mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-05-07 03:39:04 +08:00
RealSchur: Rename l and n to il and iu.
This commit is contained in:
parent
9fad1e392b
commit
cc57df9bea
@ -95,10 +95,10 @@ template<typename _MatrixType> class RealSchur
|
|||||||
|
|
||||||
Scalar computeNormOfT();
|
Scalar computeNormOfT();
|
||||||
int findSmallSubdiagEntry(int n, Scalar norm);
|
int findSmallSubdiagEntry(int n, Scalar norm);
|
||||||
void computeShift(Scalar& x, Scalar& y, Scalar& w, int l, int n, Scalar& exshift, int iter);
|
void computeShift(Scalar& x, Scalar& y, Scalar& w, int iu, Scalar& exshift, int iter);
|
||||||
void findTwoSmallSubdiagEntries(Scalar x, Scalar y, Scalar w, int l, int& m, int n, Scalar& p, Scalar& q, Scalar& r);
|
void findTwoSmallSubdiagEntries(Scalar x, Scalar y, Scalar w, int l, int& m, int iu, Scalar& p, Scalar& q, Scalar& r);
|
||||||
void doFrancisStep(int l, int m, int n, Scalar p, Scalar q, Scalar r, Scalar x, Scalar* workspace);
|
void doFrancisStep(int l, int m, int iu, Scalar p, Scalar q, Scalar r, Scalar x, Scalar* workspace);
|
||||||
void splitOffTwoRows(int n, Scalar exshift);
|
void splitOffTwoRows(int iu, Scalar exshift);
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|
||||||
@ -118,39 +118,43 @@ void RealSchur<MatrixType>::compute(const MatrixType& matrix)
|
|||||||
ColumnVectorType workspaceVector(m_matU.cols());
|
ColumnVectorType workspaceVector(m_matU.cols());
|
||||||
Scalar* workspace = &workspaceVector.coeffRef(0);
|
Scalar* workspace = &workspaceVector.coeffRef(0);
|
||||||
|
|
||||||
int n = m_matU.cols() - 1;
|
// The matrix m_matT is divided in three parts.
|
||||||
|
// Rows 0,...,il-1 are decoupled from the rest because m_matT(il,il-1) is zero.
|
||||||
|
// Rows il,...,iu is the part we are working on (the active window).
|
||||||
|
// Rows iu+1,...,end are already brought in triangular form.
|
||||||
|
int iu = m_matU.cols() - 1;
|
||||||
Scalar exshift = 0.0;
|
Scalar exshift = 0.0;
|
||||||
Scalar norm = computeNormOfT();
|
Scalar norm = computeNormOfT();
|
||||||
|
|
||||||
int iter = 0;
|
int iter = 0;
|
||||||
while (n >= 0)
|
while (iu >= 0)
|
||||||
{
|
{
|
||||||
int l = findSmallSubdiagEntry(n, norm);
|
int il = findSmallSubdiagEntry(iu, norm);
|
||||||
|
|
||||||
// Check for convergence
|
// Check for convergence
|
||||||
if (l == n) // One root found
|
if (il == iu) // One root found
|
||||||
{
|
{
|
||||||
m_matT.coeffRef(n,n) = m_matT.coeff(n,n) + exshift;
|
m_matT.coeffRef(iu,iu) = m_matT.coeff(iu,iu) + exshift;
|
||||||
m_eivalues.coeffRef(n) = ComplexScalar(m_matT.coeff(n,n), 0.0);
|
m_eivalues.coeffRef(iu) = ComplexScalar(m_matT.coeff(iu,iu), 0.0);
|
||||||
n--;
|
iu--;
|
||||||
iter = 0;
|
iter = 0;
|
||||||
}
|
}
|
||||||
else if (l == n-1) // Two roots found
|
else if (il == iu-1) // Two roots found
|
||||||
{
|
{
|
||||||
splitOffTwoRows(n, exshift);
|
splitOffTwoRows(iu, exshift);
|
||||||
n = n - 2;
|
iu -= 2;
|
||||||
iter = 0;
|
iter = 0;
|
||||||
}
|
}
|
||||||
else // No convergence yet
|
else // No convergence yet
|
||||||
{
|
{
|
||||||
Scalar p = 0, q = 0, r = 0, x, y, w;
|
Scalar p = 0, q = 0, r = 0, x, y, w;
|
||||||
computeShift(x, y, w, l, n, exshift, iter);
|
computeShift(x, y, w, iu, exshift, iter);
|
||||||
iter = iter + 1; // (Could check iteration count here.)
|
iter = iter + 1; // (Could check iteration count here.)
|
||||||
int m;
|
int m;
|
||||||
findTwoSmallSubdiagEntries(x, y, w, l, m, n, p, q, r);
|
findTwoSmallSubdiagEntries(x, y, w, il, m, iu, p, q, r);
|
||||||
doFrancisStep(l, m, n, p, q, r, x, workspace);
|
doFrancisStep(il, m, iu, p, q, r, x, workspace);
|
||||||
} // check convergence
|
} // check convergence
|
||||||
} // while (n >= 0)
|
} // while (iu >= 0)
|
||||||
|
|
||||||
m_isInitialized = true;
|
m_isInitialized = true;
|
||||||
}
|
}
|
||||||
@ -170,32 +174,32 @@ inline typename MatrixType::Scalar RealSchur<MatrixType>::computeNormOfT()
|
|||||||
|
|
||||||
// Look for single small sub-diagonal element
|
// Look for single small sub-diagonal element
|
||||||
template<typename MatrixType>
|
template<typename MatrixType>
|
||||||
inline int RealSchur<MatrixType>::findSmallSubdiagEntry(int n, Scalar norm)
|
inline int RealSchur<MatrixType>::findSmallSubdiagEntry(int iu, Scalar norm)
|
||||||
{
|
{
|
||||||
int l = n;
|
int res = iu;
|
||||||
while (l > 0)
|
while (res > 0)
|
||||||
{
|
{
|
||||||
Scalar s = ei_abs(m_matT.coeff(l-1,l-1)) + ei_abs(m_matT.coeff(l,l));
|
Scalar s = ei_abs(m_matT.coeff(res-1,res-1)) + ei_abs(m_matT.coeff(res,res));
|
||||||
if (s == 0.0)
|
if (s == 0.0)
|
||||||
s = norm;
|
s = norm;
|
||||||
if (ei_abs(m_matT.coeff(l,l-1)) < NumTraits<Scalar>::epsilon() * s)
|
if (ei_abs(m_matT.coeff(res,res-1)) < NumTraits<Scalar>::epsilon() * s)
|
||||||
break;
|
break;
|
||||||
l--;
|
res--;
|
||||||
}
|
}
|
||||||
return l;
|
return res;
|
||||||
}
|
}
|
||||||
|
|
||||||
template<typename MatrixType>
|
template<typename MatrixType>
|
||||||
inline void RealSchur<MatrixType>::splitOffTwoRows(int n, Scalar exshift)
|
inline void RealSchur<MatrixType>::splitOffTwoRows(int iu, Scalar exshift)
|
||||||
{
|
{
|
||||||
const int size = m_matU.cols();
|
const int size = m_matU.cols();
|
||||||
Scalar w = m_matT.coeff(n,n-1) * m_matT.coeff(n-1,n);
|
Scalar w = m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu);
|
||||||
Scalar p = (m_matT.coeff(n-1,n-1) - m_matT.coeff(n,n)) * Scalar(0.5);
|
Scalar p = (m_matT.coeff(iu-1,iu-1) - m_matT.coeff(iu,iu)) * Scalar(0.5);
|
||||||
Scalar q = p * p + w;
|
Scalar q = p * p + w;
|
||||||
Scalar z = ei_sqrt(ei_abs(q));
|
Scalar z = ei_sqrt(ei_abs(q));
|
||||||
m_matT.coeffRef(n,n) = m_matT.coeff(n,n) + exshift;
|
m_matT.coeffRef(iu,iu) = m_matT.coeff(iu,iu) + exshift;
|
||||||
m_matT.coeffRef(n-1,n-1) = m_matT.coeff(n-1,n-1) + exshift;
|
m_matT.coeffRef(iu-1,iu-1) = m_matT.coeff(iu-1,iu-1) + exshift;
|
||||||
Scalar x = m_matT.coeff(n,n);
|
Scalar x = m_matT.coeff(iu,iu);
|
||||||
|
|
||||||
// Scalar pair
|
// Scalar pair
|
||||||
if (q >= 0)
|
if (q >= 0)
|
||||||
@ -205,42 +209,37 @@ inline void RealSchur<MatrixType>::splitOffTwoRows(int n, Scalar exshift)
|
|||||||
else
|
else
|
||||||
z = p - z;
|
z = p - z;
|
||||||
|
|
||||||
m_eivalues.coeffRef(n-1) = ComplexScalar(x + z, 0.0);
|
m_eivalues.coeffRef(iu-1) = ComplexScalar(x + z, 0.0);
|
||||||
m_eivalues.coeffRef(n) = ComplexScalar(z!=0.0 ? x - w / z : m_eivalues.coeff(n-1).real(), 0.0);
|
m_eivalues.coeffRef(iu) = ComplexScalar(z!=0.0 ? x - w / z : m_eivalues.coeff(iu-1).real(), 0.0);
|
||||||
|
|
||||||
PlanarRotation<Scalar> rot;
|
PlanarRotation<Scalar> rot;
|
||||||
rot.makeGivens(z, m_matT.coeff(n, n-1));
|
rot.makeGivens(z, m_matT.coeff(iu, iu-1));
|
||||||
m_matT.block(0, n-1, size, size-n+1).applyOnTheLeft(n-1, n, rot.adjoint());
|
m_matT.block(0, iu-1, size, size-iu+1).applyOnTheLeft(iu-1, iu, rot.adjoint());
|
||||||
m_matT.block(0, 0, n+1, size).applyOnTheRight(n-1, n, rot);
|
m_matT.block(0, 0, iu+1, size).applyOnTheRight(iu-1, iu, rot);
|
||||||
m_matU.applyOnTheRight(n-1, n, rot);
|
m_matU.applyOnTheRight(iu-1, iu, rot);
|
||||||
}
|
}
|
||||||
else // Complex pair
|
else // Complex pair
|
||||||
{
|
{
|
||||||
m_eivalues.coeffRef(n-1) = ComplexScalar(x + p, z);
|
m_eivalues.coeffRef(iu-1) = ComplexScalar(x + p, z);
|
||||||
m_eivalues.coeffRef(n) = ComplexScalar(x + p, -z);
|
m_eivalues.coeffRef(iu) = ComplexScalar(x + p, -z);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// Form shift
|
// Form shift
|
||||||
template<typename MatrixType>
|
template<typename MatrixType>
|
||||||
inline void RealSchur<MatrixType>::computeShift(Scalar& x, Scalar& y, Scalar& w, int l, int n, Scalar& exshift, int iter)
|
inline void RealSchur<MatrixType>::computeShift(Scalar& x, Scalar& y, Scalar& w, int iu, Scalar& exshift, int iter)
|
||||||
{
|
{
|
||||||
x = m_matT.coeff(n,n);
|
x = m_matT.coeff(iu,iu);
|
||||||
y = 0.0;
|
y = m_matT.coeff(iu-1,iu-1);
|
||||||
w = 0.0;
|
w = m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu);
|
||||||
if (l < n)
|
|
||||||
{
|
|
||||||
y = m_matT.coeff(n-1,n-1);
|
|
||||||
w = m_matT.coeff(n,n-1) * m_matT.coeff(n-1,n);
|
|
||||||
}
|
|
||||||
|
|
||||||
// Wilkinson's original ad hoc shift
|
// Wilkinson's original ad hoc shift
|
||||||
if (iter == 10)
|
if (iter == 10)
|
||||||
{
|
{
|
||||||
exshift += x;
|
exshift += x;
|
||||||
for (int i = 0; i <= n; ++i)
|
for (int i = 0; i <= iu; ++i)
|
||||||
m_matT.coeffRef(i,i) -= x;
|
m_matT.coeffRef(i,i) -= x;
|
||||||
Scalar s = ei_abs(m_matT.coeff(n,n-1)) + ei_abs(m_matT.coeff(n-1,n-2));
|
Scalar s = ei_abs(m_matT.coeff(iu,iu-1)) + ei_abs(m_matT.coeff(iu-1,iu-2));
|
||||||
x = y = Scalar(0.75) * s;
|
x = y = Scalar(0.75) * s;
|
||||||
w = Scalar(-0.4375) * s * s;
|
w = Scalar(-0.4375) * s * s;
|
||||||
}
|
}
|
||||||
@ -256,7 +255,7 @@ inline void RealSchur<MatrixType>::computeShift(Scalar& x, Scalar& y, Scalar& w,
|
|||||||
if (y < x)
|
if (y < x)
|
||||||
s = -s;
|
s = -s;
|
||||||
s = Scalar(x - w / ((y - x) / 2.0 + s));
|
s = Scalar(x - w / ((y - x) / 2.0 + s));
|
||||||
for (int i = 0; i <= n; ++i)
|
for (int i = 0; i <= iu; ++i)
|
||||||
m_matT.coeffRef(i,i) -= s;
|
m_matT.coeffRef(i,i) -= s;
|
||||||
exshift += s;
|
exshift += s;
|
||||||
x = y = w = Scalar(0.964);
|
x = y = w = Scalar(0.964);
|
||||||
@ -266,10 +265,10 @@ inline void RealSchur<MatrixType>::computeShift(Scalar& x, Scalar& y, Scalar& w,
|
|||||||
|
|
||||||
// Look for two consecutive small sub-diagonal elements
|
// Look for two consecutive small sub-diagonal elements
|
||||||
template<typename MatrixType>
|
template<typename MatrixType>
|
||||||
inline void RealSchur<MatrixType>::findTwoSmallSubdiagEntries(Scalar x, Scalar y, Scalar w, int l, int& m, int n, Scalar& p, Scalar& q, Scalar& r)
|
inline void RealSchur<MatrixType>::findTwoSmallSubdiagEntries(Scalar x, Scalar y, Scalar w, int il, int& m, int iu, Scalar& p, Scalar& q, Scalar& r)
|
||||||
{
|
{
|
||||||
m = n-2;
|
m = iu-2;
|
||||||
while (m >= l)
|
while (m >= il)
|
||||||
{
|
{
|
||||||
Scalar z = m_matT.coeff(m,m);
|
Scalar z = m_matT.coeff(m,m);
|
||||||
r = x - z;
|
r = x - z;
|
||||||
@ -281,7 +280,7 @@ inline void RealSchur<MatrixType>::findTwoSmallSubdiagEntries(Scalar x, Scalar y
|
|||||||
p = p / s;
|
p = p / s;
|
||||||
q = q / s;
|
q = q / s;
|
||||||
r = r / s;
|
r = r / s;
|
||||||
if (m == l) {
|
if (m == il) {
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
if (ei_abs(m_matT.coeff(m,m-1)) * (ei_abs(q) + ei_abs(r)) <
|
if (ei_abs(m_matT.coeff(m,m-1)) * (ei_abs(q) + ei_abs(r)) <
|
||||||
@ -293,7 +292,7 @@ inline void RealSchur<MatrixType>::findTwoSmallSubdiagEntries(Scalar x, Scalar y
|
|||||||
m--;
|
m--;
|
||||||
}
|
}
|
||||||
|
|
||||||
for (int i = m+2; i <= n; ++i)
|
for (int i = m+2; i <= iu; ++i)
|
||||||
{
|
{
|
||||||
m_matT.coeffRef(i,i-2) = 0.0;
|
m_matT.coeffRef(i,i-2) = 0.0;
|
||||||
if (i > m+2)
|
if (i > m+2)
|
||||||
@ -301,15 +300,15 @@ inline void RealSchur<MatrixType>::findTwoSmallSubdiagEntries(Scalar x, Scalar y
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// Double QR step involving rows l:n and columns m:n
|
// Double QR step involving rows il:iu and columns m:iu
|
||||||
template<typename MatrixType>
|
template<typename MatrixType>
|
||||||
inline void RealSchur<MatrixType>::doFrancisStep(int l, int m, int n, Scalar p, Scalar q, Scalar r, Scalar x, Scalar* workspace)
|
inline void RealSchur<MatrixType>::doFrancisStep(int il, int m, int iu, Scalar p, Scalar q, Scalar r, Scalar x, Scalar* workspace)
|
||||||
{
|
{
|
||||||
const int size = m_matU.cols();
|
const int size = m_matU.cols();
|
||||||
|
|
||||||
for (int k = m; k <= n-1; ++k)
|
for (int k = m; k <= iu-1; ++k)
|
||||||
{
|
{
|
||||||
int notlast = (k != n-1);
|
int notlast = (k != iu-1);
|
||||||
if (k != m) {
|
if (k != m) {
|
||||||
p = m_matT.coeff(k,k-1);
|
p = m_matT.coeff(k,k-1);
|
||||||
q = m_matT.coeff(k+1,k-1);
|
q = m_matT.coeff(k+1,k-1);
|
||||||
@ -335,7 +334,7 @@ inline void RealSchur<MatrixType>::doFrancisStep(int l, int m, int n, Scalar p,
|
|||||||
{
|
{
|
||||||
if (k != m)
|
if (k != m)
|
||||||
m_matT.coeffRef(k,k-1) = -s * x;
|
m_matT.coeffRef(k,k-1) = -s * x;
|
||||||
else if (l != m)
|
else if (il != m)
|
||||||
m_matT.coeffRef(k,k-1) = -m_matT.coeff(k,k-1);
|
m_matT.coeffRef(k,k-1) = -m_matT.coeff(k,k-1);
|
||||||
|
|
||||||
p = p + s;
|
p = p + s;
|
||||||
@ -344,7 +343,7 @@ inline void RealSchur<MatrixType>::doFrancisStep(int l, int m, int n, Scalar p,
|
|||||||
{
|
{
|
||||||
Matrix<Scalar, 2, 1> ess(q/p, r/p);
|
Matrix<Scalar, 2, 1> ess(q/p, r/p);
|
||||||
m_matT.block(k, k, 3, size-k).applyHouseholderOnTheLeft(ess, p/s, workspace);
|
m_matT.block(k, k, 3, size-k).applyHouseholderOnTheLeft(ess, p/s, workspace);
|
||||||
m_matT.block(0, k, std::min(n,k+3) + 1, 3).applyHouseholderOnTheRight(ess, p/s, workspace);
|
m_matT.block(0, k, std::min(iu,k+3) + 1, 3).applyHouseholderOnTheRight(ess, p/s, workspace);
|
||||||
m_matU.block(0, k, size, 3).applyHouseholderOnTheRight(ess, p/s, workspace);
|
m_matU.block(0, k, size, 3).applyHouseholderOnTheRight(ess, p/s, workspace);
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
@ -352,7 +351,7 @@ inline void RealSchur<MatrixType>::doFrancisStep(int l, int m, int n, Scalar p,
|
|||||||
Matrix<Scalar, 1, 1> ess;
|
Matrix<Scalar, 1, 1> ess;
|
||||||
ess.coeffRef(0) = q/p;
|
ess.coeffRef(0) = q/p;
|
||||||
m_matT.block(k, k, 2, size-k).applyHouseholderOnTheLeft(ess, p/s, workspace);
|
m_matT.block(k, k, 2, size-k).applyHouseholderOnTheLeft(ess, p/s, workspace);
|
||||||
m_matT.block(0, k, std::min(n,k+3) + 1, 2).applyHouseholderOnTheRight(ess, p/s, workspace);
|
m_matT.block(0, k, std::min(iu,k+3) + 1, 2).applyHouseholderOnTheRight(ess, p/s, workspace);
|
||||||
m_matU.block(0, k, size, 2).applyHouseholderOnTheRight(ess, p/s, workspace);
|
m_matU.block(0, k, size, 2).applyHouseholderOnTheRight(ess, p/s, workspace);
|
||||||
}
|
}
|
||||||
} // (s != 0)
|
} // (s != 0)
|
||||||
|
Loading…
x
Reference in New Issue
Block a user