give FullPivotingHouseholderQR all the modern comfort

This commit is contained in:
Benoit Jacob 2009-08-24 00:23:35 -04:00
parent 154bdac9f4
commit c9a307f330
3 changed files with 135 additions and 10 deletions

View File

@ -94,7 +94,7 @@ template<typename MatrixType> class FullPivotingHouseholderQR
* Output: \verbinclude FullPivotingHouseholderQR_solve.out * Output: \verbinclude FullPivotingHouseholderQR_solve.out
*/ */
template<typename OtherDerived, typename ResultType> template<typename OtherDerived, typename ResultType>
void solve(const MatrixBase<OtherDerived>& b, ResultType *result) const; bool solve(const MatrixBase<OtherDerived>& b, ResultType *result) const;
MatrixType matrixQ(void) const; MatrixType matrixQ(void) const;
@ -106,22 +106,117 @@ template<typename MatrixType> class FullPivotingHouseholderQR
const IntRowVectorType& colsPermutation() const const IntRowVectorType& colsPermutation() const
{ {
ei_assert(m_isInitialized && "FULLPIVOTINGHOUSEHOLDERQR is not initialized."); ei_assert(m_isInitialized && "FullPivotingHouseholderQR is not initialized.");
return m_cols_permutation; return m_cols_permutation;
} }
const IntColVectorType& rowsTranspositions() const const IntColVectorType& rowsTranspositions() const
{ {
ei_assert(m_isInitialized && "FULLPIVOTINGHOUSEHOLDERQR is not initialized."); ei_assert(m_isInitialized && "FullPivotingHouseholderQR is not initialized.");
return m_rows_transpositions; return m_rows_transpositions;
} }
/** \returns the absolute value of the determinant of the matrix of which
* *this is the QR decomposition. It has only linear complexity
* (that is, O(n) where n is the dimension of the square matrix)
* as the QR decomposition has already been computed.
*
* \note This is only for square matrices.
*
* \warning a determinant can be very big or small, so for matrices
* of large enough dimension, there is a risk of overflow/underflow.
*
* \sa MatrixBase::determinant()
*/
typename MatrixType::RealScalar absDeterminant() const;
/** \returns the rank of the matrix of which *this is the QR decomposition.
*
* \note This is computed at the time of the construction of the QR decomposition. This
* method does not perform any further computation.
*/
inline int rank() const inline int rank() const
{ {
ei_assert(m_isInitialized && "FULLPIVOTINGHOUSEHOLDERQR is not initialized."); ei_assert(m_isInitialized && "FullPivotingHouseholderQR is not initialized.");
return m_rank; return m_rank;
} }
/** \returns the dimension of the kernel of the matrix of which *this is the QR decomposition.
*
* \note Since the rank is computed at the time of the construction of the QR decomposition, this
* method almost does not perform any further computation.
*/
inline int dimensionOfKernel() const
{
ei_assert(m_isInitialized && "FullPivotingHouseholderQR is not initialized.");
return m_qr.cols() - m_rank;
}
/** \returns true if the matrix of which *this is the QR decomposition represents an injective
* linear map, i.e. has trivial kernel; false otherwise.
*
* \note Since the rank is computed at the time of the construction of the QR decomposition, this
* method almost does not perform any further computation.
*/
inline bool isInjective() const
{
ei_assert(m_isInitialized && "FullPivotingHouseholderQR is not initialized.");
return m_rank == m_qr.cols();
}
/** \returns true if the matrix of which *this is the QR decomposition represents a surjective
* linear map; false otherwise.
*
* \note Since the rank is computed at the time of the construction of the QR decomposition, this
* method almost does not perform any further computation.
*/
inline bool isSurjective() const
{
ei_assert(m_isInitialized && "FullPivotingHouseholderQR is not initialized.");
return m_rank == m_qr.rows();
}
/** \returns true if the matrix of which *this is the QR decomposition is invertible.
*
* \note Since the rank is computed at the time of the construction of the QR decomposition, this
* method almost does not perform any further computation.
*/
inline bool isInvertible() const
{
ei_assert(m_isInitialized && "FullPivotingHouseholderQR is not initialized.");
return isInjective() && isSurjective();
}
/** Computes the inverse of the matrix of which *this is the QR decomposition.
*
* \param result a pointer to the matrix into which to store the inverse. Resized if needed.
*
* \note If this matrix is not invertible, *result is left with undefined coefficients.
* Use isInvertible() to first determine whether this matrix is invertible.
*
* \sa inverse()
*/
inline void computeInverse(MatrixType *result) const
{
ei_assert(m_isInitialized && "FullPivotingHouseholderQR is not initialized.");
ei_assert(m_qr.rows() == m_qr.cols() && "You can't take the inverse of a non-square matrix!");
solve(MatrixType::Identity(m_qr.rows(), m_qr.cols()), result);
}
/** \returns the inverse of the matrix of which *this is the QR decomposition.
*
* \note If this matrix is not invertible, the returned matrix has undefined coefficients.
* Use isInvertible() to first determine whether this matrix is invertible.
*
* \sa computeInverse()
*/
inline MatrixType inverse() const
{
MatrixType result;
computeInverse(&result);
return result;
}
protected: protected:
MatrixType m_qr; MatrixType m_qr;
HCoeffsType m_hCoeffs; HCoeffsType m_hCoeffs;
@ -135,6 +230,14 @@ template<typename MatrixType> class FullPivotingHouseholderQR
#ifndef EIGEN_HIDE_HEAVY_CODE #ifndef EIGEN_HIDE_HEAVY_CODE
template<typename MatrixType>
typename MatrixType::RealScalar FullPivotingHouseholderQR<MatrixType>::absDeterminant() const
{
ei_assert(m_isInitialized && "FullPivotingHouseholderQR is not initialized.");
ei_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
return ei_abs(m_qr.diagonal().prod());
}
template<typename MatrixType> template<typename MatrixType>
FullPivotingHouseholderQR<MatrixType>& FullPivotingHouseholderQR<MatrixType>::compute(const MatrixType& matrix) FullPivotingHouseholderQR<MatrixType>& FullPivotingHouseholderQR<MatrixType>::compute(const MatrixType& matrix)
{ {
@ -213,12 +316,14 @@ FullPivotingHouseholderQR<MatrixType>& FullPivotingHouseholderQR<MatrixType>::co
template<typename MatrixType> template<typename MatrixType>
template<typename OtherDerived, typename ResultType> template<typename OtherDerived, typename ResultType>
void FullPivotingHouseholderQR<MatrixType>::solve( bool FullPivotingHouseholderQR<MatrixType>::solve(
const MatrixBase<OtherDerived>& b, const MatrixBase<OtherDerived>& b,
ResultType *result ResultType *result
) const ) const
{ {
ei_assert(m_isInitialized && "FullPivotingHouseholderQR is not initialized."); ei_assert(m_isInitialized && "FullPivotingHouseholderQR is not initialized.");
if(m_rank==0) return false;
const int rows = m_qr.rows(); const int rows = m_qr.rows();
const int cols = b.cols(); const int cols = b.cols();
ei_assert(b.rows() == rows); ei_assert(b.rows() == rows);
@ -234,6 +339,14 @@ void FullPivotingHouseholderQR<MatrixType>::solve(
.applyHouseholderOnTheLeft(m_qr.col(k).end(remainingSize-1), m_hCoeffs.coeff(k), &temp.coeffRef(0)); .applyHouseholderOnTheLeft(m_qr.col(k).end(remainingSize-1), m_hCoeffs.coeff(k), &temp.coeffRef(0));
} }
if(!isSurjective())
{
// is c is in the image of R ?
RealScalar biggest_in_upper_part_of_c = c.corner(TopLeft, m_rank, c.cols()).cwise().abs().maxCoeff();
RealScalar biggest_in_lower_part_of_c = c.corner(BottomLeft, rows-m_rank, c.cols()).cwise().abs().maxCoeff();
if(!ei_isMuchSmallerThan(biggest_in_lower_part_of_c, biggest_in_upper_part_of_c, m_precision))
return false;
}
m_qr.corner(TopLeft, m_rank, m_rank) m_qr.corner(TopLeft, m_rank, m_rank)
.template triangularView<UpperTriangular>() .template triangularView<UpperTriangular>()
.solveInPlace(c.corner(TopLeft, m_rank, c.cols())); .solveInPlace(c.corner(TopLeft, m_rank, c.cols()));
@ -241,6 +354,7 @@ void FullPivotingHouseholderQR<MatrixType>::solve(
result->resize(m_qr.cols(), b.cols()); result->resize(m_qr.cols(), b.cols());
for(int i = 0; i < m_rank; ++i) result->row(m_cols_permutation.coeff(i)) = c.row(i); for(int i = 0; i < m_rank; ++i) result->row(m_cols_permutation.coeff(i)) = c.row(i);
for(int i = m_rank; i < m_qr.cols(); ++i) result->row(m_cols_permutation.coeff(i)).setZero(); for(int i = m_rank; i < m_qr.cols(); ++i) result->row(m_cols_permutation.coeff(i)).setZero();
return true;
} }
/** \returns the matrix Q */ /** \returns the matrix Q */

View File

@ -39,6 +39,11 @@ template<typename MatrixType> void qr()
createRandomMatrixOfRank(rank,rows,cols,m1); createRandomMatrixOfRank(rank,rows,cols,m1);
FullPivotingHouseholderQR<MatrixType> qr(m1); FullPivotingHouseholderQR<MatrixType> qr(m1);
VERIFY_IS_APPROX(rank, qr.rank()); VERIFY_IS_APPROX(rank, qr.rank());
VERIFY(cols - qr.rank() == qr.dimensionOfKernel());
VERIFY(!qr.isInjective());
VERIFY(!qr.isInvertible());
VERIFY(!qr.isSurjective());
MatrixType r = qr.matrixQR(); MatrixType r = qr.matrixQR();
// FIXME need better way to construct trapezoid // FIXME need better way to construct trapezoid
@ -54,8 +59,10 @@ template<typename MatrixType> void qr()
MatrixType m2 = MatrixType::Random(cols,cols2); MatrixType m2 = MatrixType::Random(cols,cols2);
MatrixType m3 = m1*m2; MatrixType m3 = m1*m2;
m2 = MatrixType::Random(cols,cols2); m2 = MatrixType::Random(cols,cols2);
qr.solve(m3, &m2); VERIFY(qr.solve(m3, &m2));
VERIFY_IS_APPROX(m3, m1*m2); VERIFY_IS_APPROX(m3, m1*m2);
m3 = MatrixType::Random(rows,cols2);
VERIFY(!qr.solve(m3, &m2));
} }
template<typename MatrixType> void qr_invertible() template<typename MatrixType> void qr_invertible()
@ -74,8 +81,12 @@ template<typename MatrixType> void qr_invertible()
} }
FullPivotingHouseholderQR<MatrixType> qr(m1); FullPivotingHouseholderQR<MatrixType> qr(m1);
VERIFY(qr.isInjective());
VERIFY(qr.isInvertible());
VERIFY(qr.isSurjective());
m3 = MatrixType::Random(size,size); m3 = MatrixType::Random(size,size);
qr.solve(m3, &m2); VERIFY(qr.solve(m3, &m2));
VERIFY_IS_APPROX(m3, m1*m2); VERIFY_IS_APPROX(m3, m1*m2);
} }