mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-08-08 09:49:03 +08:00
* add ei_predux_mul internal function
* apply Ricard Marxer's prod() patch with fixes for the vectorized path
This commit is contained in:
parent
a0cc5fba0a
commit
cbbc6d940b
@ -139,6 +139,7 @@ namespace Eigen {
|
|||||||
#include "src/Core/DiagonalMatrix.h"
|
#include "src/Core/DiagonalMatrix.h"
|
||||||
#include "src/Core/DiagonalCoeffs.h"
|
#include "src/Core/DiagonalCoeffs.h"
|
||||||
#include "src/Core/Sum.h"
|
#include "src/Core/Sum.h"
|
||||||
|
#include "src/Core/Prod.h"
|
||||||
#include "src/Core/Redux.h"
|
#include "src/Core/Redux.h"
|
||||||
#include "src/Core/Visitor.h"
|
#include "src/Core/Visitor.h"
|
||||||
#include "src/Core/Fuzzy.h"
|
#include "src/Core/Fuzzy.h"
|
||||||
|
@ -115,6 +115,8 @@ EIGEN_MEMBER_FUNCTOR(maxCoeff, (Size-1)*NumTraits<Scalar>::AddCost);
|
|||||||
EIGEN_MEMBER_FUNCTOR(all, (Size-1)*NumTraits<Scalar>::AddCost);
|
EIGEN_MEMBER_FUNCTOR(all, (Size-1)*NumTraits<Scalar>::AddCost);
|
||||||
EIGEN_MEMBER_FUNCTOR(any, (Size-1)*NumTraits<Scalar>::AddCost);
|
EIGEN_MEMBER_FUNCTOR(any, (Size-1)*NumTraits<Scalar>::AddCost);
|
||||||
EIGEN_MEMBER_FUNCTOR(count, (Size-1)*NumTraits<Scalar>::AddCost);
|
EIGEN_MEMBER_FUNCTOR(count, (Size-1)*NumTraits<Scalar>::AddCost);
|
||||||
|
EIGEN_MEMBER_FUNCTOR(prod, (Size-1)*NumTraits<Scalar>::MulCost);
|
||||||
|
|
||||||
|
|
||||||
/** \internal */
|
/** \internal */
|
||||||
template <typename BinaryOp, typename Scalar>
|
template <typename BinaryOp, typename Scalar>
|
||||||
@ -258,6 +260,16 @@ template<typename ExpressionType, int Direction> class PartialRedux
|
|||||||
const PartialReduxExpr<ExpressionType, ei_member_count<int>, Direction> count() const
|
const PartialReduxExpr<ExpressionType, ei_member_count<int>, Direction> count() const
|
||||||
{ return _expression(); }
|
{ return _expression(); }
|
||||||
|
|
||||||
|
/** \returns a row (or column) vector expression of the product
|
||||||
|
* of each column (or row) of the referenced expression.
|
||||||
|
*
|
||||||
|
* Example: \include PartialRedux_prod.cpp
|
||||||
|
* Output: \verbinclude PartialRedux_prod.out
|
||||||
|
*
|
||||||
|
* \sa MatrixBase::prod() */
|
||||||
|
const typename ReturnType<ei_member_prod>::Type prod() const
|
||||||
|
{ return _expression(); }
|
||||||
|
|
||||||
|
|
||||||
/** \returns a matrix expression
|
/** \returns a matrix expression
|
||||||
* where each column (or row) are reversed.
|
* where each column (or row) are reversed.
|
||||||
|
@ -96,6 +96,10 @@ ei_preduxp(const Packet* vecs) { return vecs[0]; }
|
|||||||
template<typename Packet> inline typename ei_unpacket_traits<Packet>::type ei_predux(const Packet& a)
|
template<typename Packet> inline typename ei_unpacket_traits<Packet>::type ei_predux(const Packet& a)
|
||||||
{ return a; }
|
{ return a; }
|
||||||
|
|
||||||
|
/** \internal \returns the product of the elements of \a a*/
|
||||||
|
template<typename Packet> inline typename ei_unpacket_traits<Packet>::type ei_predux_mul(const Packet& a)
|
||||||
|
{ return a; }
|
||||||
|
|
||||||
/** \internal \returns the reversed elements of \a a*/
|
/** \internal \returns the reversed elements of \a a*/
|
||||||
template<typename Packet> inline Packet ei_preverse(const Packet& a)
|
template<typename Packet> inline Packet ei_preverse(const Packet& a)
|
||||||
{ return a; }
|
{ return a; }
|
||||||
|
@ -535,6 +535,8 @@ template<typename Derived> class MatrixBase
|
|||||||
Scalar sum() const;
|
Scalar sum() const;
|
||||||
Scalar trace() const;
|
Scalar trace() const;
|
||||||
|
|
||||||
|
Scalar prod() const;
|
||||||
|
|
||||||
typename ei_traits<Derived>::Scalar minCoeff() const;
|
typename ei_traits<Derived>::Scalar minCoeff() const;
|
||||||
typename ei_traits<Derived>::Scalar maxCoeff() const;
|
typename ei_traits<Derived>::Scalar maxCoeff() const;
|
||||||
|
|
||||||
|
262
Eigen/src/Core/Prod.h
Normal file
262
Eigen/src/Core/Prod.h
Normal file
@ -0,0 +1,262 @@
|
|||||||
|
// This file is part of Eigen, a lightweight C++ template library
|
||||||
|
// for linear algebra. Eigen itself is part of the KDE project.
|
||||||
|
//
|
||||||
|
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||||
|
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||||
|
//
|
||||||
|
// Eigen is free software; you can redistribute it and/or
|
||||||
|
// modify it under the terms of the GNU Lesser General Public
|
||||||
|
// License as published by the Free Software Foundation; either
|
||||||
|
// version 3 of the License, or (at your option) any later version.
|
||||||
|
//
|
||||||
|
// Alternatively, you can redistribute it and/or
|
||||||
|
// modify it under the terms of the GNU General Public License as
|
||||||
|
// published by the Free Software Foundation; either version 2 of
|
||||||
|
// the License, or (at your option) any later version.
|
||||||
|
//
|
||||||
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||||
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||||
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||||
|
// GNU General Public License for more details.
|
||||||
|
//
|
||||||
|
// You should have received a copy of the GNU Lesser General Public
|
||||||
|
// License and a copy of the GNU General Public License along with
|
||||||
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||||
|
|
||||||
|
#ifndef EIGEN_PROD_H
|
||||||
|
#define EIGEN_PROD_H
|
||||||
|
|
||||||
|
/***************************************************************************
|
||||||
|
* Part 1 : the logic deciding a strategy for vectorization and unrolling
|
||||||
|
***************************************************************************/
|
||||||
|
|
||||||
|
template<typename Derived>
|
||||||
|
struct ei_prod_traits
|
||||||
|
{
|
||||||
|
private:
|
||||||
|
enum {
|
||||||
|
PacketSize = ei_packet_traits<typename Derived::Scalar>::size
|
||||||
|
};
|
||||||
|
|
||||||
|
public:
|
||||||
|
enum {
|
||||||
|
Vectorization = (int(Derived::Flags)&ActualPacketAccessBit)
|
||||||
|
&& (int(Derived::Flags)&LinearAccessBit)
|
||||||
|
? LinearVectorization
|
||||||
|
: NoVectorization
|
||||||
|
};
|
||||||
|
|
||||||
|
private:
|
||||||
|
enum {
|
||||||
|
Cost = Derived::SizeAtCompileTime * Derived::CoeffReadCost
|
||||||
|
+ (Derived::SizeAtCompileTime-1) * NumTraits<typename Derived::Scalar>::MulCost,
|
||||||
|
UnrollingLimit = EIGEN_UNROLLING_LIMIT * (int(Vectorization) == int(NoVectorization) ? 1 : int(PacketSize))
|
||||||
|
};
|
||||||
|
|
||||||
|
public:
|
||||||
|
enum {
|
||||||
|
Unrolling = Cost <= UnrollingLimit
|
||||||
|
? CompleteUnrolling
|
||||||
|
: NoUnrolling
|
||||||
|
};
|
||||||
|
};
|
||||||
|
|
||||||
|
/***************************************************************************
|
||||||
|
* Part 2 : unrollers
|
||||||
|
***************************************************************************/
|
||||||
|
|
||||||
|
/*** no vectorization ***/
|
||||||
|
|
||||||
|
template<typename Derived, int Start, int Length>
|
||||||
|
struct ei_prod_novec_unroller
|
||||||
|
{
|
||||||
|
enum {
|
||||||
|
HalfLength = Length/2
|
||||||
|
};
|
||||||
|
|
||||||
|
typedef typename Derived::Scalar Scalar;
|
||||||
|
|
||||||
|
inline static Scalar run(const Derived &mat)
|
||||||
|
{
|
||||||
|
return ei_prod_novec_unroller<Derived, Start, HalfLength>::run(mat)
|
||||||
|
* ei_prod_novec_unroller<Derived, Start+HalfLength, Length-HalfLength>::run(mat);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template<typename Derived, int Start>
|
||||||
|
struct ei_prod_novec_unroller<Derived, Start, 1>
|
||||||
|
{
|
||||||
|
enum {
|
||||||
|
col = Start / Derived::RowsAtCompileTime,
|
||||||
|
row = Start % Derived::RowsAtCompileTime
|
||||||
|
};
|
||||||
|
|
||||||
|
typedef typename Derived::Scalar Scalar;
|
||||||
|
|
||||||
|
inline static Scalar run(const Derived &mat)
|
||||||
|
{
|
||||||
|
return mat.coeff(row, col);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
/*** vectorization ***/
|
||||||
|
|
||||||
|
template<typename Derived, int Start, int Length>
|
||||||
|
struct ei_prod_vec_unroller
|
||||||
|
{
|
||||||
|
enum {
|
||||||
|
PacketSize = ei_packet_traits<typename Derived::Scalar>::size,
|
||||||
|
HalfLength = Length/2
|
||||||
|
};
|
||||||
|
|
||||||
|
typedef typename Derived::Scalar Scalar;
|
||||||
|
typedef typename ei_packet_traits<Scalar>::type PacketScalar;
|
||||||
|
|
||||||
|
inline static PacketScalar run(const Derived &mat)
|
||||||
|
{
|
||||||
|
return ei_pmul(
|
||||||
|
ei_prod_vec_unroller<Derived, Start, HalfLength>::run(mat),
|
||||||
|
ei_prod_vec_unroller<Derived, Start+HalfLength, Length-HalfLength>::run(mat) );
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template<typename Derived, int Start>
|
||||||
|
struct ei_prod_vec_unroller<Derived, Start, 1>
|
||||||
|
{
|
||||||
|
enum {
|
||||||
|
index = Start * ei_packet_traits<typename Derived::Scalar>::size,
|
||||||
|
row = int(Derived::Flags)&RowMajorBit
|
||||||
|
? index / int(Derived::ColsAtCompileTime)
|
||||||
|
: index % Derived::RowsAtCompileTime,
|
||||||
|
col = int(Derived::Flags)&RowMajorBit
|
||||||
|
? index % int(Derived::ColsAtCompileTime)
|
||||||
|
: index / Derived::RowsAtCompileTime,
|
||||||
|
alignment = (Derived::Flags & AlignedBit) ? Aligned : Unaligned
|
||||||
|
};
|
||||||
|
|
||||||
|
typedef typename Derived::Scalar Scalar;
|
||||||
|
typedef typename ei_packet_traits<Scalar>::type PacketScalar;
|
||||||
|
|
||||||
|
inline static PacketScalar run(const Derived &mat)
|
||||||
|
{
|
||||||
|
return mat.template packet<alignment>(row, col);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
/***************************************************************************
|
||||||
|
* Part 3 : implementation of all cases
|
||||||
|
***************************************************************************/
|
||||||
|
|
||||||
|
template<typename Derived,
|
||||||
|
int Vectorization = ei_prod_traits<Derived>::Vectorization,
|
||||||
|
int Unrolling = ei_prod_traits<Derived>::Unrolling
|
||||||
|
>
|
||||||
|
struct ei_prod_impl;
|
||||||
|
|
||||||
|
template<typename Derived>
|
||||||
|
struct ei_prod_impl<Derived, NoVectorization, NoUnrolling>
|
||||||
|
{
|
||||||
|
typedef typename Derived::Scalar Scalar;
|
||||||
|
static Scalar run(const Derived& mat)
|
||||||
|
{
|
||||||
|
ei_assert(mat.rows()>0 && mat.cols()>0 && "you are using a non initialized matrix");
|
||||||
|
Scalar res;
|
||||||
|
res = mat.coeff(0, 0);
|
||||||
|
for(int i = 1; i < mat.rows(); ++i)
|
||||||
|
res *= mat.coeff(i, 0);
|
||||||
|
for(int j = 1; j < mat.cols(); ++j)
|
||||||
|
for(int i = 0; i < mat.rows(); ++i)
|
||||||
|
res *= mat.coeff(i, j);
|
||||||
|
return res;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template<typename Derived>
|
||||||
|
struct ei_prod_impl<Derived, NoVectorization, CompleteUnrolling>
|
||||||
|
: public ei_prod_novec_unroller<Derived, 0, Derived::SizeAtCompileTime>
|
||||||
|
{};
|
||||||
|
|
||||||
|
template<typename Derived>
|
||||||
|
struct ei_prod_impl<Derived, LinearVectorization, NoUnrolling>
|
||||||
|
{
|
||||||
|
typedef typename Derived::Scalar Scalar;
|
||||||
|
typedef typename ei_packet_traits<Scalar>::type PacketScalar;
|
||||||
|
|
||||||
|
static Scalar run(const Derived& mat)
|
||||||
|
{
|
||||||
|
const int size = mat.size();
|
||||||
|
const int packetSize = ei_packet_traits<Scalar>::size;
|
||||||
|
const int alignedStart = (Derived::Flags & AlignedBit)
|
||||||
|
|| !(Derived::Flags & DirectAccessBit)
|
||||||
|
? 0
|
||||||
|
: ei_alignmentOffset(&mat.const_cast_derived().coeffRef(0), size);
|
||||||
|
enum {
|
||||||
|
alignment = (Derived::Flags & DirectAccessBit) || (Derived::Flags & AlignedBit)
|
||||||
|
? Aligned : Unaligned
|
||||||
|
};
|
||||||
|
const int alignedSize = ((size-alignedStart)/packetSize)*packetSize;
|
||||||
|
const int alignedEnd = alignedStart + alignedSize;
|
||||||
|
Scalar res;
|
||||||
|
|
||||||
|
if(alignedSize)
|
||||||
|
{
|
||||||
|
PacketScalar packet_res = mat.template packet<alignment>(alignedStart);
|
||||||
|
for(int index = alignedStart + packetSize; index < alignedEnd; index += packetSize)
|
||||||
|
packet_res = ei_pmul(packet_res, mat.template packet<alignment>(index));
|
||||||
|
res = ei_predux_mul(packet_res);
|
||||||
|
}
|
||||||
|
else // too small to vectorize anything.
|
||||||
|
// since this is dynamic-size hence inefficient anyway for such small sizes, don't try to optimize.
|
||||||
|
{
|
||||||
|
res = Scalar(1);
|
||||||
|
}
|
||||||
|
|
||||||
|
for(int index = 0; index < alignedStart; ++index)
|
||||||
|
res *= mat.coeff(index);
|
||||||
|
|
||||||
|
for(int index = alignedEnd; index < size; ++index)
|
||||||
|
res *= mat.coeff(index);
|
||||||
|
|
||||||
|
return res;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template<typename Derived>
|
||||||
|
struct ei_prod_impl<Derived, LinearVectorization, CompleteUnrolling>
|
||||||
|
{
|
||||||
|
typedef typename Derived::Scalar Scalar;
|
||||||
|
typedef typename ei_packet_traits<Scalar>::type PacketScalar;
|
||||||
|
enum {
|
||||||
|
PacketSize = ei_packet_traits<Scalar>::size,
|
||||||
|
Size = Derived::SizeAtCompileTime,
|
||||||
|
VectorizationSize = (Size / PacketSize) * PacketSize
|
||||||
|
};
|
||||||
|
static Scalar run(const Derived& mat)
|
||||||
|
{
|
||||||
|
Scalar res = ei_predux_mul(ei_prod_vec_unroller<Derived, 0, Size / PacketSize>::run(mat));
|
||||||
|
if (VectorizationSize != Size)
|
||||||
|
res *= ei_prod_novec_unroller<Derived, VectorizationSize, Size-VectorizationSize>::run(mat);
|
||||||
|
return res;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
/***************************************************************************
|
||||||
|
* Part 4 : implementation of MatrixBase methods
|
||||||
|
***************************************************************************/
|
||||||
|
|
||||||
|
/** \returns the product of all coefficients of *this
|
||||||
|
*
|
||||||
|
* Example: \include MatrixBase_prod.cpp
|
||||||
|
* Output: \verbinclude MatrixBase_prod.out
|
||||||
|
*
|
||||||
|
* \sa sum()
|
||||||
|
*/
|
||||||
|
template<typename Derived>
|
||||||
|
inline typename ei_traits<Derived>::Scalar
|
||||||
|
MatrixBase<Derived>::prod() const
|
||||||
|
{
|
||||||
|
typedef typename ei_cleantype<typename Derived::Nested>::type ThisNested;
|
||||||
|
return ei_prod_impl<ThisNested>::run(derived());
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif // EIGEN_PROD_H
|
@ -246,7 +246,7 @@ struct ei_sum_impl<Derived, LinearVectorization, CompleteUnrolling>
|
|||||||
|
|
||||||
/** \returns the sum of all coefficients of *this
|
/** \returns the sum of all coefficients of *this
|
||||||
*
|
*
|
||||||
* \sa trace()
|
* \sa trace(), prod()
|
||||||
*/
|
*/
|
||||||
template<typename Derived>
|
template<typename Derived>
|
||||||
inline typename ei_traits<Derived>::Scalar
|
inline typename ei_traits<Derived>::Scalar
|
||||||
|
@ -214,6 +214,23 @@ template<> EIGEN_STRONG_INLINE __m128i ei_preduxp<__m128i>(const __m128i* vecs)
|
|||||||
return _mm_add_epi32(tmp0, tmp2);
|
return _mm_add_epi32(tmp0, tmp2);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Other reduction functions:
|
||||||
|
|
||||||
|
template<> EIGEN_STRONG_INLINE float ei_predux_mul<__m128>(const __m128& a)
|
||||||
|
{
|
||||||
|
__m128 tmp = _mm_mul_ps(a, _mm_movehl_ps(a,a));
|
||||||
|
return ei_pfirst(_mm_mul_ss(tmp, _mm_shuffle_ps(tmp,tmp, 1)));
|
||||||
|
}
|
||||||
|
template<> EIGEN_STRONG_INLINE double ei_predux_mul<__m128d>(const __m128d& a)
|
||||||
|
{
|
||||||
|
return ei_pfirst(_mm_mul_sd(a, _mm_unpackhi_pd(a,a)));
|
||||||
|
}
|
||||||
|
template<> EIGEN_STRONG_INLINE int ei_predux_mul<__m128i>(const __m128i& a)
|
||||||
|
{
|
||||||
|
__m128i tmp = ei_pmul(a, _mm_unpackhi_epi64(a,a));
|
||||||
|
return ei_pfirst(tmp) * ei_pfirst(_mm_shuffle_epi32(tmp, 1));
|
||||||
|
}
|
||||||
|
|
||||||
#if (defined __GNUC__)
|
#if (defined __GNUC__)
|
||||||
// template <> EIGEN_STRONG_INLINE __m128 ei_pmadd(const __m128& a, const __m128& b, const __m128& c)
|
// template <> EIGEN_STRONG_INLINE __m128 ei_pmadd(const __m128& a, const __m128& b, const __m128& c)
|
||||||
// {
|
// {
|
||||||
|
3
doc/snippets/MatrixBase_prod.cpp
Normal file
3
doc/snippets/MatrixBase_prod.cpp
Normal file
@ -0,0 +1,3 @@
|
|||||||
|
Matrix3d m = Matrix3d::Random();
|
||||||
|
cout << "Here is the matrix m:" << endl << m << endl;
|
||||||
|
cout << "Here is the product of all the coefficients:" << endl << m.prod() << endl;
|
3
doc/snippets/PartialRedux_prod.cpp
Normal file
3
doc/snippets/PartialRedux_prod.cpp
Normal file
@ -0,0 +1,3 @@
|
|||||||
|
Matrix3d m = Matrix3d::Random();
|
||||||
|
cout << "Here is the matrix m:" << endl << m << endl;
|
||||||
|
cout << "Here is the product of each row:" << endl << m.rowwise().prod() << endl;
|
@ -149,6 +149,7 @@ ei_add_test(sparse_basic)
|
|||||||
ei_add_test(sparse_product)
|
ei_add_test(sparse_product)
|
||||||
ei_add_test(sparse_solvers " " "${SPARSE_LIBS}")
|
ei_add_test(sparse_solvers " " "${SPARSE_LIBS}")
|
||||||
ei_add_test(reverse)
|
ei_add_test(reverse)
|
||||||
|
ei_add_test(prod)
|
||||||
|
|
||||||
# print a summary of the different options
|
# print a summary of the different options
|
||||||
message("************************************************************")
|
message("************************************************************")
|
||||||
|
@ -125,6 +125,11 @@ template<typename Scalar> void packetmath()
|
|||||||
ref[0] += data1[i];
|
ref[0] += data1[i];
|
||||||
VERIFY(ei_isApprox(ref[0], ei_predux(ei_pload(data1))) && "ei_predux");
|
VERIFY(ei_isApprox(ref[0], ei_predux(ei_pload(data1))) && "ei_predux");
|
||||||
|
|
||||||
|
ref[0] = 1;
|
||||||
|
for (int i=0; i<PacketSize; ++i)
|
||||||
|
ref[0] *= data1[i];
|
||||||
|
VERIFY(ei_isApprox(ref[0], ei_predux_mul(ei_pload(data1))) && "ei_predux_mul");
|
||||||
|
|
||||||
for (int j=0; j<PacketSize; ++j)
|
for (int j=0; j<PacketSize; ++j)
|
||||||
{
|
{
|
||||||
ref[j] = 0;
|
ref[j] = 0;
|
||||||
|
86
test/prod.cpp
Normal file
86
test/prod.cpp
Normal file
@ -0,0 +1,86 @@
|
|||||||
|
// This file is part of Eigen, a lightweight C++ template library
|
||||||
|
// for linear algebra. Eigen itself is part of the KDE project.
|
||||||
|
//
|
||||||
|
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||||
|
//
|
||||||
|
// Eigen is free software; you can redistribute it and/or
|
||||||
|
// modify it under the terms of the GNU Lesser General Public
|
||||||
|
// License as published by the Free Software Foundation; either
|
||||||
|
// version 3 of the License, or (at your option) any later version.
|
||||||
|
//
|
||||||
|
// Alternatively, you can redistribute it and/or
|
||||||
|
// modify it under the terms of the GNU General Public License as
|
||||||
|
// published by the Free Software Foundation; either version 2 of
|
||||||
|
// the License, or (at your option) any later version.
|
||||||
|
//
|
||||||
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||||
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||||
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||||
|
// GNU General Public License for more details.
|
||||||
|
//
|
||||||
|
// You should have received a copy of the GNU Lesser General Public
|
||||||
|
// License and a copy of the GNU General Public License along with
|
||||||
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||||
|
|
||||||
|
#include "main.h"
|
||||||
|
|
||||||
|
template<typename MatrixType> void matrixProd(const MatrixType& m)
|
||||||
|
{
|
||||||
|
typedef typename MatrixType::Scalar Scalar;
|
||||||
|
|
||||||
|
int rows = m.rows();
|
||||||
|
int cols = m.cols();
|
||||||
|
|
||||||
|
MatrixType m1 = MatrixType::Random(rows, cols);
|
||||||
|
|
||||||
|
VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::Zero(rows, cols).prod(), Scalar(1));
|
||||||
|
VERIFY_IS_APPROX(MatrixType::Ones(rows, cols).prod(), Scalar(1));
|
||||||
|
Scalar x = Scalar(1);
|
||||||
|
for(int i = 0; i < rows; i++) for(int j = 0; j < cols; j++) x *= m1(i,j);
|
||||||
|
VERIFY_IS_APPROX(m1.prod(), x);
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename VectorType> void vectorProd(const VectorType& w)
|
||||||
|
{
|
||||||
|
typedef typename VectorType::Scalar Scalar;
|
||||||
|
int size = w.size();
|
||||||
|
|
||||||
|
VectorType v = VectorType::Random(size);
|
||||||
|
for(int i = 1; i < size; i++)
|
||||||
|
{
|
||||||
|
Scalar s = Scalar(1);
|
||||||
|
for(int j = 0; j < i; j++) s *= v[j];
|
||||||
|
VERIFY_IS_APPROX(s, v.start(i).prod());
|
||||||
|
}
|
||||||
|
|
||||||
|
for(int i = 0; i < size-1; i++)
|
||||||
|
{
|
||||||
|
Scalar s = Scalar(1);
|
||||||
|
for(int j = i; j < size; j++) s *= v[j];
|
||||||
|
VERIFY_IS_APPROX(s, v.end(size-i).prod());
|
||||||
|
}
|
||||||
|
|
||||||
|
for(int i = 0; i < size/2; i++)
|
||||||
|
{
|
||||||
|
Scalar s = Scalar(1);
|
||||||
|
for(int j = i; j < size-i; j++) s *= v[j];
|
||||||
|
VERIFY_IS_APPROX(s, v.segment(i, size-2*i).prod());
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void test_prod()
|
||||||
|
{
|
||||||
|
for(int i = 0; i < g_repeat; i++) {
|
||||||
|
CALL_SUBTEST( matrixProd(Matrix<float, 1, 1>()) );
|
||||||
|
CALL_SUBTEST( matrixProd(Matrix2f()) );
|
||||||
|
CALL_SUBTEST( matrixProd(Matrix4d()) );
|
||||||
|
CALL_SUBTEST( matrixProd(MatrixXcf(3, 3)) );
|
||||||
|
CALL_SUBTEST( matrixProd(MatrixXf(8, 12)) );
|
||||||
|
CALL_SUBTEST( matrixProd(MatrixXi(8, 12)) );
|
||||||
|
}
|
||||||
|
for(int i = 0; i < g_repeat; i++) {
|
||||||
|
CALL_SUBTEST( vectorProd(VectorXf(5)) );
|
||||||
|
CALL_SUBTEST( vectorProd(VectorXd(10)) );
|
||||||
|
CALL_SUBTEST( vectorProd(VectorXf(33)) );
|
||||||
|
}
|
||||||
|
}
|
Loading…
x
Reference in New Issue
Block a user