixType,Cholmod>::matrixL() const
{
if (m_status & MatrixLIsDirty)
{
ei_assert(!(m_status & SupernodalFactorIsDirty));
cholmod_sparse* cmRes = cholmod_factor_to_sparse(m_cholmodFactor, &m_cholmod);
const_cast<typename Base::CholMatrixType&>(m_matrix) = ei_map_cholmod<Scalar,ColMajor,Index>(*cmRes);
const_cast<typename Base::CholMatrixType&>(m_matrix) =
ei_map_cholmod_sparse_to_eigen<Scalar,ColMajor,Index>(*cmRes);
free(cmRes);
m_status = (m_status & ~MatrixLIsDirty);
@ -214,30 +283,234 @@ SparseLLT<MatrixType,Cholmod>::matrixL() const
return m_matrix;
}
template<typename MatrixType>
template<typename _MatrixType>
template<typename Derived>
bool SparseLLT<MatrixType,Cholmod>::solveInPlace(MatrixBase<Derived> &b) const
bool SparseLLT<_MatrixType,Cholmod>::solveInPlace(MatrixBase<Derived> &b) const
{
const Index size = m_cholmodFactor->n;
ei_assert(size==b.rows());
//Index size = m_cholmodFactor->n;
ei_assert((Index)m_cholmodFactor->n==b.rows());
// this uses Eigen's triangular sparse solver
// if (m_status & MatrixLIsDirty)
// matrixL();
// Base::solveInPlace(b);
// if (m_status & MatrixLIsDirty)
// matrixL();
// Base::solveInPlace(b);
// as long as our own triangular sparse solver is not fully optimal,
// let's use CHOLMOD's one:
cholmod_dense cdb = ei_cholmod_map_eigen_to_dense(b);
//cholmod_dense* x = cholmod_solve(CHOLMOD_LDLt, m_cholmodFactor, &cdb, &m_cholmod);
cholmod_dense* x = cholmod_solve(CHOLMOD_A, m_cholmodFactor, &cdb, &m_cholmod);
if(!x)
{
std::cerr << "Eigen: cholmod_solve failed\n";
return false;
}
ei_assert(x && "Eigen: cholmod_solve failed.");
b = Matrix<typename Base::Scalar,Dynamic,1>::Map(reinterpret_cast<typename Base::Scalar*>(x->x),b.rows());
cholmod_free_dense(&x, &m_cholmod);
return true;
}
template<typename _MatrixType>
class SparseLDLT<_MatrixType,Cholmod> : public SparseLDLT<_MatrixType>
{
protected:
typedef SparseLDLT<_MatrixType> Base;
typedef typename Base::Scalar Scalar;
typedef typename Base::RealScalar RealScalar;
using Base::MatrixLIsDirty;
using Base::SupernodalFactorIsDirty;
using Base::m_flags;
using Base::m_matrix;
using Base::m_status;
public:
typedef _MatrixType MatrixType;
typedef typename MatrixType::Index Index;
SparseLDLT(int flags = 0)
: Base(flags), m_cholmodFactor(0)
{
cholmod_start(&m_cholmod);
}
SparseLDLT(const _MatrixType& matrix, int flags = 0)
: Base(flags), m_cholmodFactor(0)
{
cholmod_start(&m_cholmod);
compute(matrix);
}
~SparseLDLT()
{
if (m_cholmodFactor)
cholmod_free_factor(&m_cholmodFactor, &m_cholmod);
cholmod_finish(&m_cholmod);
}
inline const typename Base::CholMatrixType& matrixL(void) const;
template<typename Derived>
void solveInPlace(MatrixBase<Derived> &b) const;
template<typename Rhs>
inline const ei_solve_retval<SparseLDLT<MatrixType, Cholmod>, Rhs>
solve(const MatrixBase<Rhs>& b) const
{
ei_assert(true && "SparseLDLT is not initialized.");
return ei_solve_retval<SparseLDLT<MatrixType, Cholmod>, Rhs>(*this, b.derived());
}
void compute(const _MatrixType& matrix);
inline Index cols() const { return m_matrix.cols(); }
inline Index rows() const { return m_matrix.rows(); }
inline const cholmod_factor* cholmodFactor() const
{ return m_cholmodFactor; }
inline cholmod_common* cholmodCommon() const
{ return &m_cholmod; }
bool succeeded() const;
protected:
mutable cholmod_common m_cholmod;
cholmod_factor* m_cholmodFactor;
};
template<typename _MatrixType, typename Rhs>
struct ei_solve_retval<SparseLDLT<_MatrixType, Cholmod>, Rhs>
: ei_solve_retval_base<SparseLDLT<_MatrixType, Cholmod>, Rhs>
{
typedef SparseLDLT<_MatrixType, Cholmod> SpLDLTDecType;
EIGEN_MAKE_SOLVE_HELPERS(SpLDLTDecType,Rhs)
template<typename Dest> void evalTo(Dest& dst) const
{
//Index size = dec().cholmodFactor()->n;
ei_assert((Index)dec().cholmodFactor()->n==rhs().rows());
cholmod_factor* cholmodFactor = const_cast<cholmod_factor*>(dec().cholmodFactor());
cholmod_common* cholmodCommon = const_cast<cholmod_common*>(dec().cholmodCommon());
// this uses Eigen's triangular sparse solver
// if (m_status & MatrixLIsDirty)
// matrixL();
// Base::solveInPlace(b);
// as long as our own triangular sparse solver is not fully optimal,
// let's use CHOLMOD's one:
cholmod_dense cdb = ei_cholmod_map_eigen_to_dense(rhs().const_cast_derived());
cholmod_dense* x = cholmod_solve(CHOLMOD_LDLt, cholmodFactor, &cdb, cholmodCommon);
dst = Matrix<typename Base::Scalar,Dynamic,1>::Map(reinterpret_cast<typename Base::Scalar*>(x->x), rhs().rows());
cholmod_free_dense(&x, cholmodCommon);
}
};
template<typename _MatrixType>
void SparseLDLT<_MatrixType,Cholmod>::compute(const _MatrixType& a)
{
if (m_cholmodFactor)
{
cholmod_free_factor(&m_cholmodFactor, &m_cholmod);
m_cholmodFactor = 0;
}
cholmod_sparse A = ei_cholmod_map_eigen_to_sparse(const_cast<_MatrixType&>(a));
//m_cholmod.supernodal = CHOLMOD_AUTO;
m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
//m_cholmod.supernodal = CHOLMOD_SUPERNODAL;
// TODO
if (m_flags & IncompleteFactorization)
{
m_cholmod.nmethods = 1;
//m_cholmod.method[0].ordering = CHOLMOD_NATURAL;
m_cholmod.method[0].ordering = CHOLMOD_COLAMD;
m_cholmod.postorder = 1;
}
else
{
m_cholmod.nmethods = 1;
m_cholmod.method[0].ordering = CHOLMOD_NATURAL;
m_cholmod.postorder = 0;
}
m_cholmod.final_ll = 0;
m_cholmodFactor = cholmod_analyze(&A, &m_cholmod);
cholmod_factorize(&A, m_cholmodFactor, &m_cholmod);
m_status = (m_status & ~SupernodalFactorIsDirty) | MatrixLIsDirty;
}
// TODO
template<typename _MatrixType>
bool SparseLDLT<_MatrixType,Cholmod>::succeeded() const
{ return true; }
template<typename _MatrixType>
inline const typename SparseLDLT<_MatrixType>::CholMatrixType&
SparseLDLT<_MatrixType,Cholmod>::matrixL() const
{
if (m_status & MatrixLIsDirty)
{
ei_assert(!(m_status & SupernodalFactorIsDirty));
cholmod_sparse* cmRes = cholmod_factor_to_sparse(m_cholmodFactor, &m_cholmod);
const_cast<typename Base::CholMatrixType&>(m_matrix) = MappedSparseMatrix<Scalar>(*cmRes);
free(cmRes);
m_status = (m_status & ~MatrixLIsDirty);
}
return m_matrix;
}
template<typename _MatrixType>
template<typename Derived>
void SparseLDLT<_MatrixType,Cholmod>::solveInPlace(MatrixBase<Derived> &b) const
{
//Index size = m_cholmodFactor->n;
ei_assert((Index)m_cholmodFactor->n == b.rows());
// this uses Eigen's triangular sparse solver
// if (m_status & MatrixLIsDirty)
// matrixL();
// Base::solveInPlace(b);
// as long as our own triangular sparse solver is not fully optimal,
// let's use CHOLMOD's one:
cholmod_dense cdb = ei_cholmod_map_eigen_to_dense(b);
cholmod_dense* x = cholmod_solve(CHOLMOD_A, m_cholmodFactor, &cdb, &m_cholmod);
b = Matrix<typename Base::Scalar,Dynamic,1>::Map(reinterpret_cast<typename Base::Scalar*>(x->x),b.rows());
cholmod_free_dense(&x, &m_cholmod);
}
#endif // EIGEN_CHOLMODSUPPORT_H

View File

@ -75,15 +75,14 @@ LDL License:
*
* \sa class LDLT, class LDLT
*/
template<typename MatrixType, int Backend = DefaultBackend>
template<typename _MatrixType, typename Backend = DefaultBackend>
class SparseLDLT
{
protected:
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::Index Index;
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
typedef SparseMatrix<Scalar> CholMatrixType;
typedef Matrix<Scalar,MatrixType::ColsAtCompileTime,1> VectorType;
typedef typename _MatrixType::Scalar Scalar;
typedef typename NumTraits<typename _MatrixType::Scalar>::Real RealScalar;
typedef Matrix<Scalar,_MatrixType::ColsAtCompileTime,1> VectorType;
enum {
SupernodalFactorIsDirty = 0x10000,
@ -91,6 +90,10 @@ class SparseLDLT
};
public:
typedef SparseMatrix<Scalar> CholMatrixType;
typedef _MatrixType MatrixType;
typedef typename MatrixType::Index Index;
/** Creates a dummy LDLT factorization object with flags \a flags. */
SparseLDLT(int flags = 0)
@ -162,6 +165,19 @@ class SparseLDLT
template<typename Derived>
bool solveInPlace(MatrixBase<Derived> &b) const;
template<typename Rhs>
inline const ei_solve_retval<SparseLDLT<MatrixType>, Rhs>
solve(const MatrixBase<Rhs>& b) const
{
ei_assert(true && "SparseLDLT is not initialized.");
return ei_solve_retval<SparseLDLT<MatrixType>, Rhs>(*this, b.derived());
}
inline Index cols() const { return m_matrix.cols(); }
inline Index rows() const { return m_matrix.rows(); }
inline const VectorType& diag() const { return m_diag; }
/** \returns true if the factorization succeeded */
inline bool succeeded(void) const { return m_succeeded; }
@ -177,18 +193,52 @@ class SparseLDLT
bool m_succeeded;
};
template<typename _MatrixType, typename Rhs>
struct ei_solve_retval<SparseLDLT<_MatrixType>, Rhs>
: ei_solve_retval_base<SparseLDLT<_MatrixType>, Rhs>
{
typedef SparseLDLT<_MatrixType> SpLDLTDecType;
EIGEN_MAKE_SOLVE_HELPERS(SpLDLTDecType,Rhs)
template<typename Dest> void evalTo(Dest& dst) const
{
//Index size = dec().matrixL().rows();
ei_assert(dec().matrixL().rows()==rhs().rows());
Rhs b(rhs().rows(), rhs().cols());
b = rhs();
if (dec().matrixL().nonZeros()>0) // otherwise L==I
dec().matrixL().template triangularView<UnitLower>().solveInPlace(b);
b = b.cwiseQuotient(dec().diag());
if (dec().matrixL().nonZeros()>0) // otherwise L==I
dec().matrixL().adjoint().template triangularView<UnitUpper>().solveInPlace(b);
dst = b;
}
};
/** Computes / recomputes the LDLT decomposition of matrix \a a
* using the default algorithm.
*/
template<typename MatrixType, int Backend>
void SparseLDLT<MatrixType,Backend>::compute(const MatrixType& a)
template<typename _MatrixType, typename Backend>
void SparseLDLT<_MatrixType,Backend>::compute(const _MatrixType& a)
{
_symbolic(a);
m_succeeded = _numeric(a);
}
template<typename MatrixType, int Backend>
void SparseLDLT<MatrixType,Backend>::_symbolic(const MatrixType& a)
template<typename _MatrixType, typename Backend>
void SparseLDLT<_MatrixType,Backend>::_symbolic(const _MatrixType& a)
{
assert(a.rows()==a.cols());
const Index size = a.rows();
@ -244,8 +294,8 @@ void SparseLDLT<MatrixType,Backend>::_symbolic(const MatrixType& a)
ei_aligned_stack_delete(Index, tags, size);
}
template<typename MatrixType, int Backend>
bool SparseLDLT<MatrixType,Backend>::_numeric(const MatrixType& a)
template<typename _MatrixType, typename Backend>
bool SparseLDLT<_MatrixType,Backend>::_numeric(const _MatrixType& a)
{
assert(a.rows()==a.cols());
const Index size = a.rows();
@ -327,12 +377,12 @@ bool SparseLDLT<MatrixType,Backend>::_numeric(const MatrixType& a)
}
/** Computes b = L^-T D^-1 L^-1 b */
template<typename MatrixType, int Backend>
template<typename _MatrixType, typename Backend>
template<typename Derived>
bool SparseLDLT<MatrixType, Backend>::solveInPlace(MatrixBase<Derived> &b) const
bool SparseLDLT<_MatrixType, Backend>::solveInPlace(MatrixBase<Derived> &b) const
{
const Index size = m_matrix.rows();
ei_assert(size==b.rows());
//Index size = m_matrix.rows();
ei_assert(m_matrix.rows()==b.rows());
if (!m_succeeded)
return false;

View File

@ -35,14 +35,12 @@
*
* \sa class LLT, class LDLT
*/
template<typename MatrixType, int Backend = DefaultBackend>
template<typename _MatrixType, typename Backend = DefaultBackend>
class SparseLLT
{
protected:
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::Index Index;
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
typedef SparseMatrix<Scalar> CholMatrixType;
typedef typename _MatrixType::Scalar Scalar;
typedef typename NumTraits<typename _MatrixType::Scalar>::Real RealScalar;
enum {
SupernodalFactorIsDirty = 0x10000,
@ -50,6 +48,9 @@ class SparseLLT
};
public:
typedef SparseMatrix<Scalar> CholMatrixType;
typedef _MatrixType MatrixType;
typedef typename MatrixType::Index Index;
/** Creates a dummy LLT factorization object with flags \a flags. */
SparseLLT(int flags = 0)
@ -110,6 +111,17 @@ class SparseLLT
template<typename Derived>
bool solveInPlace(MatrixBase<Derived> &b) const;
template<typename Rhs>
inline const ei_solve_retval<SparseLLT<MatrixType>, Rhs>
solve(const MatrixBase<Rhs>& b) const
{
ei_assert(true && "SparseLLT is not initialized.");
return ei_solve_retval<SparseLLT<MatrixType>, Rhs>(*this, b.derived());
}
inline Index cols() const { return m_matrix.cols(); }
inline Index rows() const { return m_matrix.rows(); }
/** \returns true if the factorization succeeded */
inline bool succeeded(void) const { return m_succeeded; }
@ -121,11 +133,43 @@ class SparseLLT
bool m_succeeded;
};
template<typename _MatrixType, typename Rhs>
struct ei_solve_retval<SparseLLT<_MatrixType>, Rhs>
: ei_solve_retval_base<SparseLLT<_MatrixType>, Rhs>
{
typedef SparseLLT<_MatrixType> SpLLTDecType;
EIGEN_MAKE_SOLVE_HELPERS(SpLLTDecType,Rhs)
template<typename Dest> void evalTo(Dest& dst) const
{
const Index size = dec().matrixL().rows();
ei_assert(size==rhs().rows());
Rhs b(rhs().rows(), rhs().cols());
b = rhs();
dec().matrixL().template triangularView<Lower>().solveInPlace(b);
dec().matrixL().adjoint().template triangularView<Upper>().solveInPlace(b);
dst = b;
}
};
/** Computes / recomputes the LLT decomposition of matrix \a a
* using the default algorithm.
*/
template<typename MatrixType, int Backend>
void SparseLLT<MatrixType,Backend>::compute(const MatrixType& a)
template<typename _MatrixType, typename Backend>
void SparseLLT<_MatrixType,Backend>::compute(const _MatrixType& a)
{
assert(a.rows()==a.cols());
const Index size = a.rows();
@ -148,7 +192,7 @@ void SparseLLT<MatrixType,Backend>::compute(const MatrixType& a)
tempVector.setZero();
// init with current matrix a
{
typename MatrixType::InnerIterator it(a,j);
typename _MatrixType::InnerIterator it(a,j);
ei_assert(it.index()==j &&
"matrix must has non zero diagonal entries and only the lower triangular part must be stored");
++it; // skip diagonal element
@ -187,9 +231,9 @@ void SparseLLT<MatrixType,Backend>::compute(const MatrixType& a)
}
/** Computes b = L^-T L^-1 b */
template<typename MatrixType, int Backend>
template<typename _MatrixType, typename Backend>
template<typename Derived>
bool SparseLLT<MatrixType, Backend>::solveInPlace(MatrixBase<Derived> &b) const
bool SparseLLT<_MatrixType, Backend>::solveInPlace(MatrixBase<Derived> &b) const
{
const Index size = m_matrix.rows();
ei_assert(size==b.rows());

View File

@ -37,16 +37,16 @@ enum {
*
* \brief LU decomposition of a sparse matrix and associated features
*
* \param MatrixType the type of the matrix of which we are computing the LU factorization
* \param _MatrixType the type of the matrix of which we are computing the LU factorization
*
* \sa class FullPivLU, class SparseLLT
*/
template<typename MatrixType, int Backend = DefaultBackend>
template<typename _MatrixType, typename Backend = DefaultBackend>
class SparseLU
{
{
protected:
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
typedef typename _MatrixType::Scalar Scalar;
typedef typename NumTraits<typename _MatrixType::Scalar>::Real RealScalar;
typedef SparseMatrix<Scalar> LUMatrixType;
enum {
@ -54,6 +54,7 @@ class SparseLU
};
public:
typedef _MatrixType MatrixType;
/** Creates a dummy LU factorization object with flags \a flags. */
SparseLU(int flags = 0)
@ -64,7 +65,7 @@ class SparseLU
/** Creates a LU object and compute the respective factorization of \a matrix using
* flags \a flags. */
SparseLU(const MatrixType& matrix, int flags = 0)
SparseLU(const _MatrixType& matrix, int flags = 0)
: /*m_matrix(matrix.rows(), matrix.cols()),*/ m_flags(flags), m_status(0)
{
m_precision = RealScalar(0.1) * Eigen::NumTraits<RealScalar>::dummy_precision();
@ -112,13 +113,13 @@ class SparseLU
}
/** Computes/re-computes the LU factorization */
void compute(const MatrixType& matrix);
void compute(const _MatrixType& matrix);
/** \returns the lower triangular matrix L */
//inline const MatrixType& matrixL() const { return m_matrixL; }
//inline const _MatrixType& matrixL() const { return m_matrixL; }
/** \returns the upper triangular matrix U */
//inline const MatrixType& matrixU() const { return m_matrixU; }
//inline const _MatrixType& matrixU() const { return m_matrixU; }
template<typename BDerived, typename XDerived>
bool solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived>* x,
@ -137,8 +138,8 @@ class SparseLU
/** Computes / recomputes the LU decomposition of matrix \a a
* using the default algorithm.
*/
template<typename MatrixType, int Backend>
void SparseLU<MatrixType,Backend>::compute(const MatrixType& )
template<typename _MatrixType, typename Backend>
void SparseLU<_MatrixType,Backend>::compute(const _MatrixType& )
{
ei_assert(false && "not implemented yet");
}
@ -151,9 +152,9 @@ void SparseLU<MatrixType,Backend>::compute(const MatrixType& )
* Not all backends implement the solution of the transposed or
* adjoint system.
*/
template<typename MatrixType, int Backend>
template<typename _MatrixType, typename Backend>
template<typename BDerived, typename XDerived>
bool SparseLU<MatrixType,Backend>::solve(const MatrixBase<BDerived> &, MatrixBase<XDerived>* , const int ) const
bool SparseLU<_MatrixType,Backend>::solve(const MatrixBase<BDerived> &, MatrixBase<XDerived>* , const int ) const
{
ei_assert(false && "not implemented yet");
return false;

View File

@ -117,22 +117,24 @@ inline int umfpack_get_determinant(std::complex<double> *Mx, double *Ex, void *N
}
template<typename MatrixType>
class SparseLU<MatrixType,UmfPack> : public SparseLU<MatrixType>
template<typename _MatrixType>
class SparseLU<_MatrixType,UmfPack> : public SparseLU<_MatrixType>
{
protected:
typedef SparseLU<MatrixType> Base;
typedef SparseLU<_MatrixType> Base;
typedef typename Base::Scalar Scalar;
typedef typename Base::RealScalar RealScalar;
typedef Matrix<Scalar,Dynamic,1> Vector;
typedef Matrix<int, 1, MatrixType::ColsAtCompileTime> IntRowVectorType;
typedef Matrix<int, MatrixType::RowsAtCompileTime, 1> IntColVectorType;
typedef Matrix<int, 1, _MatrixType::ColsAtCompileTime> IntRowVectorType;
typedef Matrix<int, _MatrixType::RowsAtCompileTime, 1> IntColVectorType;
typedef SparseMatrix<Scalar,Lower|UnitDiag> LMatrixType;
typedef SparseMatrix<Scalar,Upper> UMatrixType;
using Base::m_flags;
using Base::m_status;
public:
typedef _MatrixType MatrixType;
typedef typename MatrixType::Index Index;
SparseLU(int flags = NaturalOrdering)
: Base(flags), m_numeric(0)
@ -180,8 +182,30 @@ class SparseLU<MatrixType,UmfPack> : public SparseLU<MatrixType>
template<typename BDerived, typename XDerived>
bool solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived>* x) const;
template<typename Rhs>
inline const ei_solve_retval<SparseLU<MatrixType, UmfPack>, Rhs>
solve(const MatrixBase<Rhs>& b) const
{
ei_assert(true && "SparseLU is not initialized.");
return ei_solve_retval<SparseLU<MatrixType, UmfPack>, Rhs>(*this, b.derived());
}
void compute(const MatrixType& matrix);
inline Index cols() const { return m_matrixRef->cols(); }
inline Index rows() const { return m_matrixRef->rows(); }
inline const MatrixType& matrixLU() const
{
//ei_assert(m_isInitialized && "LU is not initialized.");
return *m_matrixRef;
}
const void* numeric() const
{
return m_numeric;
}
protected:
void extractData() const;
@ -197,6 +221,37 @@ class SparseLU<MatrixType,UmfPack> : public SparseLU<MatrixType>
mutable bool m_extractedDataAreDirty;
};
template<typename _MatrixType, typename Rhs>
struct ei_solve_retval<SparseLU<_MatrixType, UmfPack>, Rhs>
: ei_solve_retval_base<SparseLU<_MatrixType, UmfPack>, Rhs>
{
typedef SparseLU<_MatrixType, UmfPack> SpLUDecType;
EIGEN_MAKE_SOLVE_HELPERS(SpLUDecType,Rhs)
template<typename Dest> void evalTo(Dest& dst) const
{
const int rhsCols = rhs().cols();
ei_assert((Rhs::Flags&RowMajorBit)==0 && "UmfPack backend does not support non col-major rhs yet");
ei_assert((Dest::Flags&RowMajorBit)==0 && "UmfPack backend does not support non col-major result yet");
void* numeric = const_cast<void*>(dec().numeric());
int errorCode = 0;
for (int j=0; j<rhsCols; ++j)
{
errorCode = umfpack_solve(UMFPACK_A,
dec().matrixLU()._outerIndexPtr(), dec().matrixLU()._innerIndexPtr(), dec().matrixLU()._valuePtr(),
&dst.col(j).coeffRef(0), &rhs().const_cast_derived().col(j).coeffRef(0), numeric, 0, 0);
ei_assert(!errorCode && "UmfPack could not solve the system.");
}
}
};
template<typename MatrixType>
void SparseLU<MatrixType,UmfPack>::compute(const MatrixType& a)
{

View File

@ -25,6 +25,10 @@
#include "sparse.h"
#include <Eigen/SparseExtra>
#ifdef EIGEN_CHOLMOD_SUPPORT
#include <Eigen/CholmodSupport>
#endif
#ifdef EIGEN_TAUCS_SUPPORT
#include <Eigen/TaucsSupport>
#endif
@ -56,6 +60,29 @@ template<typename Scalar> void sparse_ldlt(int rows, int cols)
VERIFY_IS_APPROX(refMat2.template selfadjointView<Upper>() * x, b);
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LDLT: default");
#ifdef EIGEN_CHOLMOD_SUPPORT
x = b;
SparseLDLT<SparseSelfAdjointMatrix, Cholmod> ldlt2(m2);
if (ldlt2.succeeded())
ldlt2.solveInPlace(x);
else
std::cerr << "warning LDLT failed\n";
VERIFY_IS_APPROX(refMat2.template selfadjointView<Upper>() * x, b);
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LDLT: cholmod solveInPlace");
SparseLDLT<SparseSelfAdjointMatrix, Cholmod> ldlt3(m2);
if (ldlt3.succeeded())
x = ldlt3.solve(b);
else
std::cerr << "warning LDLT failed\n";
VERIFY_IS_APPROX(refMat2.template selfadjointView<Upper>() * x, b);
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LDLT: cholmod solve");
#endif
}
void test_sparse_ldlt()

View File

@ -47,6 +47,7 @@ template<typename Scalar> void sparse_llt(int rows, int cols)
DenseVector refX(cols), x(cols);
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeLowerTriangular, 0, 0);
for(int i=0; i<rows; ++i)
m2.coeffRef(i,i) = refMat2(i,i) = ei_abs(ei_real(refMat2(i,i)));
@ -57,11 +58,24 @@ template<typename Scalar> void sparse_llt(int rows, int cols)
SparseLLT<SparseMatrix<Scalar> > (m2).solveInPlace(x);
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: default");
}
#ifdef EIGEN_CHOLMOD_SUPPORT
x = b;
SparseLLT<SparseMatrix<Scalar> ,Cholmod>(m2).solveInPlace(x);
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: cholmod");
#endif
#ifdef EIGEN_CHOLMOD_SUPPORT
{
// Cholmod, as configured in CholmodSupport.h, only supports self-adjoint matrices
SparseMatrix<Scalar> m3 = m2.adjoint()*m2;
DenseMatrix refMat3 = refMat2.adjoint()*refMat2;
refX = refMat3.template selfadjointView<Lower>().llt().solve(b);
x = b;
SparseLLT<SparseMatrix<Scalar>, Cholmod>(m3).solveInPlace(x);
VERIFY((m3*x).isApprox(b,test_precision<Scalar>()) && "LLT: cholmod solveInPlace");
x = SparseLLT<SparseMatrix<Scalar>, Cholmod>(m3).solve(b);
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: cholmod solve");
}
#endif
#ifdef EIGEN_TAUCS_SUPPORT
// TODO fix TAUCS with complexes
@ -72,10 +86,10 @@ template<typename Scalar> void sparse_llt(int rows, int cols)
// VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: taucs (IncompleteFactorization)");
x = b;
SparseLLT<SparseMatrix<Scalar> ,Taucs>(m2,SupernodalMultifrontal).solveInPlace(x);
SparseLLT<SparseMatrix<Scalar>, Taucs>(m2,SupernodalMultifrontal).solveInPlace(x);
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: taucs (SupernodalMultifrontal)");
x = b;
SparseLLT<SparseMatrix<Scalar> ,Taucs>(m2,SupernodalLeftLooking).solveInPlace(x);
SparseLLT<SparseMatrix<Scalar>, Taucs>(m2,SupernodalLeftLooking).solveInPlace(x);
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: taucs (SupernodalLeftLooking)");
}
#endif