formatting

This commit is contained in:
Gael Guennebaud 2015-06-09 15:23:08 +02:00
parent 04665ef9e1
commit cacbc5679d

View File

@ -16,189 +16,191 @@ namespace Eigen {
namespace internal { namespace internal {
/** /**
* Generalized Minimal Residual Algorithm based on the * Generalized Minimal Residual Algorithm based on the
* Arnoldi algorithm implemented with Householder reflections. * Arnoldi algorithm implemented with Householder reflections.
* *
* Parameters: * Parameters:
* \param mat matrix of linear system of equations * \param mat matrix of linear system of equations
* \param Rhs right hand side vector of linear system of equations * \param Rhs right hand side vector of linear system of equations
* \param x on input: initial guess, on output: solution * \param x on input: initial guess, on output: solution
* \param precond preconditioner used * \param precond preconditioner used
* \param iters on input: maximum number of iterations to perform * \param iters on input: maximum number of iterations to perform
* on output: number of iterations performed * on output: number of iterations performed
* \param restart number of iterations for a restart * \param restart number of iterations for a restart
* \param tol_error on input: relative residual tolerance * \param tol_error on input: relative residual tolerance
* on output: residuum achieved * on output: residuum achieved
* *
* \sa IterativeMethods::bicgstab() * \sa IterativeMethods::bicgstab()
* *
* *
* For references, please see: * For references, please see:
* *
* Saad, Y. and Schultz, M. H. * Saad, Y. and Schultz, M. H.
* GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems. * GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems.
* SIAM J.Sci.Stat.Comp. 7, 1986, pp. 856 - 869. * SIAM J.Sci.Stat.Comp. 7, 1986, pp. 856 - 869.
* *
* Saad, Y. * Saad, Y.
* Iterative Methods for Sparse Linear Systems. * Iterative Methods for Sparse Linear Systems.
* Society for Industrial and Applied Mathematics, Philadelphia, 2003. * Society for Industrial and Applied Mathematics, Philadelphia, 2003.
* *
* Walker, H. F. * Walker, H. F.
* Implementations of the GMRES method. * Implementations of the GMRES method.
* Comput.Phys.Comm. 53, 1989, pp. 311 - 320. * Comput.Phys.Comm. 53, 1989, pp. 311 - 320.
* *
* Walker, H. F. * Walker, H. F.
* Implementation of the GMRES Method using Householder Transformations. * Implementation of the GMRES Method using Householder Transformations.
* SIAM J.Sci.Stat.Comp. 9, 1988, pp. 152 - 163. * SIAM J.Sci.Stat.Comp. 9, 1988, pp. 152 - 163.
* *
*/ */
template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner> template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
bool gmres(const MatrixType & mat, const Rhs & rhs, Dest & x, const Preconditioner & precond, bool gmres(const MatrixType & mat, const Rhs & rhs, Dest & x, const Preconditioner & precond,
Index &iters, const Index &restart, typename Dest::RealScalar & tol_error) { Index &iters, const Index &restart, typename Dest::RealScalar & tol_error) {
using std::sqrt; using std::sqrt;
using std::abs; using std::abs;
typedef typename Dest::RealScalar RealScalar; typedef typename Dest::RealScalar RealScalar;
typedef typename Dest::Scalar Scalar; typedef typename Dest::Scalar Scalar;
typedef Matrix < Scalar, Dynamic, 1 > VectorType; typedef Matrix < Scalar, Dynamic, 1 > VectorType;
typedef Matrix < Scalar, Dynamic, Dynamic > FMatrixType; typedef Matrix < Scalar, Dynamic, Dynamic > FMatrixType;
RealScalar tol = tol_error; RealScalar tol = tol_error;
const Index maxIters = iters; const Index maxIters = iters;
iters = 0; iters = 0;
const Index m = mat.rows(); const Index m = mat.rows();
// residual and preconditioned residual // residual and preconditioned residual
VectorType p0 = rhs - mat*x; VectorType p0 = rhs - mat*x;
VectorType r0 = precond.solve(p0); VectorType r0 = precond.solve(p0);
VectorType t(m), v(m), workspace(m); VectorType t(m), v(m), workspace(m);
const RealScalar r0Norm = r0.norm(); const RealScalar r0Norm = r0.norm();
// is initial guess already good enough? // is initial guess already good enough?
if(r0Norm == 0) { if(r0Norm == 0)
tol_error=0; {
return true; tol_error = 0;
} return true;
}
// storage for Hessenberg matrix and Householder data // storage for Hessenberg matrix and Householder data
FMatrixType H = FMatrixType::Zero(m, restart + 1); FMatrixType H = FMatrixType::Zero(m, restart + 1);
VectorType w = VectorType::Zero(restart + 1); VectorType w = VectorType::Zero(restart + 1);
VectorType tau = VectorType::Zero(restart + 1); VectorType tau = VectorType::Zero(restart + 1);
// storage for Jacobi rotations // storage for Jacobi rotations
std::vector < JacobiRotation < Scalar > > G(restart); std::vector < JacobiRotation < Scalar > > G(restart);
// generate first Householder vector // generate first Householder vector
Ref<VectorType> H0_tail = H.col(0).tail(m - 1); Ref<VectorType> H0_tail = H.col(0).tail(m - 1);
RealScalar beta; RealScalar beta;
r0.makeHouseholder(H0_tail, tau.coeffRef(0), beta); r0.makeHouseholder(H0_tail, tau.coeffRef(0), beta);
w(0)=(Scalar) beta; w(0) = Scalar(beta);
for (Index k = 1; k <= restart; ++k) { for (Index k = 1; k <= restart; ++k)
{
++iters;
++iters; v = VectorType::Unit(m, k - 1);
v = VectorType::Unit(m, k - 1); // apply Householder reflections H_{1} ... H_{k-1} to v
for (Index i = k - 1; i >= 0; --i) {
v.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
}
// apply Householder reflections H_{1} ... H_{k-1} to v // apply matrix M to v: v = mat * v;
for (Index i = k - 1; i >= 0; --i) { t=mat*v;
v.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data()); v=precond.solve(t);
}
// apply matrix M to v: v = mat * v; // apply Householder reflections H_{k-1} ... H_{1} to v
t=mat*v; for (Index i = 0; i < k; ++i) {
v=precond.solve(t); v.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
}
// apply Householder reflections H_{k-1} ... H_{1} to v if (v.tail(m - k).norm() != 0.0)
for (Index i = 0; i < k; ++i) { {
v.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data()); if (k <= restart)
} {
// generate new Householder vector
if (v.tail(m - k).norm() != 0.0) {
if (k <= restart) {
// generate new Householder vector
Ref<VectorType> Hk_tail = H.col(k).tail(m - k - 1); Ref<VectorType> Hk_tail = H.col(k).tail(m - k - 1);
v.tail(m - k).makeHouseholder(Hk_tail, tau.coeffRef(k), beta);
v.tail(m - k).makeHouseholder(Hk_tail, tau.coeffRef(k), beta);
// apply Householder reflection H_{k} to v // apply Householder reflection H_{k} to v
v.tail(m - k).applyHouseholderOnTheLeft(Hk_tail, tau.coeffRef(k), workspace.data()); v.tail(m - k).applyHouseholderOnTheLeft(Hk_tail, tau.coeffRef(k), workspace.data());
}
}
} if (k > 1)
} {
for (Index i = 0; i < k - 1; ++i)
{
// apply old Givens rotations to v
v.applyOnTheLeft(i, i + 1, G[i].adjoint());
}
}
if (k > 1) { if (k<m && v(k) != (Scalar) 0)
for (Index i = 0; i < k - 1; ++i) { {
// apply old Givens rotations to v // determine next Givens rotation
v.applyOnTheLeft(i, i + 1, G[i].adjoint()); G[k - 1].makeGivens(v(k - 1), v(k));
}
}
if (k<m && v(k) != (Scalar) 0) { // apply Givens rotation to v and w
v.applyOnTheLeft(k - 1, k, G[k - 1].adjoint());
w.applyOnTheLeft(k - 1, k, G[k - 1].adjoint());
}
// determine next Givens rotation // insert coefficients into upper matrix triangle
G[k - 1].makeGivens(v(k - 1), v(k)); H.col(k - 1).head(k) = v.head(k);
// apply Givens rotation to v and w bool stop = (k==m || abs(w(k)) < tol * r0Norm || iters == maxIters);
v.applyOnTheLeft(k - 1, k, G[k - 1].adjoint());
w.applyOnTheLeft(k - 1, k, G[k - 1].adjoint());
}
// insert coefficients into upper matrix triangle if (stop || k == restart)
H.col(k - 1).head(k) = v.head(k); {
// solve upper triangular system
VectorType y = w.head(k);
H.topLeftCorner(k, k).template triangularView <Upper>().solveInPlace(y);
bool stop=(k==m || abs(w(k)) < tol * r0Norm || iters == maxIters); // use Horner-like scheme to calculate solution vector
VectorType x_new = y(k - 1) * VectorType::Unit(m, k - 1);
if (stop || k == restart) { // apply Householder reflection H_{k} to x_new
x_new.tail(m - k + 1).applyHouseholderOnTheLeft(H.col(k - 1).tail(m - k), tau.coeffRef(k - 1), workspace.data());
// solve upper triangular system for (Index i = k - 2; i >= 0; --i)
VectorType y = w.head(k); {
H.topLeftCorner(k, k).template triangularView < Eigen::Upper > ().solveInPlace(y); x_new += y(i) * VectorType::Unit(m, i);
// apply Householder reflection H_{i} to x_new
x_new.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
}
// use Horner-like scheme to calculate solution vector x += x_new;
VectorType x_new = y(k - 1) * VectorType::Unit(m, k - 1);
// apply Householder reflection H_{k} to x_new if (stop)
x_new.tail(m - k + 1).applyHouseholderOnTheLeft(H.col(k - 1).tail(m - k), tau.coeffRef(k - 1), workspace.data()); {
return true;
}
else
{
k=0;
for (Index i = k - 2; i >= 0; --i) { // reset data for restart
x_new += y(i) * VectorType::Unit(m, i); p0 = rhs - mat*x;
// apply Householder reflection H_{i} to x_new r0 = precond.solve(p0);
x_new.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
}
x += x_new; // clear Hessenberg matrix and Householder data
H = FMatrixType::Zero(m, restart + 1);
w = VectorType::Zero(restart + 1);
tau = VectorType::Zero(restart + 1);
if (stop) { // generate first Householder vector
return true; r0.makeHouseholder(H0_tail, tau.coeffRef(0), beta);
} else { w(0)=(Scalar) beta;
k=0; }
}
}
// reset data for restart return false;
p0 = rhs - mat*x;
r0 = precond.solve(p0);
// clear Hessenberg matrix and Householder data
H = FMatrixType::Zero(m, restart + 1);
w = VectorType::Zero(restart + 1);
tau = VectorType::Zero(restart + 1);
// generate first Householder vector
r0.makeHouseholder(H0_tail, tau.coeffRef(0), beta);
w(0)=(Scalar) beta;
}
}
}
return false;
} }
@ -314,8 +316,8 @@ public:
failed = true; failed = true;
} }
m_info = failed ? NumericalIssue m_info = failed ? NumericalIssue
: m_error <= Base::m_tolerance ? Success : m_error <= Base::m_tolerance ? Success
: NoConvergence; : NoConvergence;
m_isInitialized = true; m_isInitialized = true;
} }