add missing implementation of uniform scaling products

This commit is contained in:
Gael Guennebaud 2010-03-02 17:38:40 +01:00
parent 2f3d685e0c
commit c7828ac45c
2 changed files with 36 additions and 2 deletions

View File

@ -72,8 +72,8 @@ public:
inline Transform<Scalar,Dim> operator* (const Translation<Scalar,Dim>& t) const;
/** Concatenates a uniform scaling and an affine transformation */
template<int Dim>
inline Transform<Scalar,Dim> operator* (const Transform<Scalar,Dim>& t) const;
template<int Dim, int Mode>
inline Transform<Scalar,Dim,Mode> operator* (const Transform<Scalar,Dim, Mode>& t) const;
/** Concatenates a uniform scaling and a linear transformation matrix */
// TODO returns an expression
@ -156,4 +156,27 @@ typedef DiagonalMatrix<float, 3> AlignedScaling3f;
typedef DiagonalMatrix<double,3> AlignedScaling3d;
//@}
template<typename Scalar>
template<int Dim>
inline Transform<Scalar,Dim>
UniformScaling<Scalar>::operator* (const Translation<Scalar,Dim>& t) const
{
Transform<Scalar,Dim> res;
res.matrix().setZero();
res.linear().diagonal().fill(factor());
res.translation() = factor() * t.vector();
res(Dim,Dim) = Scalar(1);
return res;
}
template<typename Scalar>
template<int Dim,int Mode>
inline Transform<Scalar,Dim,Mode>
UniformScaling<Scalar>::operator* (const Transform<Scalar,Dim, Mode>& t) const
{
Transform<Scalar,Dim> res = t;
res.prescale(factor());
return res;
}
#endif // EIGEN_SCALING_H

View File

@ -59,6 +59,7 @@ template<typename Scalar, int Mode> void transformations(void)
Matrix3 matrot1, m;
Scalar a = ei_random<Scalar>(-Scalar(M_PI), Scalar(M_PI));
Scalar s0 = ei_random<Scalar>();
VERIFY_IS_APPROX(v0, AngleAxisx(a, v0.normalized()) * v0);
VERIFY_IS_APPROX(-v0, AngleAxisx(Scalar(M_PI), v0.unitOrthogonal()) * v0);
@ -234,6 +235,16 @@ template<typename Scalar, int Mode> void transformations(void)
t1 = Matrix3(q1) * (AlignedScaling3(v0) * Translation3(v0));
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
t0.setIdentity();
t0.scale(s0).translate(v0);
t1 = Scaling(s0) * Translation3(v0);
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
t0.prescale(s0);
t1 = Scaling(s0) * t1;
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
t0.setIdentity();
t0.prerotate(q1).prescale(v0).pretranslate(v0);
// translation * aligned scaling and transformation * mat