mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-16 14:49:39 +08:00
Add tests for dense and sparse levenberg-Marquardt
This commit is contained in:
parent
2aba6645f4
commit
cc0fef9807
@ -220,6 +220,10 @@ ei_add_test(conjugate_gradient)
|
||||
ei_add_test(bicgstab)
|
||||
ei_add_test(sparselu)
|
||||
|
||||
ei_add_test(levenberg_marquardt)
|
||||
|
||||
# ei_add_test(denseLM)
|
||||
|
||||
if(UMFPACK_FOUND)
|
||||
ei_add_test(umfpack_support "" "${UMFPACK_ALL_LIBS}")
|
||||
endif()
|
||||
@ -244,6 +248,10 @@ if(SPQR_FOUND AND CHOLMOD_FOUND)
|
||||
ei_add_test(spqr_support "" "${SPQR_ALL_LIBS}")
|
||||
endif()
|
||||
|
||||
# if(SPQR_FOUND AND CHOLMOD_FOUND)
|
||||
# ei_add_test(sparseLM "" "${SPQR_ALL_LIBS}")
|
||||
# endif()
|
||||
|
||||
string(TOLOWER "${CMAKE_CXX_COMPILER}" cmake_cxx_compiler_tolower)
|
||||
if(cmake_cxx_compiler_tolower MATCHES "qcc")
|
||||
set(CXX_IS_QCC "ON")
|
||||
|
190
test/denseLM.cpp
Normal file
190
test/denseLM.cpp
Normal file
@ -0,0 +1,190 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr>
|
||||
// Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#include <iostream>
|
||||
#include <fstream>
|
||||
#include <iomanip>
|
||||
|
||||
#include "main.h"
|
||||
#include <Eigen/LevenbergMarquardt>
|
||||
using namespace std;
|
||||
using namespace Eigen;
|
||||
|
||||
template<typename Scalar>
|
||||
struct DenseLM : DenseFunctor<Scalar>
|
||||
{
|
||||
typedef DenseFunctor<Scalar> Base;
|
||||
typedef typename Base::JacobianType JacobianType;
|
||||
typedef Matrix<Scalar,Dynamic,1> VectorType;
|
||||
|
||||
DenseLM(int n, int m) : DenseFunctor<Scalar>(n,m)
|
||||
{ }
|
||||
|
||||
VectorType model(const VectorType& uv, VectorType& x)
|
||||
{
|
||||
VectorType y; // Should change to use expression template
|
||||
int m = Base::values();
|
||||
int n = Base::inputs();
|
||||
eigen_assert(uv.size()%2 == 0);
|
||||
eigen_assert(uv.size() == n);
|
||||
eigen_assert(x.size() == m);
|
||||
y.setZero(m);
|
||||
int half = n/2;
|
||||
VectorBlock<const VectorType> u(uv, 0, half);
|
||||
VectorBlock<const VectorType> v(uv, half, half);
|
||||
for (int j = 0; j < m; j++)
|
||||
{
|
||||
for (int i = 0; i < half; i++)
|
||||
y(j) += u(i)*std::exp(-(x(j)-i)*(x(j)-i)/(v(i)*v(i)));
|
||||
}
|
||||
return y;
|
||||
|
||||
}
|
||||
void initPoints(VectorType& uv_ref, VectorType& x)
|
||||
{
|
||||
m_x = x;
|
||||
m_y = this->model(uv_ref, x);
|
||||
}
|
||||
|
||||
int operator()(const VectorType& uv, VectorType& fvec)
|
||||
{
|
||||
|
||||
int m = Base::values();
|
||||
int n = Base::inputs();
|
||||
eigen_assert(uv.size()%2 == 0);
|
||||
eigen_assert(uv.size() == n);
|
||||
eigen_assert(fvec.size() == m);
|
||||
int half = n/2;
|
||||
VectorBlock<const VectorType> u(uv, 0, half);
|
||||
VectorBlock<const VectorType> v(uv, half, half);
|
||||
for (int j = 0; j < m; j++)
|
||||
{
|
||||
fvec(j) = m_y(j);
|
||||
for (int i = 0; i < half; i++)
|
||||
{
|
||||
fvec(j) -= u(i) *std::exp(-(m_x(j)-i)*(m_x(j)-i)/(v(i)*v(i)));
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
int df(const VectorType& uv, JacobianType& fjac)
|
||||
{
|
||||
int m = Base::values();
|
||||
int n = Base::inputs();
|
||||
eigen_assert(n == uv.size());
|
||||
eigen_assert(fjac.rows() == m);
|
||||
eigen_assert(fjac.cols() == n);
|
||||
int half = n/2;
|
||||
VectorBlock<const VectorType> u(uv, 0, half);
|
||||
VectorBlock<const VectorType> v(uv, half, half);
|
||||
for (int j = 0; j < m; j++)
|
||||
{
|
||||
for (int i = 0; i < half; i++)
|
||||
{
|
||||
fjac.coeffRef(j,i) = -std::exp(-(m_x(j)-i)*(m_x(j)-i)/(v(i)*v(i)));
|
||||
fjac.coeffRef(j,i+half) = -2.*u(i)*(m_x(j)-i)*(m_x(j)-i)/(std::pow(v(i),3)) * std::exp(-(m_x(j)-i)*(m_x(j)-i)/(v(i)*v(i)));
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
VectorType m_x, m_y; //Data Points
|
||||
};
|
||||
|
||||
template<typename FunctorType, typename VectorType>
|
||||
int test_minimizeLM(FunctorType& functor, VectorType& uv)
|
||||
{
|
||||
LevenbergMarquardt<FunctorType> lm(functor);
|
||||
LevenbergMarquardtSpace::Status info;
|
||||
|
||||
info = lm.minimize(uv);
|
||||
|
||||
VERIFY_IS_EQUAL(info, 1);
|
||||
//FIXME Check other parameters
|
||||
return info;
|
||||
}
|
||||
|
||||
template<typename FunctorType, typename VectorType>
|
||||
int test_lmder(FunctorType& functor, VectorType& uv)
|
||||
{
|
||||
typedef typename VectorType::Scalar Scalar;
|
||||
LevenbergMarquardtSpace::Status info;
|
||||
LevenbergMarquardt<FunctorType> lm(functor);
|
||||
info = lm.lmder1(uv);
|
||||
|
||||
VERIFY_IS_EQUAL(info, 1);
|
||||
//FIXME Check other parameters
|
||||
return info;
|
||||
}
|
||||
|
||||
template<typename FunctorType, typename VectorType>
|
||||
int test_minimizeSteps(FunctorType& functor, VectorType& uv)
|
||||
{
|
||||
LevenbergMarquardtSpace::Status info;
|
||||
LevenbergMarquardt<FunctorType> lm(functor);
|
||||
info = lm.minimizeInit(uv);
|
||||
if (info==LevenbergMarquardtSpace::ImproperInputParameters)
|
||||
return info;
|
||||
do
|
||||
{
|
||||
info = lm.minimizeOneStep(uv);
|
||||
} while (info==LevenbergMarquardtSpace::Running);
|
||||
|
||||
VERIFY_IS_EQUAL(info, 1);
|
||||
//FIXME Check other parameters
|
||||
return info;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void test_denseLM_T()
|
||||
{
|
||||
typedef Matrix<T,Dynamic,1> VectorType;
|
||||
|
||||
int inputs = 10;
|
||||
int values = 1000;
|
||||
DenseLM<T> dense_gaussian(inputs, values);
|
||||
VectorType uv(inputs),uv_ref(inputs);
|
||||
VectorType x(values);
|
||||
|
||||
// Generate the reference solution
|
||||
uv_ref << -2, 1, 4 ,8, 6, 1.8, 1.2, 1.1, 1.9 , 3;
|
||||
|
||||
//Generate the reference data points
|
||||
x.setRandom();
|
||||
x = 10*x;
|
||||
x.array() += 10;
|
||||
dense_gaussian.initPoints(uv_ref, x);
|
||||
|
||||
// Generate the initial parameters
|
||||
VectorBlock<VectorType> u(uv, 0, inputs/2);
|
||||
VectorBlock<VectorType> v(uv, inputs/2, inputs/2);
|
||||
|
||||
// Solve the optimization problem
|
||||
|
||||
//Solve in one go
|
||||
u.setOnes(); v.setOnes();
|
||||
test_minimizeLM(dense_gaussian, uv);
|
||||
|
||||
//Solve until the machine precision
|
||||
u.setOnes(); v.setOnes();
|
||||
test_lmder(dense_gaussian, uv);
|
||||
|
||||
// Solve step by step
|
||||
v.setOnes(); u.setOnes();
|
||||
test_minimizeSteps(dense_gaussian, uv);
|
||||
|
||||
}
|
||||
|
||||
void test_denseLM()
|
||||
{
|
||||
CALL_SUBTEST_2(test_denseLM_T<double>());
|
||||
|
||||
// CALL_SUBTEST_2(test_sparseLM_T<std::complex<double>());
|
||||
}
|
1447
test/levenberg_marquardt.cpp
Normal file
1447
test/levenberg_marquardt.cpp
Normal file
File diff suppressed because it is too large
Load Diff
176
test/sparseLM.cpp
Normal file
176
test/sparseLM.cpp
Normal file
@ -0,0 +1,176 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr>
|
||||
// Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
#include <iostream>
|
||||
#include <fstream>
|
||||
#include <iomanip>
|
||||
|
||||
#include "main.h"
|
||||
#include <Eigen/LevenbergMarquardt>
|
||||
|
||||
using namespace std;
|
||||
using namespace Eigen;
|
||||
|
||||
template <typename Scalar>
|
||||
struct sparseGaussianTest : SparseFunctor<Scalar, int>
|
||||
{
|
||||
typedef Matrix<Scalar,Dynamic,1> VectorType;
|
||||
typedef SparseFunctor<Scalar,int> Base;
|
||||
typedef typename Base::JacobianType JacobianType;
|
||||
sparseGaussianTest(int inputs, int values) : SparseFunctor<Scalar,int>(inputs,values)
|
||||
{ }
|
||||
|
||||
VectorType model(const VectorType& uv, VectorType& x)
|
||||
{
|
||||
VectorType y; //Change this to use expression template
|
||||
int m = Base::values();
|
||||
int n = Base::inputs();
|
||||
eigen_assert(uv.size()%2 == 0);
|
||||
eigen_assert(uv.size() == n);
|
||||
eigen_assert(x.size() == m);
|
||||
y.setZero(m);
|
||||
int half = n/2;
|
||||
VectorBlock<const VectorType> u(uv, 0, half);
|
||||
VectorBlock<const VectorType> v(uv, half, half);
|
||||
Scalar coeff;
|
||||
for (int j = 0; j < m; j++)
|
||||
{
|
||||
for (int i = 0; i < half; i++)
|
||||
{
|
||||
coeff = (x(j)-i)/v(i);
|
||||
coeff *= coeff;
|
||||
if (coeff < 1. && coeff > 0.)
|
||||
y(j) += u(i)*std::pow((1-coeff), 2);
|
||||
}
|
||||
}
|
||||
return y;
|
||||
}
|
||||
void initPoints(VectorType& uv_ref, VectorType& x)
|
||||
{
|
||||
m_x = x;
|
||||
m_y = this->model(uv_ref,x);
|
||||
}
|
||||
int operator()(const VectorType& uv, VectorType& fvec)
|
||||
{
|
||||
int m = Base::values();
|
||||
int n = Base::inputs();
|
||||
eigen_assert(uv.size()%2 == 0);
|
||||
eigen_assert(uv.size() == n);
|
||||
int half = n/2;
|
||||
VectorBlock<const VectorType> u(uv, 0, half);
|
||||
VectorBlock<const VectorType> v(uv, half, half);
|
||||
fvec = m_y;
|
||||
Scalar coeff;
|
||||
for (int j = 0; j < m; j++)
|
||||
{
|
||||
for (int i = 0; i < half; i++)
|
||||
{
|
||||
coeff = (m_x(j)-i)/v(i);
|
||||
coeff *= coeff;
|
||||
if (coeff < 1. && coeff > 0.)
|
||||
fvec(j) -= u(i)*std::pow((1-coeff), 2);
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
int df(const VectorType& uv, JacobianType& fjac)
|
||||
{
|
||||
int m = Base::values();
|
||||
int n = Base::inputs();
|
||||
eigen_assert(n == uv.size());
|
||||
eigen_assert(fjac.rows() == m);
|
||||
eigen_assert(fjac.cols() == n);
|
||||
int half = n/2;
|
||||
VectorBlock<const VectorType> u(uv, 0, half);
|
||||
VectorBlock<const VectorType> v(uv, half, half);
|
||||
Scalar coeff;
|
||||
|
||||
//Derivatives with respect to u
|
||||
for (int col = 0; col < half; col++)
|
||||
{
|
||||
for (int row = 0; row < m; row++)
|
||||
{
|
||||
coeff = (m_x(row)-col)/v(col);
|
||||
coeff = coeff*coeff;
|
||||
if(coeff < 1. && coeff > 0.)
|
||||
{
|
||||
fjac.coeffRef(row,col) = -(1-coeff)*(1-coeff);
|
||||
}
|
||||
}
|
||||
}
|
||||
//Derivatives with respect to v
|
||||
for (int col = 0; col < half; col++)
|
||||
{
|
||||
for (int row = 0; row < m; row++)
|
||||
{
|
||||
coeff = (m_x(row)-col)/v(col);
|
||||
coeff = coeff*coeff;
|
||||
if(coeff < 1. && coeff > 0.)
|
||||
{
|
||||
fjac.coeffRef(row,col+half) = -4 * (u(col)/v(col))*coeff*(1-coeff);
|
||||
}
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
VectorType m_x, m_y; //Data points
|
||||
};
|
||||
|
||||
|
||||
template<typename T>
|
||||
void test_sparseLM_T()
|
||||
{
|
||||
typedef Matrix<T,Dynamic,1> VectorType;
|
||||
|
||||
int inputs = 10;
|
||||
int values = 2000;
|
||||
sparseGaussianTest<T> sparse_gaussian(inputs, values);
|
||||
VectorType uv(inputs),uv_ref(inputs);
|
||||
VectorType x(values);
|
||||
// Generate the reference solution
|
||||
uv_ref << -2, 1, 4 ,8, 6, 1.8, 1.2, 1.1, 1.9 , 3;
|
||||
//Generate the reference data points
|
||||
x.setRandom();
|
||||
x = 10*x;
|
||||
x.array() += 10;
|
||||
sparse_gaussian.initPoints(uv_ref, x);
|
||||
|
||||
|
||||
// Generate the initial parameters
|
||||
VectorBlock<VectorType> u(uv, 0, inputs/2);
|
||||
VectorBlock<VectorType> v(uv, inputs/2, inputs/2);
|
||||
v.setOnes();
|
||||
//Generate u or Solve for u from v
|
||||
u.setOnes();
|
||||
|
||||
// Solve the optimization problem
|
||||
LevenbergMarquardt<sparseGaussianTest<T> > lm(sparse_gaussian);
|
||||
int info;
|
||||
// info = lm.minimize(uv);
|
||||
|
||||
VERIFY_IS_EQUAL(info,1);
|
||||
// Do a step by step solution and save the residual
|
||||
int maxiter = 200;
|
||||
int iter = 0;
|
||||
MatrixXd Err(values, maxiter);
|
||||
MatrixXd Mod(values, maxiter);
|
||||
LevenbergMarquardtSpace::Status status;
|
||||
status = lm.minimizeInit(uv);
|
||||
if (status==LevenbergMarquardtSpace::ImproperInputParameters)
|
||||
return ;
|
||||
|
||||
}
|
||||
void test_sparseLM()
|
||||
{
|
||||
CALL_SUBTEST_1(test_sparseLM_T<double>());
|
||||
|
||||
// CALL_SUBTEST_2(test_sparseLM_T<std::complex<double>());
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user