mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-21 17:19:36 +08:00
Fix bug #609: avoid if statement and improve consistency of eulerAngles method
This commit is contained in:
parent
e04b59929e
commit
c98fd7a6ca
@ -27,12 +27,18 @@ namespace Eigen {
|
|||||||
* * AngleAxisf(ea[1], Vector3f::UnitX())
|
* * AngleAxisf(ea[1], Vector3f::UnitX())
|
||||||
* * AngleAxisf(ea[2], Vector3f::UnitZ()); \endcode
|
* * AngleAxisf(ea[2], Vector3f::UnitZ()); \endcode
|
||||||
* This corresponds to the right-multiply conventions (with right hand side frames).
|
* This corresponds to the right-multiply conventions (with right hand side frames).
|
||||||
|
*
|
||||||
|
* The returned angles are in the ranges [0:pi]x[0:pi]x[-pi:pi].
|
||||||
|
*
|
||||||
|
* \sa class AngleAxis
|
||||||
*/
|
*/
|
||||||
template<typename Derived>
|
template<typename Derived>
|
||||||
inline Matrix<typename MatrixBase<Derived>::Scalar,3,1>
|
inline Matrix<typename MatrixBase<Derived>::Scalar,3,1>
|
||||||
MatrixBase<Derived>::eulerAngles(Index a0, Index a1, Index a2) const
|
MatrixBase<Derived>::eulerAngles(Index a0, Index a1, Index a2) const
|
||||||
{
|
{
|
||||||
using std::atan2;
|
using std::atan2;
|
||||||
|
using std::sin;
|
||||||
|
using std::cos;
|
||||||
/* Implemented from Graphics Gems IV */
|
/* Implemented from Graphics Gems IV */
|
||||||
EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Derived,3,3)
|
EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Derived,3,3)
|
||||||
|
|
||||||
@ -46,37 +52,51 @@ MatrixBase<Derived>::eulerAngles(Index a0, Index a1, Index a2) const
|
|||||||
const Index k = (a0 + 2 - odd)%3;
|
const Index k = (a0 + 2 - odd)%3;
|
||||||
|
|
||||||
if (a0==a2)
|
if (a0==a2)
|
||||||
{
|
|
||||||
Scalar s = Vector2(coeff(j,i) , coeff(k,i)).norm();
|
|
||||||
res[1] = atan2(s, coeff(i,i));
|
|
||||||
if (s > epsilon)
|
|
||||||
{
|
{
|
||||||
res[0] = atan2(coeff(j,i), coeff(k,i));
|
res[0] = atan2(coeff(j,i), coeff(k,i));
|
||||||
res[2] = atan2(coeff(i,j),-coeff(i,k));
|
if((odd && res[0]<0) || ((!odd) && res[0]>0))
|
||||||
|
{
|
||||||
|
res[0] = (res[0] > 0) ? res[0] - M_PI : res[0] + M_PI;
|
||||||
|
Scalar s2 = Vector2(coeff(j,i), coeff(k,i)).norm();
|
||||||
|
res[1] = -atan2(s2, coeff(i,i));
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
res[0] = Scalar(0);
|
Scalar s2 = Vector2(coeff(j,i), coeff(k,i)).norm();
|
||||||
res[2] = (coeff(i,i)>0?1:-1)*atan2(-coeff(k,j), coeff(j,j));
|
res[1] = atan2(s2, coeff(i,i));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// With a=(0,1,0), we have i=0; j=1; k=2, and after computing the first two angles,
|
||||||
|
// we can compute their respective rotation, and apply its inverse to M. Since the result must
|
||||||
|
// be a rotation around x, we have:
|
||||||
|
//
|
||||||
|
// c2 s1.s2 c1.s2 1 0 0
|
||||||
|
// 0 c1 -s1 * M = 0 c3 s3
|
||||||
|
// -s2 s1.c2 c1.c2 0 -s3 c3
|
||||||
|
//
|
||||||
|
// Thus: m11.c1 - m21.s1 = c3 & m12.c1 - m22.s1 = s3
|
||||||
|
|
||||||
|
Scalar s1 = sin(res[0]);
|
||||||
|
Scalar c1 = cos(res[0]);
|
||||||
|
res[2] = atan2(c1*coeff(j,k)-s1*coeff(k,k), c1*coeff(j,j) - s1 * coeff(k,j));
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
{
|
|
||||||
Scalar c = Vector2(coeff(i,i) , coeff(i,j)).norm();
|
|
||||||
res[1] = atan2(-coeff(i,k), c);
|
|
||||||
if (c > epsilon)
|
|
||||||
{
|
{
|
||||||
res[0] = atan2(coeff(j,k), coeff(k,k));
|
res[0] = atan2(coeff(j,k), coeff(k,k));
|
||||||
res[2] = atan2(coeff(i,j), coeff(i,i));
|
Scalar c2 = Vector2(coeff(i,i), coeff(i,j)).norm();
|
||||||
|
if((odd && res[0]<0) || ((!odd) && res[0]>0)) {
|
||||||
|
res[0] = (res[0] > 0) ? res[0] - M_PI : res[0] + M_PI;
|
||||||
|
res[1] = atan2(-coeff(i,k), -c2);
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
{
|
res[1] = atan2(-coeff(i,k), c2);
|
||||||
res[0] = Scalar(0);
|
Scalar s1 = sin(res[0]);
|
||||||
res[2] = (coeff(i,k)>0?1:-1)*atan2(-coeff(k,j), coeff(j,j));
|
Scalar c1 = cos(res[0]);
|
||||||
}
|
res[2] = atan2(s1*coeff(k,i)-c1*coeff(j,i), c1*coeff(j,j) - s1 * coeff(k,j));
|
||||||
}
|
}
|
||||||
if (!odd)
|
if (!odd)
|
||||||
res = -res;
|
res = -res;
|
||||||
|
|
||||||
return res;
|
return res;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -1,7 +1,7 @@
|
|||||||
// This file is part of Eigen, a lightweight C++ template library
|
// This file is part of Eigen, a lightweight C++ template library
|
||||||
// for linear algebra.
|
// for linear algebra.
|
||||||
//
|
//
|
||||||
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
// Copyright (C) 2008-2012 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||||
//
|
//
|
||||||
// This Source Code Form is subject to the terms of the Mozilla
|
// This Source Code Form is subject to the terms of the Mozilla
|
||||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||||
@ -12,22 +12,18 @@
|
|||||||
#include <Eigen/LU>
|
#include <Eigen/LU>
|
||||||
#include <Eigen/SVD>
|
#include <Eigen/SVD>
|
||||||
|
|
||||||
template<typename Scalar> void eulerangles(void)
|
template<typename Scalar> void check_all_var(const Matrix<Scalar,3,1>& ea)
|
||||||
{
|
{
|
||||||
typedef Matrix<Scalar,3,3> Matrix3;
|
typedef Matrix<Scalar,3,3> Matrix3;
|
||||||
typedef Matrix<Scalar,3,1> Vector3;
|
typedef Matrix<Scalar,3,1> Vector3;
|
||||||
typedef Quaternion<Scalar> Quaternionx;
|
|
||||||
typedef AngleAxis<Scalar> AngleAxisx;
|
typedef AngleAxis<Scalar> AngleAxisx;
|
||||||
|
|
||||||
Scalar a = internal::random<Scalar>(-Scalar(M_PI), Scalar(M_PI));
|
|
||||||
Quaternionx q1;
|
|
||||||
q1 = AngleAxisx(a, Vector3::Random().normalized());
|
|
||||||
Matrix3 m;
|
|
||||||
m = q1;
|
|
||||||
|
|
||||||
#define VERIFY_EULER(I,J,K, X,Y,Z) { \
|
#define VERIFY_EULER(I,J,K, X,Y,Z) { \
|
||||||
Vector3 ea = m.eulerAngles(I,J,K); \
|
Matrix3 m(AngleAxisx(ea[0], Vector3::Unit##X()) * AngleAxisx(ea[1], Vector3::Unit##Y()) * AngleAxisx(ea[2], Vector3::Unit##Z())); \
|
||||||
VERIFY_IS_APPROX(m, Matrix3(AngleAxisx(ea[0], Vector3::Unit##X()) * AngleAxisx(ea[1], Vector3::Unit##Y()) * AngleAxisx(ea[2], Vector3::Unit##Z()))); \
|
Vector3 eabis = m.eulerAngles(I,J,K); \
|
||||||
|
Matrix3 mbis(AngleAxisx(eabis[0], Vector3::Unit##X()) * AngleAxisx(eabis[1], Vector3::Unit##Y()) * AngleAxisx(eabis[2], Vector3::Unit##Z())); \
|
||||||
|
VERIFY_IS_APPROX(m, mbis); \
|
||||||
|
if(I!=K || ea[1]!=0) VERIFY_IS_APPROX(ea, eabis); \
|
||||||
}
|
}
|
||||||
VERIFY_EULER(0,1,2, X,Y,Z);
|
VERIFY_EULER(0,1,2, X,Y,Z);
|
||||||
VERIFY_EULER(0,1,0, X,Y,X);
|
VERIFY_EULER(0,1,0, X,Y,X);
|
||||||
@ -45,6 +41,44 @@ template<typename Scalar> void eulerangles(void)
|
|||||||
VERIFY_EULER(2,1,2, Z,Y,Z);
|
VERIFY_EULER(2,1,2, Z,Y,Z);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
template<typename Scalar> void eulerangles(void)
|
||||||
|
{
|
||||||
|
typedef Matrix<Scalar,3,3> Matrix3;
|
||||||
|
typedef Matrix<Scalar,3,1> Vector3;
|
||||||
|
typedef Array<Scalar,3,1> Array3;
|
||||||
|
typedef Quaternion<Scalar> Quaternionx;
|
||||||
|
typedef AngleAxis<Scalar> AngleAxisx;
|
||||||
|
|
||||||
|
Scalar a = internal::random<Scalar>(-Scalar(M_PI), Scalar(M_PI));
|
||||||
|
Quaternionx q1;
|
||||||
|
q1 = AngleAxisx(a, Vector3::Random().normalized());
|
||||||
|
Matrix3 m;
|
||||||
|
m = q1;
|
||||||
|
|
||||||
|
Vector3 ea = m.eulerAngles(0,1,2);
|
||||||
|
check_all_var(ea);
|
||||||
|
ea = m.eulerAngles(0,1,0);
|
||||||
|
check_all_var(ea);
|
||||||
|
|
||||||
|
ea = (Array3::Random() + Array3(1,1,0))*M_PI*Array3(0.5,0.5,1);
|
||||||
|
check_all_var(ea);
|
||||||
|
|
||||||
|
ea[2] = ea[0] = internal::random<Scalar>(0,M_PI);
|
||||||
|
check_all_var(ea);
|
||||||
|
|
||||||
|
ea[0] = ea[1] = internal::random<Scalar>(0,M_PI);
|
||||||
|
check_all_var(ea);
|
||||||
|
|
||||||
|
ea[1] = 0;
|
||||||
|
check_all_var(ea);
|
||||||
|
|
||||||
|
ea.head(2).setZero();
|
||||||
|
check_all_var(ea);
|
||||||
|
|
||||||
|
ea.setZero();
|
||||||
|
check_all_var(ea);
|
||||||
|
}
|
||||||
|
|
||||||
void test_geo_eulerangles()
|
void test_geo_eulerangles()
|
||||||
{
|
{
|
||||||
for(int i = 0; i < g_repeat; i++) {
|
for(int i = 0; i < g_repeat; i++) {
|
||||||
|
Loading…
x
Reference in New Issue
Block a user