mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-23 18:19:34 +08:00
add unit tests for true array objects
This commit is contained in:
parent
c436abd0ac
commit
c70d54257b
@ -110,6 +110,7 @@ ei_add_test(commainitializer)
|
||||
ei_add_test(smallvectors)
|
||||
ei_add_test(map)
|
||||
ei_add_test(array)
|
||||
ei_add_test(array_for_matrix)
|
||||
ei_add_test(array_replicate)
|
||||
ei_add_test(array_reverse)
|
||||
ei_add_test(triangular)
|
||||
|
101
test/array.cpp
101
test/array.cpp
@ -27,14 +27,10 @@
|
||||
|
||||
template<typename MatrixType> void array(const MatrixType& m)
|
||||
{
|
||||
/* this test covers the following files:
|
||||
Array.cpp
|
||||
*/
|
||||
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> ColVectorType;
|
||||
typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType;
|
||||
typedef Array<Scalar, MatrixType::RowsAtCompileTime, 1> ColVectorType;
|
||||
typedef Array<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType;
|
||||
|
||||
int rows = m.rows();
|
||||
int cols = m.cols();
|
||||
@ -50,15 +46,18 @@ template<typename MatrixType> void array(const MatrixType& m)
|
||||
s2 = ei_random<Scalar>();
|
||||
|
||||
// scalar addition
|
||||
VERIFY_IS_APPROX(m1.array() + s1, s1 + m1.array());
|
||||
VERIFY_IS_APPROX((m1.array() + s1).matrix(), MatrixType::Constant(rows,cols,s1) + m1);
|
||||
VERIFY_IS_APPROX(((m1*Scalar(2)).array() - s2).matrix(), (m1+m1) - MatrixType::Constant(rows,cols,s2) );
|
||||
VERIFY_IS_APPROX(m1 + s1, s1 + m1);
|
||||
VERIFY_IS_APPROX(m1 + s1, MatrixType::Constant(rows,cols,s1) + m1);
|
||||
VERIFY_IS_APPROX(s1 - m1, (-m1)+s1 );
|
||||
VERIFY_IS_APPROX(m1 - s1, m1 - MatrixType::Constant(rows,cols,s1));
|
||||
VERIFY_IS_APPROX(s1 - m1, MatrixType::Constant(rows,cols,s1) - m1);
|
||||
VERIFY_IS_APPROX((m1*Scalar(2)) - s2, (m1+m1) - MatrixType::Constant(rows,cols,s2) );
|
||||
m3 = m1;
|
||||
m3.array() += s2;
|
||||
VERIFY_IS_APPROX(m3, (m1.array() + s2).matrix());
|
||||
m3 += s2;
|
||||
VERIFY_IS_APPROX(m3, m1 + s2);
|
||||
m3 = m1;
|
||||
m3.array() -= s1;
|
||||
VERIFY_IS_APPROX(m3, (m1.array() - s1).matrix());
|
||||
m3 -= s1;
|
||||
VERIFY_IS_APPROX(m3, m1 - s1);
|
||||
|
||||
// reductions
|
||||
VERIFY_IS_APPROX(m1.colwise().sum().sum(), m1.sum());
|
||||
@ -82,7 +81,7 @@ template<typename MatrixType> void comparisons(const MatrixType& m)
|
||||
{
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
|
||||
typedef Array<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
|
||||
|
||||
int rows = m.rows();
|
||||
int cols = m.cols();
|
||||
@ -94,79 +93,61 @@ template<typename MatrixType> void comparisons(const MatrixType& m)
|
||||
m2 = MatrixType::Random(rows, cols),
|
||||
m3(rows, cols);
|
||||
|
||||
VERIFY(((m1.array() + Scalar(1)) > m1.array()).all());
|
||||
VERIFY(((m1.array() - Scalar(1)) < m1.array()).all());
|
||||
VERIFY(((m1 + Scalar(1)) > m1).all());
|
||||
VERIFY(((m1 - Scalar(1)) < m1).all());
|
||||
if (rows*cols>1)
|
||||
{
|
||||
m3 = m1;
|
||||
m3(r,c) += 1;
|
||||
VERIFY(! (m1.array() < m3.array()).all() );
|
||||
VERIFY(! (m1.array() > m3.array()).all() );
|
||||
VERIFY(! (m1 < m3).all() );
|
||||
VERIFY(! (m1 > m3).all() );
|
||||
}
|
||||
|
||||
// comparisons to scalar
|
||||
VERIFY( (m1.array() != (m1(r,c)+1) ).any() );
|
||||
VERIFY( (m1.array() > (m1(r,c)-1) ).any() );
|
||||
VERIFY( (m1.array() < (m1(r,c)+1) ).any() );
|
||||
VERIFY( (m1.array() == m1(r,c) ).any() );
|
||||
VERIFY( (m1 != (m1(r,c)+1) ).any() );
|
||||
VERIFY( (m1 > (m1(r,c)-1) ).any() );
|
||||
VERIFY( (m1 < (m1(r,c)+1) ).any() );
|
||||
VERIFY( (m1 == m1(r,c) ).any() );
|
||||
|
||||
// test Select
|
||||
VERIFY_IS_APPROX( (m1.array()<m2.array()).select(m1,m2), m1.cwiseMin(m2) );
|
||||
VERIFY_IS_APPROX( (m1.array()>m2.array()).select(m1,m2), m1.cwiseMax(m2) );
|
||||
VERIFY_IS_APPROX( (m1<m2).select(m1,m2), m1.cwiseMin(m2) );
|
||||
VERIFY_IS_APPROX( (m1>m2).select(m1,m2), m1.cwiseMax(m2) );
|
||||
Scalar mid = (m1.cwiseAbs().minCoeff() + m1.cwiseAbs().maxCoeff())/Scalar(2);
|
||||
for (int j=0; j<cols; ++j)
|
||||
for (int i=0; i<rows; ++i)
|
||||
m3(i,j) = ei_abs(m1(i,j))<mid ? 0 : m1(i,j);
|
||||
VERIFY_IS_APPROX( (m1.array().abs()<MatrixType::Constant(rows,cols,mid).array())
|
||||
VERIFY_IS_APPROX( (m1.abs()<MatrixType::Constant(rows,cols,mid))
|
||||
.select(MatrixType::Zero(rows,cols),m1), m3);
|
||||
// shorter versions:
|
||||
VERIFY_IS_APPROX( (m1.array().abs()<MatrixType::Constant(rows,cols,mid).array())
|
||||
VERIFY_IS_APPROX( (m1.abs()<MatrixType::Constant(rows,cols,mid))
|
||||
.select(0,m1), m3);
|
||||
VERIFY_IS_APPROX( (m1.array().abs()>=MatrixType::Constant(rows,cols,mid).array())
|
||||
VERIFY_IS_APPROX( (m1.abs()>=MatrixType::Constant(rows,cols,mid))
|
||||
.select(m1,0), m3);
|
||||
// even shorter version:
|
||||
VERIFY_IS_APPROX( (m1.array().abs()<mid).select(0,m1), m3);
|
||||
VERIFY_IS_APPROX( (m1.abs()<mid).select(0,m1), m3);
|
||||
|
||||
// count
|
||||
VERIFY(((m1.array().abs()+1)>RealScalar(0.1)).count() == rows*cols);
|
||||
VERIFY(((m1.abs()+1)>RealScalar(0.1)).count() == rows*cols);
|
||||
// TODO allows colwise/rowwise for array
|
||||
VERIFY_IS_APPROX(((m1.array().abs()+1)>RealScalar(0.1)).matrix().colwise().count(), RowVectorXi::Constant(cols,rows));
|
||||
VERIFY_IS_APPROX(((m1.array().abs()+1)>RealScalar(0.1)).matrix().rowwise().count(), VectorXi::Constant(rows, cols));
|
||||
}
|
||||
|
||||
template<typename VectorType> void lpNorm(const VectorType& v)
|
||||
{
|
||||
VectorType u = VectorType::Random(v.size());
|
||||
|
||||
VERIFY_IS_APPROX(u.template lpNorm<Infinity>(), u.cwiseAbs().maxCoeff());
|
||||
VERIFY_IS_APPROX(u.template lpNorm<1>(), u.cwiseAbs().sum());
|
||||
VERIFY_IS_APPROX(u.template lpNorm<2>(), ei_sqrt(u.array().abs().square().sum()));
|
||||
VERIFY_IS_APPROX(ei_pow(u.template lpNorm<5>(), typename VectorType::RealScalar(5)), u.array().abs().pow(5).sum());
|
||||
VERIFY_IS_APPROX(((m1.abs()+1)>RealScalar(0.1)).colwise().count(), ArrayXi::Constant(cols,rows).transpose());
|
||||
VERIFY_IS_APPROX(((m1.abs()+1)>RealScalar(0.1)).rowwise().count(), ArrayXi::Constant(rows, cols));
|
||||
}
|
||||
|
||||
void test_array()
|
||||
{
|
||||
for(int i = 0; i < g_repeat; i++) {
|
||||
CALL_SUBTEST_1( array(Matrix<float, 1, 1>()) );
|
||||
CALL_SUBTEST_2( array(Matrix2f()) );
|
||||
CALL_SUBTEST_3( array(Matrix4d()) );
|
||||
CALL_SUBTEST_4( array(MatrixXcf(3, 3)) );
|
||||
CALL_SUBTEST_5( array(MatrixXf(8, 12)) );
|
||||
CALL_SUBTEST_6( array(MatrixXi(8, 12)) );
|
||||
CALL_SUBTEST_1( array(Array<float, 1, 1>()) );
|
||||
CALL_SUBTEST_2( array(Array22f()) );
|
||||
CALL_SUBTEST_3( array(Array44d()) );
|
||||
CALL_SUBTEST_4( array(ArrayXXcf(3, 3)) );
|
||||
CALL_SUBTEST_5( array(ArrayXXf(8, 12)) );
|
||||
CALL_SUBTEST_6( array(ArrayXXi(8, 12)) );
|
||||
}
|
||||
for(int i = 0; i < g_repeat; i++) {
|
||||
CALL_SUBTEST_1( comparisons(Matrix<float, 1, 1>()) );
|
||||
CALL_SUBTEST_2( comparisons(Matrix2f()) );
|
||||
CALL_SUBTEST_3( comparisons(Matrix4d()) );
|
||||
CALL_SUBTEST_5( comparisons(MatrixXf(8, 12)) );
|
||||
CALL_SUBTEST_6( comparisons(MatrixXi(8, 12)) );
|
||||
}
|
||||
for(int i = 0; i < g_repeat; i++) {
|
||||
CALL_SUBTEST_1( lpNorm(Matrix<float, 1, 1>()) );
|
||||
CALL_SUBTEST_2( lpNorm(Vector2f()) );
|
||||
CALL_SUBTEST_7( lpNorm(Vector3d()) );
|
||||
CALL_SUBTEST_8( lpNorm(Vector4f()) );
|
||||
CALL_SUBTEST_5( lpNorm(VectorXf(16)) );
|
||||
CALL_SUBTEST_4( lpNorm(VectorXcf(10)) );
|
||||
CALL_SUBTEST_1( comparisons(Array<float, 1, 1>()) );
|
||||
CALL_SUBTEST_2( comparisons(Array22f()) );
|
||||
CALL_SUBTEST_3( comparisons(Array44d()) );
|
||||
CALL_SUBTEST_5( comparisons(ArrayXXf(8, 12)) );
|
||||
CALL_SUBTEST_6( comparisons(ArrayXXi(8, 12)) );
|
||||
}
|
||||
}
|
||||
|
168
test/array_for_matrix.cpp
Normal file
168
test/array_for_matrix.cpp
Normal file
@ -0,0 +1,168 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#include "main.h"
|
||||
#include <Eigen/Array>
|
||||
|
||||
template<typename MatrixType> void array_for_matrix(const MatrixType& m)
|
||||
{
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> ColVectorType;
|
||||
typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType;
|
||||
|
||||
int rows = m.rows();
|
||||
int cols = m.cols();
|
||||
|
||||
MatrixType m1 = MatrixType::Random(rows, cols),
|
||||
m2 = MatrixType::Random(rows, cols),
|
||||
m3(rows, cols);
|
||||
|
||||
ColVectorType cv1 = ColVectorType::Random(rows);
|
||||
RowVectorType rv1 = RowVectorType::Random(cols);
|
||||
|
||||
Scalar s1 = ei_random<Scalar>(),
|
||||
s2 = ei_random<Scalar>();
|
||||
|
||||
// scalar addition
|
||||
VERIFY_IS_APPROX(m1.array() + s1, s1 + m1.array());
|
||||
VERIFY_IS_APPROX((m1.array() + s1).matrix(), MatrixType::Constant(rows,cols,s1) + m1);
|
||||
VERIFY_IS_APPROX(((m1*Scalar(2)).array() - s2).matrix(), (m1+m1) - MatrixType::Constant(rows,cols,s2) );
|
||||
m3 = m1;
|
||||
m3.array() += s2;
|
||||
VERIFY_IS_APPROX(m3, (m1.array() + s2).matrix());
|
||||
m3 = m1;
|
||||
m3.array() -= s1;
|
||||
VERIFY_IS_APPROX(m3, (m1.array() - s1).matrix());
|
||||
|
||||
// reductions
|
||||
VERIFY_IS_APPROX(m1.colwise().sum().sum(), m1.sum());
|
||||
VERIFY_IS_APPROX(m1.rowwise().sum().sum(), m1.sum());
|
||||
if (!ei_isApprox(m1.sum(), (m1+m2).sum()))
|
||||
VERIFY_IS_NOT_APPROX(((m1+m2).rowwise().sum()).sum(), m1.sum());
|
||||
VERIFY_IS_APPROX(m1.colwise().sum(), m1.colwise().redux(ei_scalar_sum_op<Scalar>()));
|
||||
|
||||
// vector-wise ops
|
||||
m3 = m1;
|
||||
VERIFY_IS_APPROX(m3.colwise() += cv1, m1.colwise() + cv1);
|
||||
m3 = m1;
|
||||
VERIFY_IS_APPROX(m3.colwise() -= cv1, m1.colwise() - cv1);
|
||||
m3 = m1;
|
||||
VERIFY_IS_APPROX(m3.rowwise() += rv1, m1.rowwise() + rv1);
|
||||
m3 = m1;
|
||||
VERIFY_IS_APPROX(m3.rowwise() -= rv1, m1.rowwise() - rv1);
|
||||
}
|
||||
|
||||
template<typename MatrixType> void comparisons(const MatrixType& m)
|
||||
{
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
|
||||
|
||||
int rows = m.rows();
|
||||
int cols = m.cols();
|
||||
|
||||
int r = ei_random<int>(0, rows-1),
|
||||
c = ei_random<int>(0, cols-1);
|
||||
|
||||
MatrixType m1 = MatrixType::Random(rows, cols),
|
||||
m2 = MatrixType::Random(rows, cols),
|
||||
m3(rows, cols);
|
||||
|
||||
VERIFY(((m1.array() + Scalar(1)) > m1.array()).all());
|
||||
VERIFY(((m1.array() - Scalar(1)) < m1.array()).all());
|
||||
if (rows*cols>1)
|
||||
{
|
||||
m3 = m1;
|
||||
m3(r,c) += 1;
|
||||
VERIFY(! (m1.array() < m3.array()).all() );
|
||||
VERIFY(! (m1.array() > m3.array()).all() );
|
||||
}
|
||||
|
||||
// comparisons to scalar
|
||||
VERIFY( (m1.array() != (m1(r,c)+1) ).any() );
|
||||
VERIFY( (m1.array() > (m1(r,c)-1) ).any() );
|
||||
VERIFY( (m1.array() < (m1(r,c)+1) ).any() );
|
||||
VERIFY( (m1.array() == m1(r,c) ).any() );
|
||||
|
||||
// test Select
|
||||
VERIFY_IS_APPROX( (m1.array()<m2.array()).select(m1,m2), m1.cwiseMin(m2) );
|
||||
VERIFY_IS_APPROX( (m1.array()>m2.array()).select(m1,m2), m1.cwiseMax(m2) );
|
||||
Scalar mid = (m1.cwiseAbs().minCoeff() + m1.cwiseAbs().maxCoeff())/Scalar(2);
|
||||
for (int j=0; j<cols; ++j)
|
||||
for (int i=0; i<rows; ++i)
|
||||
m3(i,j) = ei_abs(m1(i,j))<mid ? 0 : m1(i,j);
|
||||
VERIFY_IS_APPROX( (m1.array().abs()<MatrixType::Constant(rows,cols,mid).array())
|
||||
.select(MatrixType::Zero(rows,cols),m1), m3);
|
||||
// shorter versions:
|
||||
VERIFY_IS_APPROX( (m1.array().abs()<MatrixType::Constant(rows,cols,mid).array())
|
||||
.select(0,m1), m3);
|
||||
VERIFY_IS_APPROX( (m1.array().abs()>=MatrixType::Constant(rows,cols,mid).array())
|
||||
.select(m1,0), m3);
|
||||
// even shorter version:
|
||||
VERIFY_IS_APPROX( (m1.array().abs()<mid).select(0,m1), m3);
|
||||
|
||||
// count
|
||||
VERIFY(((m1.array().abs()+1)>RealScalar(0.1)).count() == rows*cols);
|
||||
// TODO allows colwise/rowwise for array
|
||||
VERIFY_IS_APPROX(((m1.array().abs()+1)>RealScalar(0.1)).matrix().colwise().count(), RowVectorXi::Constant(cols,rows));
|
||||
VERIFY_IS_APPROX(((m1.array().abs()+1)>RealScalar(0.1)).matrix().rowwise().count(), VectorXi::Constant(rows, cols));
|
||||
}
|
||||
|
||||
template<typename VectorType> void lpNorm(const VectorType& v)
|
||||
{
|
||||
VectorType u = VectorType::Random(v.size());
|
||||
|
||||
VERIFY_IS_APPROX(u.template lpNorm<Infinity>(), u.cwiseAbs().maxCoeff());
|
||||
VERIFY_IS_APPROX(u.template lpNorm<1>(), u.cwiseAbs().sum());
|
||||
VERIFY_IS_APPROX(u.template lpNorm<2>(), ei_sqrt(u.array().abs().square().sum()));
|
||||
VERIFY_IS_APPROX(ei_pow(u.template lpNorm<5>(), typename VectorType::RealScalar(5)), u.array().abs().pow(5).sum());
|
||||
}
|
||||
|
||||
void test_array_for_matrix()
|
||||
{
|
||||
for(int i = 0; i < g_repeat; i++) {
|
||||
CALL_SUBTEST_1( array_for_matrix(Matrix<float, 1, 1>()) );
|
||||
CALL_SUBTEST_2( array_for_matrix(Matrix2f()) );
|
||||
CALL_SUBTEST_3( array_for_matrix(Matrix4d()) );
|
||||
CALL_SUBTEST_4( array_for_matrix(MatrixXcf(3, 3)) );
|
||||
CALL_SUBTEST_5( array_for_matrix(MatrixXf(8, 12)) );
|
||||
CALL_SUBTEST_6( array_for_matrix(MatrixXi(8, 12)) );
|
||||
}
|
||||
for(int i = 0; i < g_repeat; i++) {
|
||||
CALL_SUBTEST_1( comparisons(Matrix<float, 1, 1>()) );
|
||||
CALL_SUBTEST_2( comparisons(Matrix2f()) );
|
||||
CALL_SUBTEST_3( comparisons(Matrix4d()) );
|
||||
CALL_SUBTEST_5( comparisons(MatrixXf(8, 12)) );
|
||||
CALL_SUBTEST_6( comparisons(MatrixXi(8, 12)) );
|
||||
}
|
||||
for(int i = 0; i < g_repeat; i++) {
|
||||
CALL_SUBTEST_1( lpNorm(Matrix<float, 1, 1>()) );
|
||||
CALL_SUBTEST_2( lpNorm(Vector2f()) );
|
||||
CALL_SUBTEST_7( lpNorm(Vector3d()) );
|
||||
CALL_SUBTEST_8( lpNorm(Vector4f()) );
|
||||
CALL_SUBTEST_5( lpNorm(VectorXf(16)) );
|
||||
CALL_SUBTEST_4( lpNorm(VectorXcf(10)) );
|
||||
}
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user