mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-06-04 18:54:00 +08:00
changed FFT function vector and Matrix args to pointer as Benoit suggested
implemented 2D Complex FFT for FFTW impl
This commit is contained in:
parent
a30d42354f
commit
cd7912313d
@ -152,20 +152,26 @@ class FFT
|
|||||||
m_impl.fwd(dst,src,nfft);
|
m_impl.fwd(dst,src,nfft);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
inline
|
||||||
|
void fwd2(Complex * dst, const Complex * src, int nrows,int ncols)
|
||||||
|
{
|
||||||
|
m_impl.fwd2(dst,src,nrows,ncols);
|
||||||
|
}
|
||||||
|
|
||||||
template <typename _Input>
|
template <typename _Input>
|
||||||
inline
|
inline
|
||||||
void fwd( std::vector<Complex> & dst, const std::vector<_Input> & src)
|
void fwd( std::vector<Complex> * dst, const std::vector<_Input> & src)
|
||||||
{
|
{
|
||||||
if ( NumTraits<_Input>::IsComplex == 0 && HasFlag(HalfSpectrum) )
|
if ( NumTraits<_Input>::IsComplex == 0 && HasFlag(HalfSpectrum) )
|
||||||
dst.resize( (src.size()>>1)+1);
|
dst->resize( (src.size()>>1)+1);
|
||||||
else
|
else
|
||||||
dst.resize(src.size());
|
dst->resize(src.size());
|
||||||
fwd(&dst[0],&src[0],static_cast<int>(src.size()));
|
fwd(&(*dst)[0],&src[0],static_cast<int>(src.size()));
|
||||||
}
|
}
|
||||||
|
|
||||||
template<typename InputDerived, typename ComplexDerived>
|
template<typename InputDerived, typename ComplexDerived>
|
||||||
inline
|
inline
|
||||||
void fwd( MatrixBase<ComplexDerived> & dst, const MatrixBase<InputDerived> & src)
|
void fwd( MatrixBase<ComplexDerived> * dst, const MatrixBase<InputDerived> & src)
|
||||||
{
|
{
|
||||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(InputDerived)
|
EIGEN_STATIC_ASSERT_VECTOR_ONLY(InputDerived)
|
||||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(ComplexDerived)
|
EIGEN_STATIC_ASSERT_VECTOR_ONLY(ComplexDerived)
|
||||||
@ -176,10 +182,10 @@ class FFT
|
|||||||
THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_WITH_DIRECT_MEMORY_ACCESS_SUCH_AS_MAP_OR_PLAIN_MATRICES)
|
THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_WITH_DIRECT_MEMORY_ACCESS_SUCH_AS_MAP_OR_PLAIN_MATRICES)
|
||||||
|
|
||||||
if ( NumTraits< typename InputDerived::Scalar >::IsComplex == 0 && HasFlag(HalfSpectrum) )
|
if ( NumTraits< typename InputDerived::Scalar >::IsComplex == 0 && HasFlag(HalfSpectrum) )
|
||||||
dst.derived().resize( (src.size()>>1)+1);
|
dst->derived().resize( (src.size()>>1)+1);
|
||||||
else
|
else
|
||||||
dst.derived().resize(src.size());
|
dst->derived().resize(src.size());
|
||||||
fwd( &dst[0],&src[0],src.size() );
|
fwd( &(*dst)[0],&src[0],src.size() );
|
||||||
}
|
}
|
||||||
|
|
||||||
inline
|
inline
|
||||||
@ -200,7 +206,7 @@ class FFT
|
|||||||
|
|
||||||
template<typename OutputDerived, typename ComplexDerived>
|
template<typename OutputDerived, typename ComplexDerived>
|
||||||
inline
|
inline
|
||||||
void inv( MatrixBase<OutputDerived> & dst, const MatrixBase<ComplexDerived> & src)
|
void inv( MatrixBase<OutputDerived> * dst, const MatrixBase<ComplexDerived> & src)
|
||||||
{
|
{
|
||||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(OutputDerived)
|
EIGEN_STATIC_ASSERT_VECTOR_ONLY(OutputDerived)
|
||||||
EIGEN_STATIC_ASSERT_VECTOR_ONLY(ComplexDerived)
|
EIGEN_STATIC_ASSERT_VECTOR_ONLY(ComplexDerived)
|
||||||
@ -212,19 +218,28 @@ class FFT
|
|||||||
|
|
||||||
int nfft = src.size();
|
int nfft = src.size();
|
||||||
int nout = HasFlag(HalfSpectrum) ? ((nfft>>1)+1) : nfft;
|
int nout = HasFlag(HalfSpectrum) ? ((nfft>>1)+1) : nfft;
|
||||||
dst.derived().resize( nout );
|
dst->derived().resize( nout );
|
||||||
inv( &dst[0],&src[0], nfft);
|
inv( &(*dst)[0],&src[0], nfft);
|
||||||
}
|
}
|
||||||
|
|
||||||
template <typename _Output>
|
template <typename _Output>
|
||||||
inline
|
inline
|
||||||
void inv( std::vector<_Output> & dst, const std::vector<Complex> & src)
|
void inv( std::vector<_Output> * dst, const std::vector<Complex> & src)
|
||||||
{
|
{
|
||||||
if ( NumTraits<_Output>::IsComplex == 0 && HasFlag(HalfSpectrum) )
|
if ( NumTraits<_Output>::IsComplex == 0 && HasFlag(HalfSpectrum) )
|
||||||
dst.resize( 2*(src.size()-1) );
|
dst->resize( 2*(src.size()-1) );
|
||||||
else
|
else
|
||||||
dst.resize( src.size() );
|
dst->resize( src.size() );
|
||||||
inv( &dst[0],&src[0],static_cast<int>(dst.size()) );
|
inv( &(*dst)[0],&src[0],static_cast<int>(dst->size()) );
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
inline
|
||||||
|
void inv2(Complex * dst, const Complex * src, int nrows,int ncols)
|
||||||
|
{
|
||||||
|
m_impl.inv2(dst,src,nrows,ncols);
|
||||||
|
if ( HasFlag( Unscaled ) == false)
|
||||||
|
scale(dst,1./(nrows*ncols),nrows*ncols);
|
||||||
}
|
}
|
||||||
|
|
||||||
// TODO: multi-dimensional FFTs
|
// TODO: multi-dimensional FFTs
|
||||||
|
@ -90,6 +90,18 @@
|
|||||||
m_plan = fftwf_plan_dft_c2r_1d(nfft,src,dst,FFTW_ESTIMATE);
|
m_plan = fftwf_plan_dft_c2r_1d(nfft,src,dst,FFTW_ESTIMATE);
|
||||||
fftwf_execute_dft_c2r( m_plan, src,dst);
|
fftwf_execute_dft_c2r( m_plan, src,dst);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
inline
|
||||||
|
void fwd2( complex_type * dst,complex_type * src,int nrows,int ncols) {
|
||||||
|
if (m_plan==NULL) m_plan = fftwf_plan_dft_2d(ncols,nrows,src,dst,FFTW_FORWARD,FFTW_ESTIMATE);
|
||||||
|
fftwf_execute_dft( m_plan, src,dst);
|
||||||
|
}
|
||||||
|
inline
|
||||||
|
void inv2( complex_type * dst,complex_type * src,int nrows,int ncols) {
|
||||||
|
if (m_plan==NULL) m_plan = fftwf_plan_dft_2d(ncols,nrows,src,dst,FFTW_BACKWARD,FFTW_ESTIMATE);
|
||||||
|
fftwf_execute_dft( m_plan, src,dst);
|
||||||
|
}
|
||||||
|
|
||||||
};
|
};
|
||||||
template <>
|
template <>
|
||||||
struct ei_fftw_plan<double>
|
struct ei_fftw_plan<double>
|
||||||
@ -121,6 +133,16 @@
|
|||||||
m_plan = fftw_plan_dft_c2r_1d(nfft,src,dst,FFTW_ESTIMATE);
|
m_plan = fftw_plan_dft_c2r_1d(nfft,src,dst,FFTW_ESTIMATE);
|
||||||
fftw_execute_dft_c2r( m_plan, src,dst);
|
fftw_execute_dft_c2r( m_plan, src,dst);
|
||||||
}
|
}
|
||||||
|
inline
|
||||||
|
void fwd2( complex_type * dst,complex_type * src,int nrows,int ncols) {
|
||||||
|
if (m_plan==NULL) m_plan = fftw_plan_dft_2d(ncols,nrows,src,dst,FFTW_FORWARD,FFTW_ESTIMATE);
|
||||||
|
fftw_execute_dft( m_plan, src,dst);
|
||||||
|
}
|
||||||
|
inline
|
||||||
|
void inv2( complex_type * dst,complex_type * src,int nrows,int ncols) {
|
||||||
|
if (m_plan==NULL) m_plan = fftw_plan_dft_2d(ncols,nrows,src,dst,FFTW_BACKWARD,FFTW_ESTIMATE);
|
||||||
|
fftw_execute_dft( m_plan, src,dst);
|
||||||
|
}
|
||||||
};
|
};
|
||||||
template <>
|
template <>
|
||||||
struct ei_fftw_plan<long double>
|
struct ei_fftw_plan<long double>
|
||||||
@ -152,6 +174,16 @@
|
|||||||
m_plan = fftwl_plan_dft_c2r_1d(nfft,src,dst,FFTW_ESTIMATE);
|
m_plan = fftwl_plan_dft_c2r_1d(nfft,src,dst,FFTW_ESTIMATE);
|
||||||
fftwl_execute_dft_c2r( m_plan, src,dst);
|
fftwl_execute_dft_c2r( m_plan, src,dst);
|
||||||
}
|
}
|
||||||
|
inline
|
||||||
|
void fwd2( complex_type * dst,complex_type * src,int nrows,int ncols) {
|
||||||
|
if (m_plan==NULL) m_plan = fftwl_plan_dft_2d(ncols,nrows,src,dst,FFTW_FORWARD,FFTW_ESTIMATE);
|
||||||
|
fftwl_execute_dft( m_plan, src,dst);
|
||||||
|
}
|
||||||
|
inline
|
||||||
|
void inv2( complex_type * dst,complex_type * src,int nrows,int ncols) {
|
||||||
|
if (m_plan==NULL) m_plan = fftwl_plan_dft_2d(ncols,nrows,src,dst,FFTW_BACKWARD,FFTW_ESTIMATE);
|
||||||
|
fftwl_execute_dft( m_plan, src,dst);
|
||||||
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
template <typename _Scalar>
|
template <typename _Scalar>
|
||||||
@ -180,6 +212,13 @@
|
|||||||
get_plan(nfft,false,dst,src).fwd(ei_fftw_cast(dst), ei_fftw_cast(src) ,nfft);
|
get_plan(nfft,false,dst,src).fwd(ei_fftw_cast(dst), ei_fftw_cast(src) ,nfft);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// 2-d complex-to-complex
|
||||||
|
inline
|
||||||
|
void fwd2(Complex * dst, const Complex * src, int nrows,int ncols)
|
||||||
|
{
|
||||||
|
get_plan(nrows,ncols,false,dst,src).fwd2(ei_fftw_cast(dst), ei_fftw_cast(src) ,nrows,ncols);
|
||||||
|
}
|
||||||
|
|
||||||
// inverse complex-to-complex
|
// inverse complex-to-complex
|
||||||
inline
|
inline
|
||||||
void inv(Complex * dst,const Complex *src,int nfft)
|
void inv(Complex * dst,const Complex *src,int nfft)
|
||||||
@ -194,9 +233,18 @@
|
|||||||
get_plan(nfft,true,dst,src).inv(ei_fftw_cast(dst), ei_fftw_cast(src),nfft );
|
get_plan(nfft,true,dst,src).inv(ei_fftw_cast(dst), ei_fftw_cast(src),nfft );
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// 2-d complex-to-complex
|
||||||
|
inline
|
||||||
|
void inv2(Complex * dst, const Complex * src, int nrows,int ncols)
|
||||||
|
{
|
||||||
|
get_plan(nrows,ncols,true,dst,src).inv2(ei_fftw_cast(dst), ei_fftw_cast(src) ,nrows,ncols);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
protected:
|
protected:
|
||||||
typedef ei_fftw_plan<Scalar> PlanData;
|
typedef ei_fftw_plan<Scalar> PlanData;
|
||||||
typedef std::map<int,PlanData> PlanMap;
|
|
||||||
|
typedef std::map<int64_t,PlanData> PlanMap;
|
||||||
|
|
||||||
PlanMap m_plans;
|
PlanMap m_plans;
|
||||||
|
|
||||||
@ -205,7 +253,16 @@
|
|||||||
{
|
{
|
||||||
bool inplace = (dst==src);
|
bool inplace = (dst==src);
|
||||||
bool aligned = ( (reinterpret_cast<size_t>(src)&15) | (reinterpret_cast<size_t>(dst)&15) ) == 0;
|
bool aligned = ( (reinterpret_cast<size_t>(src)&15) | (reinterpret_cast<size_t>(dst)&15) ) == 0;
|
||||||
int key = (nfft<<3 ) | (inverse<<2) | (inplace<<1) | aligned;
|
int64_t key = ( (nfft<<3 ) | (inverse<<2) | (inplace<<1) | aligned ) << 1;
|
||||||
|
return m_plans[key];
|
||||||
|
}
|
||||||
|
|
||||||
|
inline
|
||||||
|
PlanData & get_plan(int nrows,int ncols,bool inverse,void * dst,const void * src)
|
||||||
|
{
|
||||||
|
bool inplace = (dst==src);
|
||||||
|
bool aligned = ( (reinterpret_cast<size_t>(src)&15) | (reinterpret_cast<size_t>(dst)&15) ) == 0;
|
||||||
|
int64_t key = ( ( (((int64_t)ncols) << 30)|(nrows<<3 ) | (inverse<<2) | (inplace<<1) | aligned ) << 1 ) + 1;
|
||||||
return m_plans[key];
|
return m_plans[key];
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
@ -106,29 +106,29 @@ void test_scalar_generic(int nfft)
|
|||||||
// make sure it DOESN'T give the right full spectrum answer
|
// make sure it DOESN'T give the right full spectrum answer
|
||||||
// if we've asked for half-spectrum
|
// if we've asked for half-spectrum
|
||||||
fft.SetFlag(fft.HalfSpectrum );
|
fft.SetFlag(fft.HalfSpectrum );
|
||||||
fft.fwd( outbuf,inbuf);
|
fft.fwd( &outbuf,inbuf);
|
||||||
VERIFY(outbuf.size() == (size_t)( (nfft>>1)+1) );
|
VERIFY(outbuf.size() == (size_t)( (nfft>>1)+1) );
|
||||||
VERIFY( fft_rmse(outbuf,inbuf) < test_precision<T>() );// gross check
|
VERIFY( fft_rmse(outbuf,inbuf) < test_precision<T>() );// gross check
|
||||||
|
|
||||||
fft.ClearFlag(fft.HalfSpectrum );
|
fft.ClearFlag(fft.HalfSpectrum );
|
||||||
fft.fwd( outbuf,inbuf);
|
fft.fwd( &outbuf,inbuf);
|
||||||
VERIFY( fft_rmse(outbuf,inbuf) < test_precision<T>() );// gross check
|
VERIFY( fft_rmse(outbuf,inbuf) < test_precision<T>() );// gross check
|
||||||
|
|
||||||
ScalarVector buf3;
|
ScalarVector buf3;
|
||||||
fft.inv( buf3 , outbuf);
|
fft.inv( &buf3 , outbuf);
|
||||||
VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>() );// gross check
|
VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>() );// gross check
|
||||||
|
|
||||||
// verify that the Unscaled flag takes effect
|
// verify that the Unscaled flag takes effect
|
||||||
ComplexVector buf4;
|
ComplexVector buf4;
|
||||||
fft.SetFlag(fft.Unscaled);
|
fft.SetFlag(fft.Unscaled);
|
||||||
fft.inv( buf4 , outbuf);
|
fft.inv( &buf4 , outbuf);
|
||||||
for (int k=0;k<nfft;++k)
|
for (int k=0;k<nfft;++k)
|
||||||
buf4[k] *= T(1./nfft);
|
buf4[k] *= T(1./nfft);
|
||||||
VERIFY( dif_rmse(inbuf,buf4) < test_precision<T>() );// gross check
|
VERIFY( dif_rmse(inbuf,buf4) < test_precision<T>() );// gross check
|
||||||
|
|
||||||
// verify that ClearFlag works
|
// verify that ClearFlag works
|
||||||
fft.ClearFlag(fft.Unscaled);
|
fft.ClearFlag(fft.Unscaled);
|
||||||
fft.inv( buf3 , outbuf);
|
fft.inv( &buf3 , outbuf);
|
||||||
VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>() );// gross check
|
VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>() );// gross check
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -152,25 +152,25 @@ void test_complex_generic(int nfft)
|
|||||||
ComplexVector buf3;
|
ComplexVector buf3;
|
||||||
for (int k=0;k<nfft;++k)
|
for (int k=0;k<nfft;++k)
|
||||||
inbuf[k]= Complex( (T)(rand()/(double)RAND_MAX - .5), (T)(rand()/(double)RAND_MAX - .5) );
|
inbuf[k]= Complex( (T)(rand()/(double)RAND_MAX - .5), (T)(rand()/(double)RAND_MAX - .5) );
|
||||||
fft.fwd( outbuf , inbuf);
|
fft.fwd( &outbuf , inbuf);
|
||||||
|
|
||||||
VERIFY( fft_rmse(outbuf,inbuf) < test_precision<T>() );// gross check
|
VERIFY( fft_rmse(outbuf,inbuf) < test_precision<T>() );// gross check
|
||||||
|
|
||||||
fft.inv( buf3 , outbuf);
|
fft.inv( &buf3 , outbuf);
|
||||||
|
|
||||||
VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>() );// gross check
|
VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>() );// gross check
|
||||||
|
|
||||||
// verify that the Unscaled flag takes effect
|
// verify that the Unscaled flag takes effect
|
||||||
ComplexVector buf4;
|
ComplexVector buf4;
|
||||||
fft.SetFlag(fft.Unscaled);
|
fft.SetFlag(fft.Unscaled);
|
||||||
fft.inv( buf4 , outbuf);
|
fft.inv( &buf4 , outbuf);
|
||||||
for (int k=0;k<nfft;++k)
|
for (int k=0;k<nfft;++k)
|
||||||
buf4[k] *= T(1./nfft);
|
buf4[k] *= T(1./nfft);
|
||||||
VERIFY( dif_rmse(inbuf,buf4) < test_precision<T>() );// gross check
|
VERIFY( dif_rmse(inbuf,buf4) < test_precision<T>() );// gross check
|
||||||
|
|
||||||
// verify that ClearFlag works
|
// verify that ClearFlag works
|
||||||
fft.ClearFlag(fft.Unscaled);
|
fft.ClearFlag(fft.Unscaled);
|
||||||
fft.inv( buf3 , outbuf);
|
fft.inv( &buf3 , outbuf);
|
||||||
VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>() );// gross check
|
VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>() );// gross check
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -26,7 +26,11 @@
|
|||||||
#include <fftw3.h>
|
#include <fftw3.h>
|
||||||
#include <unsupported/Eigen/FFT>
|
#include <unsupported/Eigen/FFT>
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
std::complex<T> RandomCpx() { return std::complex<T>( (T)(rand()/(T)RAND_MAX - .5), (T)(rand()/(T)RAND_MAX - .5) ); }
|
||||||
|
|
||||||
using namespace std;
|
using namespace std;
|
||||||
|
using namespace Eigen;
|
||||||
|
|
||||||
float norm(float x) {return x*x;}
|
float norm(float x) {return x*x;}
|
||||||
double norm(double x) {return x*x;}
|
double norm(double x) {return x*x;}
|
||||||
@ -87,11 +91,11 @@ void test_scalar(int nfft)
|
|||||||
vector<Complex> outbuf;
|
vector<Complex> outbuf;
|
||||||
for (int k=0;k<nfft;++k)
|
for (int k=0;k<nfft;++k)
|
||||||
inbuf[k]= (T)(rand()/(double)RAND_MAX - .5);
|
inbuf[k]= (T)(rand()/(double)RAND_MAX - .5);
|
||||||
fft.fwd( outbuf,inbuf);
|
fft.fwd( &outbuf,inbuf);
|
||||||
VERIFY( fft_rmse(outbuf,inbuf) < test_precision<T>() );// gross check
|
VERIFY( fft_rmse(outbuf,inbuf) < test_precision<T>() );// gross check
|
||||||
|
|
||||||
vector<Scalar> buf3;
|
vector<Scalar> buf3;
|
||||||
fft.inv( buf3 , outbuf);
|
fft.inv( &buf3 , outbuf);
|
||||||
VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>() );// gross check
|
VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>() );// gross check
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -106,19 +110,65 @@ void test_complex(int nfft)
|
|||||||
vector<Complex> outbuf;
|
vector<Complex> outbuf;
|
||||||
vector<Complex> buf3;
|
vector<Complex> buf3;
|
||||||
for (int k=0;k<nfft;++k)
|
for (int k=0;k<nfft;++k)
|
||||||
inbuf[k]= Complex( (T)(rand()/(double)RAND_MAX - .5), (T)(rand()/(double)RAND_MAX - .5) );
|
inbuf[k]= RandomCpx<T>();
|
||||||
fft.fwd( outbuf , inbuf);
|
fft.fwd( &outbuf , inbuf);
|
||||||
|
|
||||||
VERIFY( fft_rmse(outbuf,inbuf) < test_precision<T>() );// gross check
|
VERIFY( fft_rmse(outbuf,inbuf) < test_precision<T>() );// gross check
|
||||||
|
|
||||||
fft.inv( buf3 , outbuf);
|
fft.inv( &buf3 , outbuf);
|
||||||
|
|
||||||
VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>() );// gross check
|
VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>() );// gross check
|
||||||
}
|
}
|
||||||
|
|
||||||
void test_FFTW()
|
template <typename T,int nrows,int ncols>
|
||||||
|
void test_complex2d()
|
||||||
{
|
{
|
||||||
|
|
||||||
|
typedef typename Eigen::FFT<T>::Complex Complex;
|
||||||
|
FFT<T> fft;
|
||||||
|
|
||||||
|
Eigen::Matrix<Complex,nrows,ncols> src;
|
||||||
|
Eigen::Matrix<Complex,nrows,ncols> dst;
|
||||||
|
Eigen::Matrix<Complex,nrows,ncols> src2;
|
||||||
|
Eigen::Matrix<Complex,nrows,ncols> dst2;
|
||||||
|
|
||||||
|
//src = Eigen::Matrix<Complex,nrows,ncols>::Random();
|
||||||
|
src = Eigen::Matrix<Complex,nrows,ncols>::Identity();
|
||||||
|
|
||||||
|
for (int k=0;k<ncols;k++) {
|
||||||
|
Eigen::Matrix<Complex,nrows,1> tmpIn = src.col(k);
|
||||||
|
Eigen::Matrix<Complex,nrows,1> tmpOut;
|
||||||
|
fft.fwd( &tmpOut,tmpIn );
|
||||||
|
dst2.col(k) = tmpOut;
|
||||||
|
}
|
||||||
|
//cout << "dst2: " << dst2 << "\n\n";
|
||||||
|
|
||||||
|
for (int k=0;k<nrows;k++) {
|
||||||
|
Eigen::Matrix<Complex,1,ncols> tmpIn = dst2.row(k);
|
||||||
|
Eigen::Matrix<Complex,1,ncols> tmpOut;
|
||||||
|
fft.fwd( &tmpOut, tmpIn);
|
||||||
|
dst2.row(k) = tmpOut;
|
||||||
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
*/
|
||||||
|
fft.fwd2(dst.data(),src.data(),nrows,ncols);
|
||||||
|
fft.inv2(src2.data(),dst.data(),nrows,ncols);
|
||||||
|
/*
|
||||||
|
cout << "src: " << src << "\n\n";
|
||||||
|
cout << "dst: " << dst << "\n\n";
|
||||||
|
cout << "src2: " << src2 << "\n\n";
|
||||||
|
cout << "dst2: " << dst2 << "\n\n";
|
||||||
|
*/
|
||||||
|
VERIFY( (src-src2).norm() < test_precision<T>() );
|
||||||
|
VERIFY( (dst-dst2).norm() < test_precision<T>() );
|
||||||
|
}
|
||||||
|
|
||||||
|
void test_FFTW()
|
||||||
|
{
|
||||||
|
CALL_SUBTEST( ( test_complex2d<float,4,8> () ) );
|
||||||
|
CALL_SUBTEST( ( test_complex2d<double,4,8> () ) );
|
||||||
|
//CALL_SUBTEST( ( test_complex2d<long double,4,8> () ) );
|
||||||
CALL_SUBTEST( test_complex<float>(32) ); CALL_SUBTEST( test_complex<double>(32) ); CALL_SUBTEST( test_complex<long double>(32) );
|
CALL_SUBTEST( test_complex<float>(32) ); CALL_SUBTEST( test_complex<double>(32) ); CALL_SUBTEST( test_complex<long double>(32) );
|
||||||
CALL_SUBTEST( test_complex<float>(256) ); CALL_SUBTEST( test_complex<double>(256) ); CALL_SUBTEST( test_complex<long double>(256) );
|
CALL_SUBTEST( test_complex<float>(256) ); CALL_SUBTEST( test_complex<double>(256) ); CALL_SUBTEST( test_complex<long double>(256) );
|
||||||
CALL_SUBTEST( test_complex<float>(3*8) ); CALL_SUBTEST( test_complex<double>(3*8) ); CALL_SUBTEST( test_complex<long double>(3*8) );
|
CALL_SUBTEST( test_complex<float>(3*8) ); CALL_SUBTEST( test_complex<double>(3*8) ); CALL_SUBTEST( test_complex<long double>(3*8) );
|
||||||
@ -127,8 +177,6 @@ void test_FFTW()
|
|||||||
CALL_SUBTEST( test_complex<float>(2*3*4*5) ); CALL_SUBTEST( test_complex<double>(2*3*4*5) ); CALL_SUBTEST( test_complex<long double>(2*3*4*5) );
|
CALL_SUBTEST( test_complex<float>(2*3*4*5) ); CALL_SUBTEST( test_complex<double>(2*3*4*5) ); CALL_SUBTEST( test_complex<long double>(2*3*4*5) );
|
||||||
CALL_SUBTEST( test_complex<float>(2*3*4*5*7) ); CALL_SUBTEST( test_complex<double>(2*3*4*5*7) ); CALL_SUBTEST( test_complex<long double>(2*3*4*5*7) );
|
CALL_SUBTEST( test_complex<float>(2*3*4*5*7) ); CALL_SUBTEST( test_complex<double>(2*3*4*5*7) ); CALL_SUBTEST( test_complex<long double>(2*3*4*5*7) );
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
CALL_SUBTEST( test_scalar<float>(32) ); CALL_SUBTEST( test_scalar<double>(32) ); CALL_SUBTEST( test_scalar<long double>(32) );
|
CALL_SUBTEST( test_scalar<float>(32) ); CALL_SUBTEST( test_scalar<double>(32) ); CALL_SUBTEST( test_scalar<long double>(32) );
|
||||||
CALL_SUBTEST( test_scalar<float>(45) ); CALL_SUBTEST( test_scalar<double>(45) ); CALL_SUBTEST( test_scalar<long double>(45) );
|
CALL_SUBTEST( test_scalar<float>(45) ); CALL_SUBTEST( test_scalar<double>(45) ); CALL_SUBTEST( test_scalar<long double>(45) );
|
||||||
CALL_SUBTEST( test_scalar<float>(50) ); CALL_SUBTEST( test_scalar<double>(50) ); CALL_SUBTEST( test_scalar<long double>(50) );
|
CALL_SUBTEST( test_scalar<float>(50) ); CALL_SUBTEST( test_scalar<double>(50) ); CALL_SUBTEST( test_scalar<long double>(50) );
|
||||||
|
Loading…
x
Reference in New Issue
Block a user