Merged latest updates from the parent branch

This commit is contained in:
Benoit Steiner 2014-03-26 15:23:59 -07:00
commit cc73164aa8
11 changed files with 440 additions and 611 deletions

38
Eigen/src/Core/GenericPacketMath.h Normal file → Executable file
View File

@ -169,6 +169,44 @@ ploaddup(const typename unpacket_traits<Packet>::type* from) { return *from; }
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pset1(const typename unpacket_traits<Packet>::type& a) { return a; }
/** \internal \returns a packet with constant coefficients \a a[0], e.g.: (a[0],a[0],a[0],a[0]) */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pload1(const typename unpacket_traits<Packet>::type *a) { return pset1<Packet>(*a); }
/** \internal equivalent to
* \code
* a0 = pload1(a+0);
* a1 = pload1(a+1);
* a2 = pload1(a+2);
* a3 = pload1(a+3);
* \endcode
* \sa pset1, pload1, ploaddup, pbroadcast2
*/
template<typename Packet> EIGEN_DEVICE_FUNC
inline void pbroadcast4(const typename unpacket_traits<Packet>::type *a,
Packet& a0, Packet& a1, Packet& a2, Packet& a3)
{
a0 = pload1<Packet>(a+0);
a1 = pload1<Packet>(a+1);
a2 = pload1<Packet>(a+2);
a3 = pload1<Packet>(a+3);
}
/** \internal equivalent to
* \code
* a0 = pload1(a+0);
* a1 = pload1(a+1);
* \endcode
* \sa pset1, pload1, ploaddup, pbroadcast4
*/
template<typename Packet> EIGEN_DEVICE_FUNC
inline void pbroadcast2(const typename unpacket_traits<Packet>::type *a,
Packet& a0, Packet& a1)
{
a0 = pload1<Packet>(a+0);
a1 = pload1<Packet>(a+1);
}
/** \internal \brief Returns a packet with coefficients (a,a+1,...,a+packet_size-1). */
template<typename Scalar> inline typename packet_traits<Scalar>::type
plset(const Scalar& a) { return a; }

45
Eigen/src/Core/arch/SSE/PacketMath.h Normal file → Executable file
View File

@ -114,11 +114,22 @@ template<> EIGEN_STRONG_INLINE Packet4f pset1<Packet4f>(const float& from) { re
template<> EIGEN_STRONG_INLINE Packet2d pset1<Packet2d>(const double& from) { return _mm_set_pd(from,from); }
template<> EIGEN_STRONG_INLINE Packet4i pset1<Packet4i>(const int& from) { return _mm_set_epi32(from,from,from,from); }
#else
template<> EIGEN_STRONG_INLINE Packet4f pset1<Packet4f>(const float& from) { return _mm_set1_ps(from); }
template<> EIGEN_STRONG_INLINE Packet4f pset1<Packet4f>(const float& from) { return _mm_set_ps1(from); }
template<> EIGEN_STRONG_INLINE Packet2d pset1<Packet2d>(const double& from) { return _mm_set1_pd(from); }
template<> EIGEN_STRONG_INLINE Packet4i pset1<Packet4i>(const int& from) { return _mm_set1_epi32(from); }
#endif
// GCC generates a shufps instruction for _mm_set1_ps/_mm_load1_ps instead of the more efficient pshufd instruction.
// However, using inrinsics for pset1 makes gcc to generate crappy code in some cases (see bug 203)
// Using inline assembly is also not an option because then gcc fails to reorder properly the instructions.
// Therefore, we introduced the pload1 functions to be used in product kernels for which bug 203 does not apply.
// Also note that with AVX, we want it to generate a vbroadcastss.
#if (defined __GNUC__) && (!defined __INTEL_COMPILER) && (!defined __clang__) && (!defined __AVX__)
template<> EIGEN_STRONG_INLINE Packet4f pload1<Packet4f>(const float *from) {
return vec4f_swizzle1(_mm_load_ss(from),0,0,0,0);
}
#endif
#ifndef EIGEN_VECTORIZE_AVX
template<> EIGEN_STRONG_INLINE Packet4f plset<float>(const float& a) { return _mm_add_ps(pset1<Packet4f>(a), _mm_set_ps(3,2,1,0)); }
template<> EIGEN_STRONG_INLINE Packet2d plset<double>(const double& a) { return _mm_add_pd(pset1<Packet2d>(a),_mm_set_pd(1,0)); }
@ -392,6 +403,38 @@ template<> EIGEN_STRONG_INLINE Packet4i pabs(const Packet4i& a)
#endif
}
// with AVX, the default implementations based on pload1 are faster
#ifndef __AVX__
template<> EIGEN_STRONG_INLINE void
pbroadcast4<Packet4f>(const float *a,
Packet4f& a0, Packet4f& a1, Packet4f& a2, Packet4f& a3)
{
a3 = ploadu<Packet4f>(a);
a0 = vec4f_swizzle1(a3, 0,0,0,0);
a1 = vec4f_swizzle1(a3, 1,1,1,1);
a2 = vec4f_swizzle1(a3, 2,2,2,2);
a3 = vec4f_swizzle1(a3, 3,3,3,3);
}
template<> EIGEN_STRONG_INLINE void
pbroadcast4<Packet2d>(const double *a,
Packet2d& a0, Packet2d& a1, Packet2d& a2, Packet2d& a3)
{
#ifdef EIGEN_VECTORIZE_SSE3
a0 = _mm_loaddup_pd(a+0);
a1 = _mm_loaddup_pd(a+1);
a2 = _mm_loaddup_pd(a+2);
a3 = _mm_loaddup_pd(a+3);
#else
a1 = ploadu<Packet2d>(a);
a0 = vec2d_swizzle1(a1, 0,0);
a1 = vec2d_swizzle1(a1, 1,1);
a3 = ploadu<Packet2d>(a+2);
a2 = vec2d_swizzle1(a3, 0,0);
a3 = vec2d_swizzle1(a3, 1,1);
#endif
}
#endif
EIGEN_STRONG_INLINE void punpackp(Packet4f* vecs)
{
vecs[1] = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(vecs[0]), 0x55));

View File

@ -10,6 +10,7 @@
#ifndef EIGEN_GENERAL_BLOCK_PANEL_H
#define EIGEN_GENERAL_BLOCK_PANEL_H
namespace Eigen {
namespace internal {
@ -160,16 +161,16 @@ public:
NumberOfRegisters = EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS,
// register block size along the N direction (must be either 2 or 4)
nr = NumberOfRegisters/4,
// register block size along the N direction (must be either 4 or 8)
nr = NumberOfRegisters/2,
// register block size along the M direction (currently, this one cannot be modified)
mr = 2 * LhsPacketSize,
mr = LhsPacketSize,
WorkSpaceFactor = nr * RhsPacketSize,
LhsProgress = LhsPacketSize,
RhsProgress = RhsPacketSize
RhsProgress = 1
};
typedef typename packet_traits<LhsScalar>::type _LhsPacket;
@ -187,15 +188,19 @@ public:
p = pset1<ResPacket>(ResScalar(0));
}
EIGEN_STRONG_INLINE void unpackRhs(DenseIndex n, const RhsScalar* rhs, RhsScalar* b)
EIGEN_STRONG_INLINE void broadcastRhs(const RhsScalar* b, RhsPacket& b0, RhsPacket& b1, RhsPacket& b2, RhsPacket& b3)
{
for(DenseIndex k=0; k<n; k++)
pstore1<RhsPacket>(&b[k*RhsPacketSize], rhs[k]);
pbroadcast4(b, b0, b1, b2, b3);
}
EIGEN_STRONG_INLINE void broadcastRhs(const RhsScalar* b, RhsPacket& b0, RhsPacket& b1)
{
pbroadcast2(b, b0, b1);
}
EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, RhsPacket& dest) const
{
dest = pload<RhsPacket>(b);
dest = pset1<RhsPacket>(*b);
}
EIGEN_STRONG_INLINE void loadLhs(const LhsScalar* a, LhsPacket& dest) const
@ -243,12 +248,12 @@ public:
ResPacketSize = Vectorizable ? packet_traits<ResScalar>::size : 1,
NumberOfRegisters = EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS,
nr = NumberOfRegisters/4,
mr = 2 * LhsPacketSize,
nr = NumberOfRegisters/2,
mr = LhsPacketSize,
WorkSpaceFactor = nr*RhsPacketSize,
LhsProgress = LhsPacketSize,
RhsProgress = RhsPacketSize
RhsProgress = 1
};
typedef typename packet_traits<LhsScalar>::type _LhsPacket;
@ -266,15 +271,9 @@ public:
p = pset1<ResPacket>(ResScalar(0));
}
EIGEN_STRONG_INLINE void unpackRhs(DenseIndex n, const RhsScalar* rhs, RhsScalar* b)
{
for(DenseIndex k=0; k<n; k++)
pstore1<RhsPacket>(&b[k*RhsPacketSize], rhs[k]);
}
EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, RhsPacket& dest) const
{
dest = pload<RhsPacket>(b);
dest = pset1<RhsPacket>(*b);
}
EIGEN_STRONG_INLINE void loadLhs(const LhsScalar* a, LhsPacket& dest) const
@ -282,6 +281,16 @@ public:
dest = pload<LhsPacket>(a);
}
EIGEN_STRONG_INLINE void broadcastRhs(const RhsScalar* b, RhsPacket& b0, RhsPacket& b1, RhsPacket& b2, RhsPacket& b3)
{
pbroadcast4(b, b0, b1, b2, b3);
}
EIGEN_STRONG_INLINE void broadcastRhs(const RhsScalar* b, RhsPacket& b0, RhsPacket& b1)
{
pbroadcast2(b, b0, b1);
}
EIGEN_STRONG_INLINE void madd(const LhsPacket& a, const RhsPacket& b, AccPacket& c, RhsPacket& tmp) const
{
madd_impl(a, b, c, tmp, typename conditional<Vectorizable,true_type,false_type>::type());
@ -327,12 +336,13 @@ public:
RealPacketSize = Vectorizable ? packet_traits<RealScalar>::size : 1,
ResPacketSize = Vectorizable ? packet_traits<ResScalar>::size : 1,
nr = 2,
mr = 2 * ResPacketSize,
// FIXME: should depend on NumberOfRegisters
nr = 4,
mr = ResPacketSize,
WorkSpaceFactor = Vectorizable ? 2*nr*RealPacketSize : nr,
LhsProgress = ResPacketSize,
RhsProgress = Vectorizable ? 2*ResPacketSize : 1
RhsProgress = 1
};
typedef typename packet_traits<RealScalar>::type RealPacket;
@ -356,30 +366,36 @@ public:
p.second = pset1<RealPacket>(RealScalar(0));
}
/* Unpack the rhs coeff such that each complex coefficient is spread into
* two packects containing respectively the real and imaginary coefficient
* duplicated as many time as needed: (x+iy) => [x, ..., x] [y, ..., y]
*/
EIGEN_STRONG_INLINE void unpackRhs(DenseIndex n, const Scalar* rhs, Scalar* b)
// Scalar path
EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, ResPacket& dest) const
{
for(DenseIndex k=0; k<n; k++)
{
if(Vectorizable)
{
pstore1<RealPacket>((RealScalar*)&b[k*ResPacketSize*2+0], real(rhs[k]));
pstore1<RealPacket>((RealScalar*)&b[k*ResPacketSize*2+ResPacketSize], imag(rhs[k]));
}
else
b[k] = rhs[k];
}
dest = pset1<ResPacket>(*b);
}
EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, ResPacket& dest) const { dest = *b; }
// Vectorized path
EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, DoublePacket& dest) const
{
dest.first = pload<RealPacket>((const RealScalar*)b);
dest.second = pload<RealPacket>((const RealScalar*)(b+ResPacketSize));
dest.first = pset1<RealPacket>(real(*b));
dest.second = pset1<RealPacket>(imag(*b));
}
// linking error if instantiated without being optimized out:
void broadcastRhs(const RhsScalar* b, RhsPacket& b0, RhsPacket& b1, RhsPacket& b2, RhsPacket& b3);
// Vectorized path
EIGEN_STRONG_INLINE void broadcastRhs(const RhsScalar* b, DoublePacket& b0, DoublePacket& b1)
{
// FIXME not sure that's the best way to implement it!
loadRhs(b+0, b0);
loadRhs(b+1, b1);
}
// Scalar path
EIGEN_STRONG_INLINE void broadcastRhs(const RhsScalar* b, RhsScalar& b0, RhsScalar& b1)
{
// FIXME not sure that's the best way to implement it!
loadRhs(b+0, b0);
loadRhs(b+1, b1);
}
// nothing special here
@ -452,12 +468,13 @@ public:
ResPacketSize = Vectorizable ? packet_traits<ResScalar>::size : 1,
NumberOfRegisters = EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS,
// FIXME: should depend on NumberOfRegisters
nr = 4,
mr = 2*ResPacketSize,
mr = ResPacketSize,
WorkSpaceFactor = nr*RhsPacketSize,
LhsProgress = ResPacketSize,
RhsProgress = ResPacketSize
RhsProgress = 1
};
typedef typename packet_traits<LhsScalar>::type _LhsPacket;
@ -475,15 +492,19 @@ public:
p = pset1<ResPacket>(ResScalar(0));
}
EIGEN_STRONG_INLINE void unpackRhs(DenseIndex n, const RhsScalar* rhs, RhsScalar* b)
{
for(DenseIndex k=0; k<n; k++)
pstore1<RhsPacket>(&b[k*RhsPacketSize], rhs[k]);
}
EIGEN_STRONG_INLINE void loadRhs(const RhsScalar* b, RhsPacket& dest) const
{
dest = pload<RhsPacket>(b);
dest = pset1<RhsPacket>(*b);
}
// linking error if instantiated without being optimized out:
void broadcastRhs(const RhsScalar* b, RhsPacket& b0, RhsPacket& b1, RhsPacket& b2, RhsPacket& b3);
EIGEN_STRONG_INLINE void broadcastRhs(const RhsScalar* b, RhsPacket& b0, RhsPacket& b1)
{
// FIXME not sure that's the best way to implement it!
b0 = pload1<RhsPacket>(b+0);
b1 = pload1<RhsPacket>(b+1);
}
EIGEN_STRONG_INLINE void loadLhs(const LhsScalar* a, LhsPacket& dest) const
@ -545,179 +566,116 @@ struct gebp_kernel
EIGEN_DONT_INLINE
void operator()(ResScalar* res, Index resStride, const LhsScalar* blockA, const RhsScalar* blockB, Index rows, Index depth, Index cols, ResScalar alpha,
Index strideA=-1, Index strideB=-1, Index offsetA=0, Index offsetB=0, RhsScalar* unpackedB=0);
Index strideA=-1, Index strideB=-1, Index offsetA=0, Index offsetB=0);
};
template<typename LhsScalar, typename RhsScalar, typename Index, int mr, int nr, bool ConjugateLhs, bool ConjugateRhs>
EIGEN_DONT_INLINE
void gebp_kernel<LhsScalar,RhsScalar,Index,mr,nr,ConjugateLhs,ConjugateRhs>
::operator()(ResScalar* res, Index resStride, const LhsScalar* blockA, const RhsScalar* blockB, Index rows, Index depth, Index cols, ResScalar alpha,
Index strideA, Index strideB, Index offsetA, Index offsetB, RhsScalar* unpackedB)
Index strideA, Index strideB, Index offsetA, Index offsetB)
{
Traits traits;
if(strideA==-1) strideA = depth;
if(strideB==-1) strideB = depth;
conj_helper<LhsScalar,RhsScalar,ConjugateLhs,ConjugateRhs> cj;
// conj_helper<LhsPacket,RhsPacket,ConjugateLhs,ConjugateRhs> pcj;
Index packet_cols = (cols/nr) * nr;
// Here we assume that mr==LhsProgress
const Index peeled_mc = (rows/mr)*mr;
// FIXME:
const Index peeled_mc2 = peeled_mc + (rows-peeled_mc >= LhsProgress ? LhsProgress : 0);
const Index peeled_kc = (depth/4)*4;
if(unpackedB==0)
unpackedB = const_cast<RhsScalar*>(blockB - strideB * nr * RhsProgress);
// loops on each micro vertical panel of rhs (depth x nr)
for(Index j2=0; j2<packet_cols; j2+=nr)
{
traits.unpackRhs(depth*nr,&blockB[j2*strideB+offsetB*nr],unpackedB);
// loops on each largest micro horizontal panel of lhs (mr x depth)
// => we select a mr x nr micro block of res which is entirely
// stored into mr/packet_size x nr registers.
for(Index i=0; i<peeled_mc; i+=mr)
{
const LhsScalar* blA = &blockA[i*strideA+offsetA*mr];
prefetch(&blA[0]);
// prefetch(&blA[0]);
// gets res block as register
AccPacket C0, C1, C2, C3, C4, C5, C6, C7;
traits.initAcc(C0);
traits.initAcc(C1);
if(nr==4) traits.initAcc(C2);
if(nr==4) traits.initAcc(C3);
traits.initAcc(C4);
traits.initAcc(C5);
if(nr==4) traits.initAcc(C6);
if(nr==4) traits.initAcc(C7);
traits.initAcc(C2);
traits.initAcc(C3);
if(nr==8) traits.initAcc(C4);
if(nr==8) traits.initAcc(C5);
if(nr==8) traits.initAcc(C6);
if(nr==8) traits.initAcc(C7);
ResScalar* r0 = &res[(j2+0)*resStride + i];
ResScalar* r1 = r0 + resStride;
ResScalar* r2 = r1 + resStride;
ResScalar* r3 = r2 + resStride;
prefetch(r0+16);
prefetch(r1+16);
prefetch(r2+16);
prefetch(r3+16);
// performs "inner" product
// TODO let's check wether the folowing peeled loop could not be
// optimized via optimal prefetching from one loop to the other
const RhsScalar* blB = unpackedB;
// performs "inner" products
const RhsScalar* blB = &blockB[j2*strideB+offsetB*nr];
LhsPacket A0, A1;
// uncomment for register prefetching
// traits.loadLhs(blA, A0);
for(Index k=0; k<peeled_kc; k+=4)
{
if(nr==2)
if(nr==4)
{
LhsPacket A0, A1;
RhsPacket B_0;
RhsPacket T0;
EIGEN_ASM_COMMENT("begin gegp micro kernel 1p x 4");
EIGEN_ASM_COMMENT("mybegin2");
traits.loadLhs(&blA[0*LhsProgress], A0);
traits.loadLhs(&blA[1*LhsProgress], A1);
traits.loadRhs(&blB[0*RhsProgress], B_0);
traits.madd(A0,B_0,C0,T0);
traits.madd(A1,B_0,C4,B_0);
traits.loadRhs(&blB[1*RhsProgress], B_0);
traits.madd(A0,B_0,C1,T0);
traits.madd(A1,B_0,C5,B_0);
RhsPacket B_0, B1;
traits.loadLhs(&blA[2*LhsProgress], A0);
traits.loadLhs(&blA[3*LhsProgress], A1);
traits.loadRhs(&blB[2*RhsProgress], B_0);
traits.madd(A0,B_0,C0,T0);
traits.madd(A1,B_0,C4,B_0);
traits.loadRhs(&blB[3*RhsProgress], B_0);
traits.madd(A0,B_0,C1,T0);
traits.madd(A1,B_0,C5,B_0);
#define EIGEN_GEBGP_ONESTEP4(K) \
traits.loadLhs(&blA[K*LhsProgress], A0); \
traits.broadcastRhs(&blB[0+4*K*RhsProgress], B_0, B1); \
traits.madd(A0, B_0,C0, B_0); \
traits.madd(A0, B1, C1, B1); \
traits.broadcastRhs(&blB[2+4*K*RhsProgress], B_0, B1); \
traits.madd(A0, B_0,C2, B_0); \
traits.madd(A0, B1, C3, B1)
traits.loadLhs(&blA[4*LhsProgress], A0);
traits.loadLhs(&blA[5*LhsProgress], A1);
traits.loadRhs(&blB[4*RhsProgress], B_0);
traits.madd(A0,B_0,C0,T0);
traits.madd(A1,B_0,C4,B_0);
traits.loadRhs(&blB[5*RhsProgress], B_0);
traits.madd(A0,B_0,C1,T0);
traits.madd(A1,B_0,C5,B_0);
traits.loadLhs(&blA[6*LhsProgress], A0);
traits.loadLhs(&blA[7*LhsProgress], A1);
traits.loadRhs(&blB[6*RhsProgress], B_0);
traits.madd(A0,B_0,C0,T0);
traits.madd(A1,B_0,C4,B_0);
traits.loadRhs(&blB[7*RhsProgress], B_0);
traits.madd(A0,B_0,C1,T0);
traits.madd(A1,B_0,C5,B_0);
EIGEN_ASM_COMMENT("myend");
EIGEN_GEBGP_ONESTEP4(0);
EIGEN_GEBGP_ONESTEP4(1);
EIGEN_GEBGP_ONESTEP4(2);
EIGEN_GEBGP_ONESTEP4(3);
}
else
else // nr==8
{
EIGEN_ASM_COMMENT("mybegin4");
LhsPacket A0, A1;
EIGEN_ASM_COMMENT("begin gegp micro kernel 1p x 8");
RhsPacket B_0, B1, B2, B3;
RhsPacket T0;
traits.loadLhs(&blA[0*LhsProgress], A0);
traits.loadLhs(&blA[1*LhsProgress], A1);
traits.loadRhs(&blB[0*RhsProgress], B_0);
traits.loadRhs(&blB[1*RhsProgress], B1);
// The following version is faster on some architures
// but sometimes leads to segfaults because it might read one packet outside the bounds
// To test it, you also need to uncomment the initialization of A0 above and the copy of A1 to A0 below.
#if 0
#define EIGEN_GEBGP_ONESTEP8(K,L,M) \
traits.loadLhs(&blA[(K+1)*LhsProgress], L); \
traits.broadcastRhs(&blB[0+8*K*RhsProgress], B_0, B1, B2, B3); \
traits.madd(M, B_0,C0, B_0); \
traits.madd(M, B1, C1, B1); \
traits.madd(M, B2, C2, B2); \
traits.madd(M, B3, C3, B3); \
traits.broadcastRhs(&blB[4+8*K*RhsProgress], B_0, B1, B2, B3); \
traits.madd(M, B_0,C4, B_0); \
traits.madd(M, B1, C5, B1); \
traits.madd(M, B2, C6, B2); \
traits.madd(M, B3, C7, B3)
#endif
traits.madd(A0,B_0,C0,T0);
traits.loadRhs(&blB[2*RhsProgress], B2);
traits.madd(A1,B_0,C4,B_0);
traits.loadRhs(&blB[3*RhsProgress], B3);
traits.loadRhs(&blB[4*RhsProgress], B_0);
traits.madd(A0,B1,C1,T0);
traits.madd(A1,B1,C5,B1);
traits.loadRhs(&blB[5*RhsProgress], B1);
traits.madd(A0,B2,C2,T0);
traits.madd(A1,B2,C6,B2);
traits.loadRhs(&blB[6*RhsProgress], B2);
traits.madd(A0,B3,C3,T0);
traits.loadLhs(&blA[2*LhsProgress], A0);
traits.madd(A1,B3,C7,B3);
traits.loadLhs(&blA[3*LhsProgress], A1);
traits.loadRhs(&blB[7*RhsProgress], B3);
traits.madd(A0,B_0,C0,T0);
traits.madd(A1,B_0,C4,B_0);
traits.loadRhs(&blB[8*RhsProgress], B_0);
traits.madd(A0,B1,C1,T0);
traits.madd(A1,B1,C5,B1);
traits.loadRhs(&blB[9*RhsProgress], B1);
traits.madd(A0,B2,C2,T0);
traits.madd(A1,B2,C6,B2);
traits.loadRhs(&blB[10*RhsProgress], B2);
traits.madd(A0,B3,C3,T0);
traits.loadLhs(&blA[4*LhsProgress], A0);
traits.madd(A1,B3,C7,B3);
traits.loadLhs(&blA[5*LhsProgress], A1);
traits.loadRhs(&blB[11*RhsProgress], B3);
#define EIGEN_GEBGP_ONESTEP8(K,L,M) \
traits.loadLhs(&blA[K*LhsProgress], A0); \
traits.broadcastRhs(&blB[0+8*K*RhsProgress], B_0, B1, B2, B3); \
traits.madd(A0, B_0,C0, B_0); \
traits.madd(A0, B1, C1, B1); \
traits.madd(A0, B2, C2, B2); \
traits.madd(A0, B3, C3, B3); \
traits.broadcastRhs(&blB[4+8*K*RhsProgress], B_0, B1, B2, B3); \
traits.madd(A0, B_0,C4, B_0); \
traits.madd(A0, B1, C5, B1); \
traits.madd(A0, B2, C6, B2); \
traits.madd(A0, B3, C7, B3)
traits.madd(A0,B_0,C0,T0);
traits.madd(A1,B_0,C4,B_0);
traits.loadRhs(&blB[12*RhsProgress], B_0);
traits.madd(A0,B1,C1,T0);
traits.madd(A1,B1,C5,B1);
traits.loadRhs(&blB[13*RhsProgress], B1);
traits.madd(A0,B2,C2,T0);
traits.madd(A1,B2,C6,B2);
traits.loadRhs(&blB[14*RhsProgress], B2);
traits.madd(A0,B3,C3,T0);
traits.loadLhs(&blA[6*LhsProgress], A0);
traits.madd(A1,B3,C7,B3);
traits.loadLhs(&blA[7*LhsProgress], A1);
traits.loadRhs(&blB[15*RhsProgress], B3);
traits.madd(A0,B_0,C0,T0);
traits.madd(A1,B_0,C4,B_0);
traits.madd(A0,B1,C1,T0);
traits.madd(A1,B1,C5,B1);
traits.madd(A0,B2,C2,T0);
traits.madd(A1,B2,C6,B2);
traits.madd(A0,B3,C3,T0);
traits.madd(A1,B3,C7,B3);
EIGEN_GEBGP_ONESTEP8(0,A1,A0);
EIGEN_GEBGP_ONESTEP8(1,A0,A1);
EIGEN_GEBGP_ONESTEP8(2,A1,A0);
EIGEN_GEBGP_ONESTEP8(3,A0,A1);
}
blB += 4*nr*RhsProgress;
@ -726,63 +684,40 @@ EIGEN_ASM_COMMENT("mybegin4");
// process remaining peeled loop
for(Index k=peeled_kc; k<depth; k++)
{
if(nr==2)
if(nr==4)
{
LhsPacket A0, A1;
RhsPacket B_0;
RhsPacket T0;
traits.loadLhs(&blA[0*LhsProgress], A0);
traits.loadLhs(&blA[1*LhsProgress], A1);
traits.loadRhs(&blB[0*RhsProgress], B_0);
traits.madd(A0,B_0,C0,T0);
traits.madd(A1,B_0,C4,B_0);
traits.loadRhs(&blB[1*RhsProgress], B_0);
traits.madd(A0,B_0,C1,T0);
traits.madd(A1,B_0,C5,B_0);
RhsPacket B_0, B1;
EIGEN_GEBGP_ONESTEP4(0);
}
else
else // nr == 8
{
LhsPacket A0, A1;
RhsPacket B_0, B1, B2, B3;
RhsPacket T0;
traits.loadLhs(&blA[0*LhsProgress], A0);
traits.loadLhs(&blA[1*LhsProgress], A1);
traits.loadRhs(&blB[0*RhsProgress], B_0);
traits.loadRhs(&blB[1*RhsProgress], B1);
traits.madd(A0,B_0,C0,T0);
traits.loadRhs(&blB[2*RhsProgress], B2);
traits.madd(A1,B_0,C4,B_0);
traits.loadRhs(&blB[3*RhsProgress], B3);
traits.madd(A0,B1,C1,T0);
traits.madd(A1,B1,C5,B1);
traits.madd(A0,B2,C2,T0);
traits.madd(A1,B2,C6,B2);
traits.madd(A0,B3,C3,T0);
traits.madd(A1,B3,C7,B3);
EIGEN_GEBGP_ONESTEP8(0,A1,A0);
// uncomment for register prefetching
// A0 = A1;
}
blB += nr*RhsProgress;
blA += mr;
}
#undef EIGEN_GEBGP_ONESTEP4
#undef EIGEN_GEBGP_ONESTEP8
if(nr==4)
if(nr==8)
{
ResPacket R0, R1, R2, R3, R4, R5, R6;
ResPacket alphav = pset1<ResPacket>(alpha);
R0 = ploadu<ResPacket>(r0);
R1 = ploadu<ResPacket>(r1);
R2 = ploadu<ResPacket>(r2);
R3 = ploadu<ResPacket>(r3);
R4 = ploadu<ResPacket>(r0 + ResPacketSize);
R5 = ploadu<ResPacket>(r1 + ResPacketSize);
R6 = ploadu<ResPacket>(r2 + ResPacketSize);
R0 = ploadu<ResPacket>(r0+0*resStride);
R1 = ploadu<ResPacket>(r0+1*resStride);
R2 = ploadu<ResPacket>(r0+2*resStride);
R3 = ploadu<ResPacket>(r0+3*resStride);
R4 = ploadu<ResPacket>(r0+4*resStride);
R5 = ploadu<ResPacket>(r0+5*resStride);
R6 = ploadu<ResPacket>(r0+6*resStride);
traits.acc(C0, alphav, R0);
pstoreu(r0, R0);
R0 = ploadu<ResPacket>(r3 + ResPacketSize);
pstoreu(r0+0*resStride, R0);
R0 = ploadu<ResPacket>(r0+7*resStride);
traits.acc(C1, alphav, R1);
traits.acc(C2, alphav, R2);
@ -792,239 +727,111 @@ EIGEN_ASM_COMMENT("mybegin4");
traits.acc(C6, alphav, R6);
traits.acc(C7, alphav, R0);
pstoreu(r1, R1);
pstoreu(r2, R2);
pstoreu(r3, R3);
pstoreu(r0 + ResPacketSize, R4);
pstoreu(r1 + ResPacketSize, R5);
pstoreu(r2 + ResPacketSize, R6);
pstoreu(r3 + ResPacketSize, R0);
pstoreu(r0+1*resStride, R1);
pstoreu(r0+2*resStride, R2);
pstoreu(r0+3*resStride, R3);
pstoreu(r0+4*resStride, R4);
pstoreu(r0+5*resStride, R5);
pstoreu(r0+6*resStride, R6);
pstoreu(r0+7*resStride, R0);
}
else
else // nr==4
{
ResPacket R0, R1, R4;
ResPacket R0, R1, R2;
ResPacket alphav = pset1<ResPacket>(alpha);
R0 = ploadu<ResPacket>(r0);
R1 = ploadu<ResPacket>(r1);
R4 = ploadu<ResPacket>(r0 + ResPacketSize);
R0 = ploadu<ResPacket>(r0+0*resStride);
R1 = ploadu<ResPacket>(r0+1*resStride);
R2 = ploadu<ResPacket>(r0+2*resStride);
traits.acc(C0, alphav, R0);
pstoreu(r0, R0);
R0 = ploadu<ResPacket>(r1 + ResPacketSize);
pstoreu(r0+0*resStride, R0);
R0 = ploadu<ResPacket>(r0+3*resStride);
traits.acc(C1, alphav, R1);
traits.acc(C4, alphav, R4);
traits.acc(C5, alphav, R0);
pstoreu(r1, R1);
pstoreu(r0 + ResPacketSize, R4);
pstoreu(r1 + ResPacketSize, R0);
traits.acc(C2, alphav, R2);
traits.acc(C3, alphav, R0);
pstoreu(r0+1*resStride, R1);
pstoreu(r0+2*resStride, R2);
pstoreu(r0+3*resStride, R0);
}
}
if(rows-peeled_mc>=LhsProgress)
{
Index i = peeled_mc;
const LhsScalar* blA = &blockA[i*strideA+offsetA*LhsProgress];
prefetch(&blA[0]);
// gets res block as register
AccPacket C0, C1, C2, C3;
traits.initAcc(C0);
traits.initAcc(C1);
if(nr==4) traits.initAcc(C2);
if(nr==4) traits.initAcc(C3);
// performs "inner" product
const RhsScalar* blB = unpackedB;
for(Index k=0; k<peeled_kc; k+=4)
{
if(nr==2)
{
LhsPacket A0;
RhsPacket B_0, B1;
traits.loadLhs(&blA[0*LhsProgress], A0);
traits.loadRhs(&blB[0*RhsProgress], B_0);
traits.loadRhs(&blB[1*RhsProgress], B1);
traits.madd(A0,B_0,C0,B_0);
traits.loadRhs(&blB[2*RhsProgress], B_0);
traits.madd(A0,B1,C1,B1);
traits.loadLhs(&blA[1*LhsProgress], A0);
traits.loadRhs(&blB[3*RhsProgress], B1);
traits.madd(A0,B_0,C0,B_0);
traits.loadRhs(&blB[4*RhsProgress], B_0);
traits.madd(A0,B1,C1,B1);
traits.loadLhs(&blA[2*LhsProgress], A0);
traits.loadRhs(&blB[5*RhsProgress], B1);
traits.madd(A0,B_0,C0,B_0);
traits.loadRhs(&blB[6*RhsProgress], B_0);
traits.madd(A0,B1,C1,B1);
traits.loadLhs(&blA[3*LhsProgress], A0);
traits.loadRhs(&blB[7*RhsProgress], B1);
traits.madd(A0,B_0,C0,B_0);
traits.madd(A0,B1,C1,B1);
}
else
{
LhsPacket A0;
RhsPacket B_0, B1, B2, B3;
traits.loadLhs(&blA[0*LhsProgress], A0);
traits.loadRhs(&blB[0*RhsProgress], B_0);
traits.loadRhs(&blB[1*RhsProgress], B1);
traits.madd(A0,B_0,C0,B_0);
traits.loadRhs(&blB[2*RhsProgress], B2);
traits.loadRhs(&blB[3*RhsProgress], B3);
traits.loadRhs(&blB[4*RhsProgress], B_0);
traits.madd(A0,B1,C1,B1);
traits.loadRhs(&blB[5*RhsProgress], B1);
traits.madd(A0,B2,C2,B2);
traits.loadRhs(&blB[6*RhsProgress], B2);
traits.madd(A0,B3,C3,B3);
traits.loadLhs(&blA[1*LhsProgress], A0);
traits.loadRhs(&blB[7*RhsProgress], B3);
traits.madd(A0,B_0,C0,B_0);
traits.loadRhs(&blB[8*RhsProgress], B_0);
traits.madd(A0,B1,C1,B1);
traits.loadRhs(&blB[9*RhsProgress], B1);
traits.madd(A0,B2,C2,B2);
traits.loadRhs(&blB[10*RhsProgress], B2);
traits.madd(A0,B3,C3,B3);
traits.loadLhs(&blA[2*LhsProgress], A0);
traits.loadRhs(&blB[11*RhsProgress], B3);
traits.madd(A0,B_0,C0,B_0);
traits.loadRhs(&blB[12*RhsProgress], B_0);
traits.madd(A0,B1,C1,B1);
traits.loadRhs(&blB[13*RhsProgress], B1);
traits.madd(A0,B2,C2,B2);
traits.loadRhs(&blB[14*RhsProgress], B2);
traits.madd(A0,B3,C3,B3);
traits.loadLhs(&blA[3*LhsProgress], A0);
traits.loadRhs(&blB[15*RhsProgress], B3);
traits.madd(A0,B_0,C0,B_0);
traits.madd(A0,B1,C1,B1);
traits.madd(A0,B2,C2,B2);
traits.madd(A0,B3,C3,B3);
}
blB += nr*4*RhsProgress;
blA += 4*LhsProgress;
}
// process remaining peeled loop
for(Index k=peeled_kc; k<depth; k++)
{
if(nr==2)
{
LhsPacket A0;
RhsPacket B_0, B1;
traits.loadLhs(&blA[0*LhsProgress], A0);
traits.loadRhs(&blB[0*RhsProgress], B_0);
traits.loadRhs(&blB[1*RhsProgress], B1);
traits.madd(A0,B_0,C0,B_0);
traits.madd(A0,B1,C1,B1);
}
else
{
LhsPacket A0;
RhsPacket B_0, B1, B2, B3;
traits.loadLhs(&blA[0*LhsProgress], A0);
traits.loadRhs(&blB[0*RhsProgress], B_0);
traits.loadRhs(&blB[1*RhsProgress], B1);
traits.loadRhs(&blB[2*RhsProgress], B2);
traits.loadRhs(&blB[3*RhsProgress], B3);
traits.madd(A0,B_0,C0,B_0);
traits.madd(A0,B1,C1,B1);
traits.madd(A0,B2,C2,B2);
traits.madd(A0,B3,C3,B3);
}
blB += nr*RhsProgress;
blA += LhsProgress;
}
ResPacket R0, R1, R2, R3;
ResPacket alphav = pset1<ResPacket>(alpha);
ResScalar* r0 = &res[(j2+0)*resStride + i];
ResScalar* r1 = r0 + resStride;
ResScalar* r2 = r1 + resStride;
ResScalar* r3 = r2 + resStride;
R0 = ploadu<ResPacket>(r0);
R1 = ploadu<ResPacket>(r1);
if(nr==4) R2 = ploadu<ResPacket>(r2);
if(nr==4) R3 = ploadu<ResPacket>(r3);
traits.acc(C0, alphav, R0);
traits.acc(C1, alphav, R1);
if(nr==4) traits.acc(C2, alphav, R2);
if(nr==4) traits.acc(C3, alphav, R3);
pstoreu(r0, R0);
pstoreu(r1, R1);
if(nr==4) pstoreu(r2, R2);
if(nr==4) pstoreu(r3, R3);
}
for(Index i=peeled_mc2; i<rows; i++)
for(Index i=peeled_mc; i<rows; i++)
{
const LhsScalar* blA = &blockA[i*strideA+offsetA];
prefetch(&blA[0]);
// gets a 1 x nr res block as registers
ResScalar C0(0), C1(0), C2(0), C3(0);
// TODO directly use blockB ???
ResScalar C0(0), C1(0), C2(0), C3(0), C4(0), C5(0), C6(0), C7(0);
// FIXME directly use blockB ???
const RhsScalar* blB = &blockB[j2*strideB+offsetB*nr];
// TODO peel this loop
for(Index k=0; k<depth; k++)
{
if(nr==2)
if(nr==4)
{
LhsScalar A0;
RhsScalar B_0, B1;
RhsScalar B_0, B_1;
A0 = blA[k];
B_0 = blB[0];
B1 = blB[1];
MADD(cj,A0,B_0,C0,B_0);
MADD(cj,A0,B1,C1,B1);
B_1 = blB[1];
MADD(cj,A0,B_0,C0, B_0);
MADD(cj,A0,B_1,C1, B_1);
B_0 = blB[2];
B_1 = blB[3];
MADD(cj,A0,B_0,C2, B_0);
MADD(cj,A0,B_1,C3, B_1);
}
else
else // nr==8
{
LhsScalar A0;
RhsScalar B_0, B1, B2, B3;
RhsScalar B_0, B_1;
A0 = blA[k];
B_0 = blB[0];
B1 = blB[1];
B2 = blB[2];
B3 = blB[3];
MADD(cj,A0,B_0,C0,B_0);
MADD(cj,A0,B1,C1,B1);
MADD(cj,A0,B2,C2,B2);
MADD(cj,A0,B3,C3,B3);
B_0 = blB[0];
B_1 = blB[1];
MADD(cj,A0,B_0,C0, B_0);
MADD(cj,A0,B_1,C1, B_1);
B_0 = blB[2];
B_1 = blB[3];
MADD(cj,A0,B_0,C2, B_0);
MADD(cj,A0,B_1,C3, B_1);
B_0 = blB[4];
B_1 = blB[5];
MADD(cj,A0,B_0,C4, B_0);
MADD(cj,A0,B_1,C5, B_1);
B_0 = blB[6];
B_1 = blB[7];
MADD(cj,A0,B_0,C6, B_0);
MADD(cj,A0,B_1,C7, B_1);
}
blB += nr;
}
res[(j2+0)*resStride + i] += alpha*C0;
res[(j2+1)*resStride + i] += alpha*C1;
if(nr==4) res[(j2+2)*resStride + i] += alpha*C2;
if(nr==4) res[(j2+3)*resStride + i] += alpha*C3;
res[(j2+2)*resStride + i] += alpha*C2;
res[(j2+3)*resStride + i] += alpha*C3;
if(nr==8) res[(j2+4)*resStride + i] += alpha*C4;
if(nr==8) res[(j2+5)*resStride + i] += alpha*C5;
if(nr==8) res[(j2+6)*resStride + i] += alpha*C6;
if(nr==8) res[(j2+7)*resStride + i] += alpha*C7;
}
}
// process remaining rhs/res columns one at a time
// => do the same but with nr==1
for(Index j2=packet_cols; j2<cols; j2++)
{
// unpack B
traits.unpackRhs(depth, &blockB[j2*strideB+offsetB], unpackedB);
for(Index i=0; i<peeled_mc; i+=mr)
{
const LhsScalar* blA = &blockA[i*strideA+offsetA*mr];
@ -1033,67 +840,31 @@ EIGEN_ASM_COMMENT("mybegin4");
// TODO move the res loads to the stores
// get res block as registers
AccPacket C0, C4;
traits.initAcc(C0);
traits.initAcc(C4);
const RhsScalar* blB = unpackedB;
for(Index k=0; k<depth; k++)
{
LhsPacket A0, A1;
RhsPacket B_0;
RhsPacket T0;
traits.loadLhs(&blA[0*LhsProgress], A0);
traits.loadLhs(&blA[1*LhsProgress], A1);
traits.loadRhs(&blB[0*RhsProgress], B_0);
traits.madd(A0,B_0,C0,T0);
traits.madd(A1,B_0,C4,B_0);
blB += RhsProgress;
blA += 2*LhsProgress;
}
ResPacket R0, R4;
ResPacket alphav = pset1<ResPacket>(alpha);
ResScalar* r0 = &res[(j2+0)*resStride + i];
R0 = ploadu<ResPacket>(r0);
R4 = ploadu<ResPacket>(r0+ResPacketSize);
traits.acc(C0, alphav, R0);
traits.acc(C4, alphav, R4);
pstoreu(r0, R0);
pstoreu(r0+ResPacketSize, R4);
}
if(rows-peeled_mc>=LhsProgress)
{
Index i = peeled_mc;
const LhsScalar* blA = &blockA[i*strideA+offsetA*LhsProgress];
prefetch(&blA[0]);
AccPacket C0;
traits.initAcc(C0);
const RhsScalar* blB = unpackedB;
const RhsScalar* blB = &blockB[j2*strideB+offsetB];
for(Index k=0; k<depth; k++)
{
LhsPacket A0;
RhsPacket B_0;
traits.loadLhs(blA, A0);
traits.loadRhs(blB, B_0);
traits.madd(A0, B_0, C0, B_0);
RhsPacket T0;
traits.loadLhs(&blA[0*LhsProgress], A0);
traits.loadRhs(&blB[0*RhsProgress], B_0);
traits.madd(A0,B_0,C0,T0);
blB += RhsProgress;
blA += LhsProgress;
}
ResPacket R0;
ResPacket alphav = pset1<ResPacket>(alpha);
ResPacket R0 = ploadu<ResPacket>(&res[(j2+0)*resStride + i]);
ResScalar* r0 = &res[(j2+0)*resStride + i];
R0 = ploadu<ResPacket>(r0);
traits.acc(C0, alphav, R0);
pstoreu(&res[(j2+0)*resStride + i], R0);
pstoreu(r0, R0);
}
for(Index i=peeled_mc2; i<rows; i++)
for(Index i=peeled_mc; i<rows; i++)
{
const LhsScalar* blA = &blockA[i*strideA+offsetA];
prefetch(&blA[0]);
@ -1147,7 +918,7 @@ EIGEN_DONT_INLINE void gemm_pack_lhs<Scalar, Index, Pack1, Pack2, StorageOrder,
EIGEN_UNUSED_VARIABLE(stride);
EIGEN_UNUSED_VARIABLE(offset);
eigen_assert(((!PanelMode) && stride==0 && offset==0) || (PanelMode && stride>=depth && offset<=stride));
eigen_assert( (StorageOrder==RowMajor) || ((Pack1%PacketSize)==0 && Pack1<=4*PacketSize) );
eigen_assert( (StorageOrder==RowMajor) || ((Pack1%PacketSize)==0 && Pack1<=4*PacketSize) || (Pack1<=4) );
conj_if<NumTraits<Scalar>::IsComplex && Conjugate> cj;
const_blas_data_mapper<Scalar, Index, StorageOrder> lhs(_lhs,lhsStride);
Index count = 0;
@ -1160,15 +931,25 @@ EIGEN_DONT_INLINE void gemm_pack_lhs<Scalar, Index, Pack1, Pack2, StorageOrder,
{
for(Index k=0; k<depth; k++)
{
Packet A, B, C, D;
if(Pack1>=1*PacketSize) A = ploadu<Packet>(&lhs(i+0*PacketSize, k));
if(Pack1>=2*PacketSize) B = ploadu<Packet>(&lhs(i+1*PacketSize, k));
if(Pack1>=3*PacketSize) C = ploadu<Packet>(&lhs(i+2*PacketSize, k));
if(Pack1>=4*PacketSize) D = ploadu<Packet>(&lhs(i+3*PacketSize, k));
if(Pack1>=1*PacketSize) { pstore(blockA+count, cj.pconj(A)); count+=PacketSize; }
if(Pack1>=2*PacketSize) { pstore(blockA+count, cj.pconj(B)); count+=PacketSize; }
if(Pack1>=3*PacketSize) { pstore(blockA+count, cj.pconj(C)); count+=PacketSize; }
if(Pack1>=4*PacketSize) { pstore(blockA+count, cj.pconj(D)); count+=PacketSize; }
if((Pack1%PacketSize)==0)
{
Packet A, B, C, D;
if(Pack1>=1*PacketSize) A = ploadu<Packet>(&lhs(i+0*PacketSize, k));
if(Pack1>=2*PacketSize) B = ploadu<Packet>(&lhs(i+1*PacketSize, k));
if(Pack1>=3*PacketSize) C = ploadu<Packet>(&lhs(i+2*PacketSize, k));
if(Pack1>=4*PacketSize) D = ploadu<Packet>(&lhs(i+3*PacketSize, k));
if(Pack1>=1*PacketSize) { pstore(blockA+count, cj.pconj(A)); count+=PacketSize; }
if(Pack1>=2*PacketSize) { pstore(blockA+count, cj.pconj(B)); count+=PacketSize; }
if(Pack1>=3*PacketSize) { pstore(blockA+count, cj.pconj(C)); count+=PacketSize; }
if(Pack1>=4*PacketSize) { pstore(blockA+count, cj.pconj(D)); count+=PacketSize; }
}
else
{
if(Pack1>=1) blockA[count++] = cj(lhs(i+0, k));
if(Pack1>=2) blockA[count++] = cj(lhs(i+1, k));
if(Pack1>=3) blockA[count++] = cj(lhs(i+2, k));
if(Pack1>=4) blockA[count++] = cj(lhs(i+3, k));
}
}
}
else
@ -1247,12 +1028,20 @@ EIGEN_DONT_INLINE void gemm_pack_rhs<Scalar, Index, nr, ColMajor, Conjugate, Pan
const Scalar* b1 = &rhs[(j2+1)*rhsStride];
const Scalar* b2 = &rhs[(j2+2)*rhsStride];
const Scalar* b3 = &rhs[(j2+3)*rhsStride];
const Scalar* b4 = &rhs[(j2+4)*rhsStride];
const Scalar* b5 = &rhs[(j2+5)*rhsStride];
const Scalar* b6 = &rhs[(j2+6)*rhsStride];
const Scalar* b7 = &rhs[(j2+7)*rhsStride];
for(Index k=0; k<depth; k++)
{
blockB[count+0] = cj(b0[k]);
blockB[count+1] = cj(b1[k]);
if(nr==4) blockB[count+2] = cj(b2[k]);
if(nr==4) blockB[count+3] = cj(b3[k]);
if(nr>=4) blockB[count+2] = cj(b2[k]);
if(nr>=4) blockB[count+3] = cj(b3[k]);
if(nr>=8) blockB[count+4] = cj(b4[k]);
if(nr>=8) blockB[count+5] = cj(b5[k]);
if(nr>=8) blockB[count+6] = cj(b6[k]);
if(nr>=8) blockB[count+7] = cj(b7[k]);
count += nr;
}
// skip what we have after
@ -1307,8 +1096,12 @@ EIGEN_DONT_INLINE void gemm_pack_rhs<Scalar, Index, nr, RowMajor, Conjugate, Pan
const Scalar* b0 = &rhs[k*rhsStride + j2];
blockB[count+0] = cj(b0[0]);
blockB[count+1] = cj(b0[1]);
if(nr==4) blockB[count+2] = cj(b0[2]);
if(nr==4) blockB[count+3] = cj(b0[3]);
if(nr>=4) blockB[count+2] = cj(b0[2]);
if(nr>=4) blockB[count+3] = cj(b0[3]);
if(nr>=8) blockB[count+4] = cj(b0[4]);
if(nr>=8) blockB[count+5] = cj(b0[5]);
if(nr>=8) blockB[count+6] = cj(b0[6]);
if(nr>=8) blockB[count+7] = cj(b0[7]);
count += nr;
}
}

View File

@ -81,9 +81,7 @@ static void run(Index rows, Index cols, Index depth,
Index threads = omp_get_num_threads();
std::size_t sizeA = kc*mc;
std::size_t sizeW = kc*Traits::WorkSpaceFactor;
ei_declare_aligned_stack_constructed_variable(LhsScalar, blockA, sizeA, 0);
ei_declare_aligned_stack_constructed_variable(RhsScalar, w, sizeW, 0);
RhsScalar* blockB = blocking.blockB();
eigen_internal_assert(blockB!=0);
@ -122,7 +120,7 @@ static void run(Index rows, Index cols, Index depth,
if(shift>0)
while(info[j].sync!=k) {}
gebp(res+info[j].rhs_start*resStride, resStride, blockA, blockB+info[j].rhs_start*actual_kc, mc, actual_kc, info[j].rhs_length, alpha, -1,-1,0,0, w);
gebp(res+info[j].rhs_start*resStride, resStride, blockA, blockB+info[j].rhs_start*actual_kc, mc, actual_kc, info[j].rhs_length, alpha, -1,-1,0,0);
}
// Then keep going as usual with the remaining A'
@ -134,7 +132,7 @@ static void run(Index rows, Index cols, Index depth,
pack_lhs(blockA, &lhs(i,k), lhsStride, actual_kc, actual_mc);
// C_i += A' * B'
gebp(res+i, resStride, blockA, blockB, actual_mc, actual_kc, cols, alpha, -1,-1,0,0, w);
gebp(res+i, resStride, blockA, blockB, actual_mc, actual_kc, cols, alpha, -1,-1,0,0);
}
// Release all the sub blocks B'_j of B' for the current thread,
@ -152,11 +150,9 @@ static void run(Index rows, Index cols, Index depth,
// this is the sequential version!
std::size_t sizeA = kc*mc;
std::size_t sizeB = kc*cols;
std::size_t sizeW = kc*Traits::WorkSpaceFactor;
ei_declare_aligned_stack_constructed_variable(LhsScalar, blockA, sizeA, blocking.blockA());
ei_declare_aligned_stack_constructed_variable(RhsScalar, blockB, sizeB, blocking.blockB());
ei_declare_aligned_stack_constructed_variable(RhsScalar, blockW, sizeW, blocking.blockW());
// For each horizontal panel of the rhs, and corresponding panel of the lhs...
// (==GEMM_VAR1)
@ -182,7 +178,7 @@ static void run(Index rows, Index cols, Index depth,
pack_lhs(blockA, &lhs(i2,k2), lhsStride, actual_kc, actual_mc);
// Everything is packed, we can now call the block * panel kernel:
gebp(res+i2, resStride, blockA, blockB, actual_mc, actual_kc, cols, alpha, -1, -1, 0, 0, blockW);
gebp(res+i2, resStride, blockA, blockB, actual_mc, actual_kc, cols, alpha, -1, -1, 0, 0);
}
}
}

View File

@ -73,11 +73,8 @@ struct general_matrix_matrix_triangular_product<Index,LhsScalar,LhsStorageOrder,
if(mc > Traits::nr)
mc = (mc/Traits::nr)*Traits::nr;
std::size_t sizeW = kc*Traits::WorkSpaceFactor;
std::size_t sizeB = sizeW + kc*size;
ei_declare_aligned_stack_constructed_variable(LhsScalar, blockA, kc*mc, 0);
ei_declare_aligned_stack_constructed_variable(RhsScalar, allocatedBlockB, sizeB, 0);
RhsScalar* blockB = allocatedBlockB + sizeW;
ei_declare_aligned_stack_constructed_variable(RhsScalar, blockB, kc*size, 0);
gemm_pack_lhs<LhsScalar, Index, Traits::mr, Traits::LhsProgress, LhsStorageOrder> pack_lhs;
gemm_pack_rhs<RhsScalar, Index, Traits::nr, RhsStorageOrder> pack_rhs;
@ -103,15 +100,15 @@ struct general_matrix_matrix_triangular_product<Index,LhsScalar,LhsStorageOrder,
// 3 - after the diagonal => processed with gebp or skipped
if (UpLo==Lower)
gebp(res+i2, resStride, blockA, blockB, actual_mc, actual_kc, (std::min)(size,i2), alpha,
-1, -1, 0, 0, allocatedBlockB);
-1, -1, 0, 0);
sybb(res+resStride*i2 + i2, resStride, blockA, blockB + actual_kc*i2, actual_mc, actual_kc, alpha, allocatedBlockB);
sybb(res+resStride*i2 + i2, resStride, blockA, blockB + actual_kc*i2, actual_mc, actual_kc, alpha);
if (UpLo==Upper)
{
Index j2 = i2+actual_mc;
gebp(res+resStride*j2+i2, resStride, blockA, blockB+actual_kc*j2, actual_mc, actual_kc, (std::max)(Index(0), size-j2), alpha,
-1, -1, 0, 0, allocatedBlockB);
-1, -1, 0, 0);
}
}
}
@ -136,7 +133,7 @@ struct tribb_kernel
enum {
BlockSize = EIGEN_PLAIN_ENUM_MAX(mr,nr)
};
void operator()(ResScalar* res, Index resStride, const LhsScalar* blockA, const RhsScalar* blockB, Index size, Index depth, const ResScalar& alpha, RhsScalar* workspace)
void operator()(ResScalar* res, Index resStride, const LhsScalar* blockA, const RhsScalar* blockB, Index size, Index depth, const ResScalar& alpha)
{
gebp_kernel<LhsScalar, RhsScalar, Index, mr, nr, ConjLhs, ConjRhs> gebp_kernel;
Matrix<ResScalar,BlockSize,BlockSize,ColMajor> buffer;
@ -150,7 +147,7 @@ struct tribb_kernel
if(UpLo==Upper)
gebp_kernel(res+j*resStride, resStride, blockA, actual_b, j, depth, actualBlockSize, alpha,
-1, -1, 0, 0, workspace);
-1, -1, 0, 0);
// selfadjoint micro block
{
@ -158,7 +155,7 @@ struct tribb_kernel
buffer.setZero();
// 1 - apply the kernel on the temporary buffer
gebp_kernel(buffer.data(), BlockSize, blockA+depth*i, actual_b, actualBlockSize, depth, actualBlockSize, alpha,
-1, -1, 0, 0, workspace);
-1, -1, 0, 0);
// 2 - triangular accumulation
for(Index j1=0; j1<actualBlockSize; ++j1)
{
@ -173,7 +170,7 @@ struct tribb_kernel
{
Index i = j+actualBlockSize;
gebp_kernel(res+j*resStride+i, resStride, blockA+depth*i, actual_b, size-i, depth, actualBlockSize, alpha,
-1, -1, 0, 0, workspace);
-1, -1, 0, 0);
}
}
}

View File

@ -63,7 +63,7 @@ struct symm_pack_lhs
for(Index i=peeled_mc; i<rows; i++)
{
for(Index k=0; k<i; k++)
blockA[count++] = lhs(i, k); // normal
blockA[count++] = lhs(i, k); // normal
blockA[count++] = numext::real(lhs(i, i)); // real (diagonal)
@ -91,11 +91,18 @@ struct symm_pack_rhs
{
blockB[count+0] = rhs(k,j2+0);
blockB[count+1] = rhs(k,j2+1);
if (nr==4)
if (nr>=4)
{
blockB[count+2] = rhs(k,j2+2);
blockB[count+3] = rhs(k,j2+3);
}
if (nr>=8)
{
blockB[count+4] = rhs(k,j2+4);
blockB[count+5] = rhs(k,j2+5);
blockB[count+6] = rhs(k,j2+6);
blockB[count+7] = rhs(k,j2+7);
}
count += nr;
}
}
@ -109,11 +116,18 @@ struct symm_pack_rhs
{
blockB[count+0] = numext::conj(rhs(j2+0,k));
blockB[count+1] = numext::conj(rhs(j2+1,k));
if (nr==4)
if (nr>=4)
{
blockB[count+2] = numext::conj(rhs(j2+2,k));
blockB[count+3] = numext::conj(rhs(j2+3,k));
}
if (nr>=8)
{
blockB[count+4] = numext::conj(rhs(j2+4,k));
blockB[count+5] = numext::conj(rhs(j2+5,k));
blockB[count+6] = numext::conj(rhs(j2+6,k));
blockB[count+7] = numext::conj(rhs(j2+7,k));
}
count += nr;
}
// symmetric
@ -137,11 +151,18 @@ struct symm_pack_rhs
{
blockB[count+0] = rhs(k,j2+0);
blockB[count+1] = rhs(k,j2+1);
if (nr==4)
if (nr>=4)
{
blockB[count+2] = rhs(k,j2+2);
blockB[count+3] = rhs(k,j2+3);
}
if (nr>=8)
{
blockB[count+4] = rhs(k,j2+4);
blockB[count+5] = rhs(k,j2+5);
blockB[count+6] = rhs(k,j2+6);
blockB[count+7] = rhs(k,j2+7);
}
count += nr;
}
}
@ -153,11 +174,18 @@ struct symm_pack_rhs
{
blockB[count+0] = numext::conj(rhs(j2+0,k));
blockB[count+1] = numext::conj(rhs(j2+1,k));
if (nr==4)
if (nr>=4)
{
blockB[count+2] = numext::conj(rhs(j2+2,k));
blockB[count+3] = numext::conj(rhs(j2+3,k));
}
if (nr>=8)
{
blockB[count+4] = numext::conj(rhs(j2+4,k));
blockB[count+5] = numext::conj(rhs(j2+5,k));
blockB[count+6] = numext::conj(rhs(j2+6,k));
blockB[count+7] = numext::conj(rhs(j2+7,k));
}
count += nr;
}
}
@ -422,11 +450,11 @@ struct SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,RhsMode,false>
NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(RhsIsUpper,bool(RhsBlasTraits::NeedToConjugate)),
internal::traits<Dest>::Flags&RowMajorBit ? RowMajor : ColMajor>
::run(
lhs.rows(), rhs.cols(), // sizes
&lhs.coeffRef(0,0), lhs.outerStride(), // lhs info
&rhs.coeffRef(0,0), rhs.outerStride(), // rhs info
&dst.coeffRef(0,0), dst.outerStride(), // result info
actualAlpha // alpha
lhs.rows(), rhs.cols(), // sizes
&lhs.coeffRef(0,0), lhs.outerStride(), // lhs info
&rhs.coeffRef(0,0), rhs.outerStride(), // rhs info
&dst.coeffRef(0,0), dst.outerStride(), // result info
actualAlpha // alpha
);
}
};

View File

@ -125,11 +125,9 @@ EIGEN_DONT_INLINE void product_triangular_matrix_matrix<Scalar,Index,Mode,true,
std::size_t sizeA = kc*mc;
std::size_t sizeB = kc*cols;
std::size_t sizeW = kc*Traits::WorkSpaceFactor;
ei_declare_aligned_stack_constructed_variable(Scalar, blockA, sizeA, blocking.blockA());
ei_declare_aligned_stack_constructed_variable(Scalar, blockB, sizeB, blocking.blockB());
ei_declare_aligned_stack_constructed_variable(Scalar, blockW, sizeW, blocking.blockW());
Matrix<Scalar,SmallPanelWidth,SmallPanelWidth,LhsStorageOrder> triangularBuffer;
triangularBuffer.setZero();
@ -187,7 +185,7 @@ EIGEN_DONT_INLINE void product_triangular_matrix_matrix<Scalar,Index,Mode,true,
pack_lhs(blockA, triangularBuffer.data(), triangularBuffer.outerStride(), actualPanelWidth, actualPanelWidth);
gebp_kernel(res+startBlock, resStride, blockA, blockB, actualPanelWidth, actualPanelWidth, cols, alpha,
actualPanelWidth, actual_kc, 0, blockBOffset, blockW);
actualPanelWidth, actual_kc, 0, blockBOffset);
// GEBP with remaining micro panel
if (lengthTarget>0)
@ -197,7 +195,7 @@ EIGEN_DONT_INLINE void product_triangular_matrix_matrix<Scalar,Index,Mode,true,
pack_lhs(blockA, &lhs(startTarget,startBlock), lhsStride, actualPanelWidth, lengthTarget);
gebp_kernel(res+startTarget, resStride, blockA, blockB, lengthTarget, actualPanelWidth, cols, alpha,
actualPanelWidth, actual_kc, 0, blockBOffset, blockW);
actualPanelWidth, actual_kc, 0, blockBOffset);
}
}
}
@ -211,7 +209,7 @@ EIGEN_DONT_INLINE void product_triangular_matrix_matrix<Scalar,Index,Mode,true,
gemm_pack_lhs<Scalar, Index, Traits::mr,Traits::LhsProgress, LhsStorageOrder,false>()
(blockA, &lhs(i2, actual_k2), lhsStride, actual_kc, actual_mc);
gebp_kernel(res+i2, resStride, blockA, blockB, actual_mc, actual_kc, cols, alpha, -1, -1, 0, 0, blockW);
gebp_kernel(res+i2, resStride, blockA, blockB, actual_mc, actual_kc, cols, alpha, -1, -1, 0, 0);
}
}
}
@ -266,11 +264,9 @@ EIGEN_DONT_INLINE void product_triangular_matrix_matrix<Scalar,Index,Mode,false,
std::size_t sizeA = kc*mc;
std::size_t sizeB = kc*cols;
std::size_t sizeW = kc*Traits::WorkSpaceFactor;
ei_declare_aligned_stack_constructed_variable(Scalar, blockA, sizeA, blocking.blockA());
ei_declare_aligned_stack_constructed_variable(Scalar, blockB, sizeB, blocking.blockB());
ei_declare_aligned_stack_constructed_variable(Scalar, blockW, sizeW, blocking.blockW());
Matrix<Scalar,SmallPanelWidth,SmallPanelWidth,RhsStorageOrder> triangularBuffer;
triangularBuffer.setZero();
@ -357,14 +353,13 @@ EIGEN_DONT_INLINE void product_triangular_matrix_matrix<Scalar,Index,Mode,false,
actual_mc, panelLength, actualPanelWidth,
alpha,
actual_kc, actual_kc, // strides
blockOffset, blockOffset,// offsets
blockW); // workspace
blockOffset, blockOffset);// offsets
}
}
gebp_kernel(res+i2+(IsLower ? 0 : k2)*resStride, resStride,
blockA, geb, actual_mc, actual_kc, rs,
alpha,
-1, -1, 0, 0, blockW);
-1, -1, 0, 0);
}
}
}

View File

@ -66,11 +66,9 @@ EIGEN_DONT_INLINE void triangular_solve_matrix<Scalar,Index,OnTheLeft,Mode,Conju
std::size_t sizeA = kc*mc;
std::size_t sizeB = kc*cols;
std::size_t sizeW = kc*Traits::WorkSpaceFactor;
ei_declare_aligned_stack_constructed_variable(Scalar, blockA, sizeA, blocking.blockA());
ei_declare_aligned_stack_constructed_variable(Scalar, blockB, sizeB, blocking.blockB());
ei_declare_aligned_stack_constructed_variable(Scalar, blockW, sizeW, blocking.blockW());
conj_if<Conjugate> conj;
gebp_kernel<Scalar, Scalar, Index, Traits::mr, Traits::nr, Conjugate, false> gebp_kernel;
@ -158,7 +156,7 @@ EIGEN_DONT_INLINE void triangular_solve_matrix<Scalar,Index,OnTheLeft,Mode,Conju
pack_lhs(blockA, &tri(startTarget,startBlock), triStride, actualPanelWidth, lengthTarget);
gebp_kernel(&other(startTarget,j2), otherStride, blockA, blockB+actual_kc*j2, lengthTarget, actualPanelWidth, actual_cols, Scalar(-1),
actualPanelWidth, actual_kc, 0, blockBOffset, blockW);
actualPanelWidth, actual_kc, 0, blockBOffset);
}
}
}
@ -174,7 +172,7 @@ EIGEN_DONT_INLINE void triangular_solve_matrix<Scalar,Index,OnTheLeft,Mode,Conju
{
pack_lhs(blockA, &tri(i2, IsLower ? k2 : k2-kc), triStride, actual_kc, actual_mc);
gebp_kernel(_other+i2, otherStride, blockA, blockB, actual_mc, actual_kc, cols, Scalar(-1), -1, -1, 0, 0, blockW);
gebp_kernel(_other+i2, otherStride, blockA, blockB, actual_mc, actual_kc, cols, Scalar(-1), -1, -1, 0, 0);
}
}
}
@ -215,11 +213,9 @@ EIGEN_DONT_INLINE void triangular_solve_matrix<Scalar,Index,OnTheRight,Mode,Conj
std::size_t sizeA = kc*mc;
std::size_t sizeB = kc*size;
std::size_t sizeW = kc*Traits::WorkSpaceFactor;
ei_declare_aligned_stack_constructed_variable(Scalar, blockA, sizeA, blocking.blockA());
ei_declare_aligned_stack_constructed_variable(Scalar, blockB, sizeB, blocking.blockB());
ei_declare_aligned_stack_constructed_variable(Scalar, blockW, sizeW, blocking.blockW());
conj_if<Conjugate> conj;
gebp_kernel<Scalar,Scalar, Index, Traits::mr, Traits::nr, false, Conjugate> gebp_kernel;
@ -285,8 +281,7 @@ EIGEN_DONT_INLINE void triangular_solve_matrix<Scalar,Index,OnTheRight,Mode,Conj
actual_mc, panelLength, actualPanelWidth,
Scalar(-1),
actual_kc, actual_kc, // strides
panelOffset, panelOffset, // offsets
blockW); // workspace
panelOffset, panelOffset); // offsets
}
// unblocked triangular solve
@ -317,7 +312,7 @@ EIGEN_DONT_INLINE void triangular_solve_matrix<Scalar,Index,OnTheRight,Mode,Conj
if (rs>0)
gebp_kernel(_other+i2+startPanel*otherStride, otherStride, blockA, geb,
actual_mc, actual_kc, rs, Scalar(-1),
-1, -1, 0, 0, blockW);
-1, -1, 0, 0);
}
}
}

View File

@ -700,98 +700,42 @@ template<typename T> class aligned_stack_memory_handler
* \sa \ref TopicStlContainers.
*/
template<class T>
class aligned_allocator
class aligned_allocator : public std::allocator<T>
{
public:
typedef size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef T* pointer;
typedef const T* const_pointer;
typedef T& reference;
typedef const T& const_reference;
typedef T value_type;
typedef size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef T* pointer;
typedef const T* const_pointer;
typedef T& reference;
typedef const T& const_reference;
typedef T value_type;
template<class U>
struct rebind
{
typedef aligned_allocator<U> other;
};
template<class U>
struct rebind
{
typedef aligned_allocator<U> other;
};
pointer address( reference value ) const
{
return &value;
}
aligned_allocator() : std::allocator<T>() {}
const_pointer address( const_reference value ) const
{
return &value;
}
aligned_allocator(const aligned_allocator& other) : std::allocator<T>(other) {}
aligned_allocator()
{
}
template<class U>
aligned_allocator(const aligned_allocator<U>& other) : std::allocator<T>(other) {}
aligned_allocator( const aligned_allocator& )
{
}
~aligned_allocator() {}
template<class U>
aligned_allocator( const aligned_allocator<U>& )
{
}
pointer allocate(size_type num, const void* /*hint*/ = 0)
{
internal::check_size_for_overflow<T>(num);
return static_cast<pointer>( internal::aligned_malloc(num * sizeof(T)) );
}
~aligned_allocator()
{
}
size_type max_size() const
{
return (std::numeric_limits<size_type>::max)();
}
pointer allocate( size_type num, const void* hint = 0 )
{
EIGEN_UNUSED_VARIABLE(hint);
internal::check_size_for_overflow<T>(num);
return static_cast<pointer>( internal::aligned_malloc( num * sizeof(T) ) );
}
void construct( pointer p, const T& value )
{
::new( p ) T( value );
}
#if (__cplusplus >= 201103L)
template <typename U, typename... Args>
void construct( U* u, Args&&... args)
{
::new( static_cast<void*>(u) ) U( std::forward<Args>( args )... );
}
#endif
void destroy( pointer p )
{
p->~T();
}
#if (__cplusplus >= 201103L)
template <typename U>
void destroy( U* u )
{
u->~U();
}
#endif
void deallocate( pointer p, size_type /*num*/ )
{
internal::aligned_free( p );
}
bool operator!=(const aligned_allocator<T>& ) const
{ return false; }
bool operator==(const aligned_allocator<T>& ) const
{ return true; }
void deallocate(pointer p, size_type /*num*/)
{
internal::aligned_free(p);
}
};
//---------- Cache sizes ----------

View File

@ -165,8 +165,8 @@ AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const QuaternionBase<QuatDerived
Scalar n2 = q.vec().squaredNorm();
if (n2 < NumTraits<Scalar>::dummy_precision()*NumTraits<Scalar>::dummy_precision())
{
m_angle = 0;
m_axis << 1, 0, 0;
m_angle = Scalar(0);
m_axis << Scalar(1), Scalar(0), Scalar(0);
}
else
{

View File

@ -48,7 +48,7 @@ void apply_block_householder_on_the_left(MatrixType& mat, const VectorsType& vec
typedef typename MatrixType::Index Index;
enum { TFactorSize = MatrixType::ColsAtCompileTime };
Index nbVecs = vectors.cols();
Matrix<typename MatrixType::Scalar, TFactorSize, TFactorSize> T(nbVecs,nbVecs);
Matrix<typename MatrixType::Scalar, TFactorSize, TFactorSize, ColMajor> T(nbVecs,nbVecs);
make_block_householder_triangular_factor(T, vectors, hCoeffs);
const TriangularView<const VectorsType, UnitLower>& V(vectors);