mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-08-12 03:39:01 +08:00
formatting
This commit is contained in:
parent
04665ef9e1
commit
cacbc5679d
@ -16,189 +16,191 @@ namespace Eigen {
|
|||||||
namespace internal {
|
namespace internal {
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Generalized Minimal Residual Algorithm based on the
|
* Generalized Minimal Residual Algorithm based on the
|
||||||
* Arnoldi algorithm implemented with Householder reflections.
|
* Arnoldi algorithm implemented with Householder reflections.
|
||||||
*
|
*
|
||||||
* Parameters:
|
* Parameters:
|
||||||
* \param mat matrix of linear system of equations
|
* \param mat matrix of linear system of equations
|
||||||
* \param Rhs right hand side vector of linear system of equations
|
* \param Rhs right hand side vector of linear system of equations
|
||||||
* \param x on input: initial guess, on output: solution
|
* \param x on input: initial guess, on output: solution
|
||||||
* \param precond preconditioner used
|
* \param precond preconditioner used
|
||||||
* \param iters on input: maximum number of iterations to perform
|
* \param iters on input: maximum number of iterations to perform
|
||||||
* on output: number of iterations performed
|
* on output: number of iterations performed
|
||||||
* \param restart number of iterations for a restart
|
* \param restart number of iterations for a restart
|
||||||
* \param tol_error on input: relative residual tolerance
|
* \param tol_error on input: relative residual tolerance
|
||||||
* on output: residuum achieved
|
* on output: residuum achieved
|
||||||
*
|
*
|
||||||
* \sa IterativeMethods::bicgstab()
|
* \sa IterativeMethods::bicgstab()
|
||||||
*
|
*
|
||||||
*
|
*
|
||||||
* For references, please see:
|
* For references, please see:
|
||||||
*
|
*
|
||||||
* Saad, Y. and Schultz, M. H.
|
* Saad, Y. and Schultz, M. H.
|
||||||
* GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems.
|
* GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems.
|
||||||
* SIAM J.Sci.Stat.Comp. 7, 1986, pp. 856 - 869.
|
* SIAM J.Sci.Stat.Comp. 7, 1986, pp. 856 - 869.
|
||||||
*
|
*
|
||||||
* Saad, Y.
|
* Saad, Y.
|
||||||
* Iterative Methods for Sparse Linear Systems.
|
* Iterative Methods for Sparse Linear Systems.
|
||||||
* Society for Industrial and Applied Mathematics, Philadelphia, 2003.
|
* Society for Industrial and Applied Mathematics, Philadelphia, 2003.
|
||||||
*
|
*
|
||||||
* Walker, H. F.
|
* Walker, H. F.
|
||||||
* Implementations of the GMRES method.
|
* Implementations of the GMRES method.
|
||||||
* Comput.Phys.Comm. 53, 1989, pp. 311 - 320.
|
* Comput.Phys.Comm. 53, 1989, pp. 311 - 320.
|
||||||
*
|
*
|
||||||
* Walker, H. F.
|
* Walker, H. F.
|
||||||
* Implementation of the GMRES Method using Householder Transformations.
|
* Implementation of the GMRES Method using Householder Transformations.
|
||||||
* SIAM J.Sci.Stat.Comp. 9, 1988, pp. 152 - 163.
|
* SIAM J.Sci.Stat.Comp. 9, 1988, pp. 152 - 163.
|
||||||
*
|
*
|
||||||
*/
|
*/
|
||||||
template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
|
template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
|
||||||
bool gmres(const MatrixType & mat, const Rhs & rhs, Dest & x, const Preconditioner & precond,
|
bool gmres(const MatrixType & mat, const Rhs & rhs, Dest & x, const Preconditioner & precond,
|
||||||
Index &iters, const Index &restart, typename Dest::RealScalar & tol_error) {
|
Index &iters, const Index &restart, typename Dest::RealScalar & tol_error) {
|
||||||
|
|
||||||
using std::sqrt;
|
using std::sqrt;
|
||||||
using std::abs;
|
using std::abs;
|
||||||
|
|
||||||
typedef typename Dest::RealScalar RealScalar;
|
typedef typename Dest::RealScalar RealScalar;
|
||||||
typedef typename Dest::Scalar Scalar;
|
typedef typename Dest::Scalar Scalar;
|
||||||
typedef Matrix < Scalar, Dynamic, 1 > VectorType;
|
typedef Matrix < Scalar, Dynamic, 1 > VectorType;
|
||||||
typedef Matrix < Scalar, Dynamic, Dynamic > FMatrixType;
|
typedef Matrix < Scalar, Dynamic, Dynamic > FMatrixType;
|
||||||
|
|
||||||
RealScalar tol = tol_error;
|
RealScalar tol = tol_error;
|
||||||
const Index maxIters = iters;
|
const Index maxIters = iters;
|
||||||
iters = 0;
|
iters = 0;
|
||||||
|
|
||||||
const Index m = mat.rows();
|
const Index m = mat.rows();
|
||||||
|
|
||||||
// residual and preconditioned residual
|
// residual and preconditioned residual
|
||||||
VectorType p0 = rhs - mat*x;
|
VectorType p0 = rhs - mat*x;
|
||||||
VectorType r0 = precond.solve(p0);
|
VectorType r0 = precond.solve(p0);
|
||||||
VectorType t(m), v(m), workspace(m);
|
VectorType t(m), v(m), workspace(m);
|
||||||
|
|
||||||
const RealScalar r0Norm = r0.norm();
|
const RealScalar r0Norm = r0.norm();
|
||||||
|
|
||||||
// is initial guess already good enough?
|
// is initial guess already good enough?
|
||||||
if(r0Norm == 0) {
|
if(r0Norm == 0)
|
||||||
tol_error=0;
|
{
|
||||||
return true;
|
tol_error = 0;
|
||||||
}
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
// storage for Hessenberg matrix and Householder data
|
// storage for Hessenberg matrix and Householder data
|
||||||
FMatrixType H = FMatrixType::Zero(m, restart + 1);
|
FMatrixType H = FMatrixType::Zero(m, restart + 1);
|
||||||
VectorType w = VectorType::Zero(restart + 1);
|
VectorType w = VectorType::Zero(restart + 1);
|
||||||
VectorType tau = VectorType::Zero(restart + 1);
|
VectorType tau = VectorType::Zero(restart + 1);
|
||||||
|
|
||||||
// storage for Jacobi rotations
|
// storage for Jacobi rotations
|
||||||
std::vector < JacobiRotation < Scalar > > G(restart);
|
std::vector < JacobiRotation < Scalar > > G(restart);
|
||||||
|
|
||||||
// generate first Householder vector
|
// generate first Householder vector
|
||||||
Ref<VectorType> H0_tail = H.col(0).tail(m - 1);
|
Ref<VectorType> H0_tail = H.col(0).tail(m - 1);
|
||||||
RealScalar beta;
|
RealScalar beta;
|
||||||
r0.makeHouseholder(H0_tail, tau.coeffRef(0), beta);
|
r0.makeHouseholder(H0_tail, tau.coeffRef(0), beta);
|
||||||
w(0)=(Scalar) beta;
|
w(0) = Scalar(beta);
|
||||||
|
|
||||||
for (Index k = 1; k <= restart; ++k) {
|
for (Index k = 1; k <= restart; ++k)
|
||||||
|
{
|
||||||
|
++iters;
|
||||||
|
|
||||||
++iters;
|
v = VectorType::Unit(m, k - 1);
|
||||||
|
|
||||||
v = VectorType::Unit(m, k - 1);
|
// apply Householder reflections H_{1} ... H_{k-1} to v
|
||||||
|
for (Index i = k - 1; i >= 0; --i) {
|
||||||
|
v.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
|
||||||
|
}
|
||||||
|
|
||||||
// apply Householder reflections H_{1} ... H_{k-1} to v
|
// apply matrix M to v: v = mat * v;
|
||||||
for (Index i = k - 1; i >= 0; --i) {
|
t=mat*v;
|
||||||
v.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
|
v=precond.solve(t);
|
||||||
}
|
|
||||||
|
|
||||||
// apply matrix M to v: v = mat * v;
|
// apply Householder reflections H_{k-1} ... H_{1} to v
|
||||||
t=mat*v;
|
for (Index i = 0; i < k; ++i) {
|
||||||
v=precond.solve(t);
|
v.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
|
||||||
|
}
|
||||||
|
|
||||||
// apply Householder reflections H_{k-1} ... H_{1} to v
|
if (v.tail(m - k).norm() != 0.0)
|
||||||
for (Index i = 0; i < k; ++i) {
|
{
|
||||||
v.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
|
if (k <= restart)
|
||||||
}
|
{
|
||||||
|
// generate new Householder vector
|
||||||
if (v.tail(m - k).norm() != 0.0) {
|
|
||||||
if (k <= restart) {
|
|
||||||
|
|
||||||
// generate new Householder vector
|
|
||||||
Ref<VectorType> Hk_tail = H.col(k).tail(m - k - 1);
|
Ref<VectorType> Hk_tail = H.col(k).tail(m - k - 1);
|
||||||
|
v.tail(m - k).makeHouseholder(Hk_tail, tau.coeffRef(k), beta);
|
||||||
v.tail(m - k).makeHouseholder(Hk_tail, tau.coeffRef(k), beta);
|
|
||||||
|
|
||||||
// apply Householder reflection H_{k} to v
|
// apply Householder reflection H_{k} to v
|
||||||
v.tail(m - k).applyHouseholderOnTheLeft(Hk_tail, tau.coeffRef(k), workspace.data());
|
v.tail(m - k).applyHouseholderOnTheLeft(Hk_tail, tau.coeffRef(k), workspace.data());
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
}
|
if (k > 1)
|
||||||
}
|
{
|
||||||
|
for (Index i = 0; i < k - 1; ++i)
|
||||||
|
{
|
||||||
|
// apply old Givens rotations to v
|
||||||
|
v.applyOnTheLeft(i, i + 1, G[i].adjoint());
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
if (k > 1) {
|
if (k<m && v(k) != (Scalar) 0)
|
||||||
for (Index i = 0; i < k - 1; ++i) {
|
{
|
||||||
// apply old Givens rotations to v
|
// determine next Givens rotation
|
||||||
v.applyOnTheLeft(i, i + 1, G[i].adjoint());
|
G[k - 1].makeGivens(v(k - 1), v(k));
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
if (k<m && v(k) != (Scalar) 0) {
|
// apply Givens rotation to v and w
|
||||||
|
v.applyOnTheLeft(k - 1, k, G[k - 1].adjoint());
|
||||||
|
w.applyOnTheLeft(k - 1, k, G[k - 1].adjoint());
|
||||||
|
}
|
||||||
|
|
||||||
// determine next Givens rotation
|
// insert coefficients into upper matrix triangle
|
||||||
G[k - 1].makeGivens(v(k - 1), v(k));
|
H.col(k - 1).head(k) = v.head(k);
|
||||||
|
|
||||||
// apply Givens rotation to v and w
|
bool stop = (k==m || abs(w(k)) < tol * r0Norm || iters == maxIters);
|
||||||
v.applyOnTheLeft(k - 1, k, G[k - 1].adjoint());
|
|
||||||
w.applyOnTheLeft(k - 1, k, G[k - 1].adjoint());
|
|
||||||
}
|
|
||||||
|
|
||||||
// insert coefficients into upper matrix triangle
|
if (stop || k == restart)
|
||||||
H.col(k - 1).head(k) = v.head(k);
|
{
|
||||||
|
// solve upper triangular system
|
||||||
|
VectorType y = w.head(k);
|
||||||
|
H.topLeftCorner(k, k).template triangularView <Upper>().solveInPlace(y);
|
||||||
|
|
||||||
bool stop=(k==m || abs(w(k)) < tol * r0Norm || iters == maxIters);
|
// use Horner-like scheme to calculate solution vector
|
||||||
|
VectorType x_new = y(k - 1) * VectorType::Unit(m, k - 1);
|
||||||
|
|
||||||
if (stop || k == restart) {
|
// apply Householder reflection H_{k} to x_new
|
||||||
|
x_new.tail(m - k + 1).applyHouseholderOnTheLeft(H.col(k - 1).tail(m - k), tau.coeffRef(k - 1), workspace.data());
|
||||||
|
|
||||||
// solve upper triangular system
|
for (Index i = k - 2; i >= 0; --i)
|
||||||
VectorType y = w.head(k);
|
{
|
||||||
H.topLeftCorner(k, k).template triangularView < Eigen::Upper > ().solveInPlace(y);
|
x_new += y(i) * VectorType::Unit(m, i);
|
||||||
|
// apply Householder reflection H_{i} to x_new
|
||||||
|
x_new.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
|
||||||
|
}
|
||||||
|
|
||||||
// use Horner-like scheme to calculate solution vector
|
x += x_new;
|
||||||
VectorType x_new = y(k - 1) * VectorType::Unit(m, k - 1);
|
|
||||||
|
|
||||||
// apply Householder reflection H_{k} to x_new
|
if (stop)
|
||||||
x_new.tail(m - k + 1).applyHouseholderOnTheLeft(H.col(k - 1).tail(m - k), tau.coeffRef(k - 1), workspace.data());
|
{
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
k=0;
|
||||||
|
|
||||||
for (Index i = k - 2; i >= 0; --i) {
|
// reset data for restart
|
||||||
x_new += y(i) * VectorType::Unit(m, i);
|
p0 = rhs - mat*x;
|
||||||
// apply Householder reflection H_{i} to x_new
|
r0 = precond.solve(p0);
|
||||||
x_new.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
|
|
||||||
}
|
|
||||||
|
|
||||||
x += x_new;
|
// clear Hessenberg matrix and Householder data
|
||||||
|
H = FMatrixType::Zero(m, restart + 1);
|
||||||
|
w = VectorType::Zero(restart + 1);
|
||||||
|
tau = VectorType::Zero(restart + 1);
|
||||||
|
|
||||||
if (stop) {
|
// generate first Householder vector
|
||||||
return true;
|
r0.makeHouseholder(H0_tail, tau.coeffRef(0), beta);
|
||||||
} else {
|
w(0)=(Scalar) beta;
|
||||||
k=0;
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
// reset data for restart
|
return false;
|
||||||
p0 = rhs - mat*x;
|
|
||||||
r0 = precond.solve(p0);
|
|
||||||
|
|
||||||
// clear Hessenberg matrix and Householder data
|
|
||||||
H = FMatrixType::Zero(m, restart + 1);
|
|
||||||
w = VectorType::Zero(restart + 1);
|
|
||||||
tau = VectorType::Zero(restart + 1);
|
|
||||||
|
|
||||||
// generate first Householder vector
|
|
||||||
r0.makeHouseholder(H0_tail, tau.coeffRef(0), beta);
|
|
||||||
w(0)=(Scalar) beta;
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
return false;
|
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -314,8 +316,8 @@ public:
|
|||||||
failed = true;
|
failed = true;
|
||||||
}
|
}
|
||||||
m_info = failed ? NumericalIssue
|
m_info = failed ? NumericalIssue
|
||||||
: m_error <= Base::m_tolerance ? Success
|
: m_error <= Base::m_tolerance ? Success
|
||||||
: NoConvergence;
|
: NoConvergence;
|
||||||
m_isInitialized = true;
|
m_isInitialized = true;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user