cleanning pass on the sparse modules:

- remove outdated/deprecated code
 - improve a bit the documentation
This commit is contained in:
Gael Guennebaud 2011-11-28 16:36:37 +01:00
parent 2d621d235d
commit cda397b117
16 changed files with 252 additions and 689 deletions

View File

@ -11,7 +11,7 @@ extern "C" {
namespace Eigen { namespace Eigen {
/** \ingroup Sparse_modules /** \ingroup Support_modules
* \defgroup CholmodSupport_Module CholmodSupport module * \defgroup CholmodSupport_Module CholmodSupport module
* *
* *

View File

@ -244,6 +244,10 @@ using std::ptrdiff_t;
* \endcode * \endcode
*/ */
/** \defgroup Support_modules Support modules [category]
* Category of modules which add support for external libraries.
*/
#include "src/Core/util/Constants.h" #include "src/Core/util/Constants.h"
#include "src/Core/util/ForwardDeclarations.h" #include "src/Core/util/ForwardDeclarations.h"
#include "src/Core/util/Meta.h" #include "src/Core/util/Meta.h"

View File

@ -33,7 +33,8 @@
namespace Eigen { namespace Eigen {
/** \defgroup Eigen2Support_Module Eigen2 support module /** \ingroup Support_modules
* \defgroup Eigen2Support_Module Eigen2 support module
* This module provides a couple of deprecated functions improving the compatibility with Eigen2. * This module provides a couple of deprecated functions improving the compatibility with Eigen2.
* *
* To use it, define EIGEN2_SUPPORT before including any Eigen header * To use it, define EIGEN2_SUPPORT before including any Eigen header

View File

@ -30,7 +30,7 @@ namespace Eigen { struct SluMatrix; }
namespace Eigen { namespace Eigen {
/** \ingroup Sparse_modules /** \ingroup Support_modules
* \defgroup SuperLUSupport_Module SuperLUSupport module * \defgroup SuperLUSupport_Module SuperLUSupport module
* *
* \warning When including this module, you have to use SUPERLU_EMPTY instead of EMPTY which is no longer defined because it is too polluting. * \warning When including this module, you have to use SUPERLU_EMPTY instead of EMPTY which is no longer defined because it is too polluting.

View File

@ -11,7 +11,7 @@ extern "C" {
namespace Eigen { namespace Eigen {
/** \ingroup Sparse_modules /** \ingroup Support_modules
* \defgroup UmfPackSupport_Module UmfPackSupport module * \defgroup UmfPackSupport_Module UmfPackSupport module
* *
* *

View File

@ -149,7 +149,9 @@ enum CholmodMode {
CholmodAuto, CholmodSimplicialLLt, CholmodSupernodalLLt, CholmodLDLt CholmodAuto, CholmodSimplicialLLt, CholmodSupernodalLLt, CholmodLDLt
}; };
/** \brief A Cholesky factorization and solver based on Cholmod /** \ingroup CholmodSupport_Module
* \class CholmodDecomposition
* \brief A Cholesky factorization and solver based on Cholmod
* *
* This class allows to solve for A.X = B sparse linear problems via a LL^T or LDL^T Cholesky factorization * This class allows to solve for A.X = B sparse linear problems via a LL^T or LDL^T Cholesky factorization
* using the Cholmod library. The sparse matrix A must be selfajoint and positive definite. The vectors or matrices * using the Cholmod library. The sparse matrix A must be selfajoint and positive definite. The vectors or matrices
@ -159,6 +161,7 @@ enum CholmodMode {
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
* or Upper. Default is Lower. * or Upper. Default is Lower.
* *
* \sa TutorialSparseDirectSolvers
*/ */
template<typename _MatrixType, int _UpLo = Lower> template<typename _MatrixType, int _UpLo = Lower>
class CholmodDecomposition class CholmodDecomposition

View File

@ -28,7 +28,8 @@
/* This file contains the respective InnerIterator definition of the expressions defined in Eigen/Core /* This file contains the respective InnerIterator definition of the expressions defined in Eigen/Core
*/ */
/** \class InnerIterator /** \ingroup SparseCore_Module
* \class InnerIterator
* \brief An InnerIterator allows to loop over the element of a sparse (or dense) matrix or expression * \brief An InnerIterator allows to loop over the element of a sparse (or dense) matrix or expression
* *
* todo * todo

View File

@ -315,42 +315,6 @@ template<typename Derived>
const SparseInnerVectorSet<Derived,1> SparseMatrixBase<Derived>::innerVector(Index outer) const const SparseInnerVectorSet<Derived,1> SparseMatrixBase<Derived>::innerVector(Index outer) const
{ return SparseInnerVectorSet<Derived,1>(derived(), outer); } { return SparseInnerVectorSet<Derived,1>(derived(), outer); }
//----------
/** \deprecated see middleRows */
template<typename Derived>
SparseInnerVectorSet<Derived,Dynamic> SparseMatrixBase<Derived>::subrows(Index start, Index size)
{
EIGEN_STATIC_ASSERT(IsRowMajor,THIS_METHOD_IS_ONLY_FOR_ROW_MAJOR_MATRICES);
return innerVectors(start, size);
}
/** \deprecated see middleRows */
template<typename Derived>
const SparseInnerVectorSet<Derived,Dynamic> SparseMatrixBase<Derived>::subrows(Index start, Index size) const
{
EIGEN_STATIC_ASSERT(IsRowMajor,THIS_METHOD_IS_ONLY_FOR_ROW_MAJOR_MATRICES);
return innerVectors(start, size);
}
/** \deprecated see middleCols */
template<typename Derived>
SparseInnerVectorSet<Derived,Dynamic> SparseMatrixBase<Derived>::subcols(Index start, Index size)
{
EIGEN_STATIC_ASSERT(!IsRowMajor,THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
return innerVectors(start, size);
}
/** \deprecated see middleCols */
template<typename Derived>
const SparseInnerVectorSet<Derived,Dynamic> SparseMatrixBase<Derived>::subcols(Index start, Index size) const
{
EIGEN_STATIC_ASSERT(!IsRowMajor,THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
return innerVectors(start, size);
}
/** \returns the i-th row of the matrix \c *this. For row-major matrix only. */ /** \returns the i-th row of the matrix \c *this. For row-major matrix only. */
template<typename Derived> template<typename Derived>
SparseInnerVectorSet<Derived,Dynamic> SparseMatrixBase<Derived>::middleRows(Index start, Index size) SparseInnerVectorSet<Derived,Dynamic> SparseMatrixBase<Derived>::middleRows(Index start, Index size)

View File

@ -298,16 +298,6 @@ class sparse_cwise_binary_op_inner_iterator_selector<scalar_product_op<T>, Lhs,
* Implementation of SparseMatrixBase and SparseCwise functions/operators * Implementation of SparseMatrixBase and SparseCwise functions/operators
***************************************************************************/ ***************************************************************************/
// template<typename Derived>
// template<typename OtherDerived>
// EIGEN_STRONG_INLINE const CwiseBinaryOp<internal::scalar_difference_op<typename internal::traits<Derived>::Scalar>,
// Derived, OtherDerived>
// SparseMatrixBase<Derived>::operator-(const SparseMatrixBase<OtherDerived> &other) const
// {
// return CwiseBinaryOp<internal::scalar_difference_op<Scalar>,
// Derived, OtherDerived>(derived(), other.derived());
// }
template<typename Derived> template<typename Derived>
template<typename OtherDerived> template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived & EIGEN_STRONG_INLINE Derived &
@ -316,14 +306,6 @@ SparseMatrixBase<Derived>::operator-=(const SparseMatrixBase<OtherDerived> &othe
return *this = derived() - other.derived(); return *this = derived() - other.derived();
} }
// template<typename Derived>
// template<typename OtherDerived>
// EIGEN_STRONG_INLINE const CwiseBinaryOp<internal::scalar_sum_op<typename internal::traits<Derived>::Scalar>, Derived, OtherDerived>
// SparseMatrixBase<Derived>::operator+(const SparseMatrixBase<OtherDerived> &other) const
// {
// return CwiseBinaryOp<internal::scalar_sum_op<Scalar>, Derived, OtherDerived>(derived(), other.derived());
// }
template<typename Derived> template<typename Derived>
template<typename OtherDerived> template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived & EIGEN_STRONG_INLINE Derived &
@ -332,14 +314,6 @@ SparseMatrixBase<Derived>::operator+=(const SparseMatrixBase<OtherDerived>& othe
return *this = derived() + other.derived(); return *this = derived() + other.derived();
} }
// template<typename ExpressionType>
// template<typename OtherDerived>
// EIGEN_STRONG_INLINE const EIGEN_SPARSE_CWISE_PRODUCT_RETURN_TYPE
// SparseCwise<ExpressionType>::operator*(const SparseMatrixBase<OtherDerived> &other) const
// {
// return EIGEN_SPARSE_CWISE_PRODUCT_RETURN_TYPE(_expression(), other.derived());
// }
template<typename Derived> template<typename Derived>
template<typename OtherDerived> template<typename OtherDerived>
EIGEN_STRONG_INLINE const EIGEN_SPARSE_CWISE_PRODUCT_RETURN_TYPE EIGEN_STRONG_INLINE const EIGEN_SPARSE_CWISE_PRODUCT_RETURN_TYPE
@ -348,28 +322,4 @@ SparseMatrixBase<Derived>::cwiseProduct(const MatrixBase<OtherDerived> &other) c
return EIGEN_SPARSE_CWISE_PRODUCT_RETURN_TYPE(derived(), other.derived()); return EIGEN_SPARSE_CWISE_PRODUCT_RETURN_TYPE(derived(), other.derived());
} }
// template<typename ExpressionType>
// template<typename OtherDerived>
// EIGEN_STRONG_INLINE const EIGEN_SPARSE_CWISE_BINOP_RETURN_TYPE(internal::scalar_quotient_op)
// SparseCwise<ExpressionType>::operator/(const SparseMatrixBase<OtherDerived> &other) const
// {
// return EIGEN_SPARSE_CWISE_BINOP_RETURN_TYPE(internal::scalar_quotient_op)(_expression(), other.derived());
// }
//
// template<typename ExpressionType>
// template<typename OtherDerived>
// EIGEN_STRONG_INLINE const EIGEN_SPARSE_CWISE_BINOP_RETURN_TYPE(internal::scalar_quotient_op)
// SparseCwise<ExpressionType>::operator/(const MatrixBase<OtherDerived> &other) const
// {
// return EIGEN_SPARSE_CWISE_BINOP_RETURN_TYPE(internal::scalar_quotient_op)(_expression(), other.derived());
// }
// template<typename ExpressionType>
// template<typename OtherDerived>
// inline ExpressionType& SparseCwise<ExpressionType>::operator*=(const SparseMatrixBase<OtherDerived> &other)
// {
// return m_matrix.const_cast_derived() = _expression() * other.derived();
// }
#endif // EIGEN_SPARSE_CWISE_BINARY_OP_H #endif // EIGEN_SPARSE_CWISE_BINARY_OP_H

View File

@ -25,19 +25,6 @@
#ifndef EIGEN_SPARSE_CWISE_UNARY_OP_H #ifndef EIGEN_SPARSE_CWISE_UNARY_OP_H
#define EIGEN_SPARSE_CWISE_UNARY_OP_H #define EIGEN_SPARSE_CWISE_UNARY_OP_H
// template<typename UnaryOp, typename MatrixType>
// struct internal::traits<SparseCwiseUnaryOp<UnaryOp, MatrixType> > : internal::traits<MatrixType>
// {
// typedef typename internal::result_of<
// UnaryOp(typename MatrixType::Scalar)
// >::type Scalar;
// typedef typename MatrixType::Nested MatrixTypeNested;
// typedef typename internal::remove_reference<MatrixTypeNested>::type _MatrixTypeNested;
// enum {
// CoeffReadCost = _MatrixTypeNested::CoeffReadCost + internal::functor_traits<UnaryOp>::Cost
// };
// };
template<typename UnaryOp, typename MatrixType> template<typename UnaryOp, typename MatrixType>
class CwiseUnaryOpImpl<UnaryOp,MatrixType,Sparse> class CwiseUnaryOpImpl<UnaryOp,MatrixType,Sparse>
: public SparseMatrixBase<CwiseUnaryOp<UnaryOp, MatrixType> > : public SparseMatrixBase<CwiseUnaryOp<UnaryOp, MatrixType> >

View File

@ -25,22 +25,28 @@
#ifndef EIGEN_SPARSEMATRIX_H #ifndef EIGEN_SPARSEMATRIX_H
#define EIGEN_SPARSEMATRIX_H #define EIGEN_SPARSEMATRIX_H
/** \ingroup Sparse_Module /** \ingroup SparseCore_Module
* *
* \class SparseMatrix * \class SparseMatrix
* *
* \brief The main sparse matrix class * \brief A versatible sparse matrix representation
* *
* This class implements a sparse matrix using the very common compressed row/column storage * This class implements a more versatile variants of the common \em compressed row/column storage format.
* scheme. * Each colmun's (resp. row) non zeros are stored as a pair of value with associated row (resp. colmiun) index.
* All the non zeros are stored in a single large buffer. Unlike the \em compressed format, there might be extra
* space inbetween the nonzeros of two successive colmuns (resp. rows) such that insertion of new non-zero
* can be done with limited memory reallocation and copies.
*
* A call to the function makeCompressed() turns the matrix into the standard \em compressed format
* compatible with many library.
*
* More details on this storage sceheme are given in the \ref TutorialSparse "manual pages".
* *
* \tparam _Scalar the scalar type, i.e. the type of the coefficients * \tparam _Scalar the scalar type, i.e. the type of the coefficients
* \tparam _Options Union of bit flags controlling the storage scheme. Currently the only possibility * \tparam _Options Union of bit flags controlling the storage scheme. Currently the only possibility
* is RowMajor. The default is 0 which means column-major. * is RowMajor. The default is 0 which means column-major.
* \tparam _Index the type of the indices. Default is \c int. * \tparam _Index the type of the indices. Default is \c int.
* *
* See http://www.netlib.org/linalg/html_templates/node91.html for details on the storage scheme.
*
* This class can be extended with the help of the plugin mechanism described on the page * This class can be extended with the help of the plugin mechanism described on the page
* \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_SPARSEMATRIX_PLUGIN. * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_SPARSEMATRIX_PLUGIN.
*/ */
@ -72,12 +78,8 @@ class SparseMatrix
{ {
public: public:
EIGEN_SPARSE_PUBLIC_INTERFACE(SparseMatrix) EIGEN_SPARSE_PUBLIC_INTERFACE(SparseMatrix)
// using Base::operator=;
EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseMatrix, +=) EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseMatrix, +=)
EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseMatrix, -=) EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseMatrix, -=)
// FIXME: why are these operator already alvailable ???
// EIGEN_SPARSE_INHERIT_SCALAR_ASSIGNMENT_OPERATOR(SparseMatrix, *=)
// EIGEN_SPARSE_INHERIT_SCALAR_ASSIGNMENT_OPERATOR(SparseMatrix, /=)
typedef MappedSparseMatrix<Scalar,Flags> Map; typedef MappedSparseMatrix<Scalar,Flags> Map;
using Base::IsRowMajor; using Base::IsRowMajor;
@ -93,7 +95,7 @@ class SparseMatrix
Index m_outerSize; Index m_outerSize;
Index m_innerSize; Index m_innerSize;
Index* m_outerIndex; Index* m_outerIndex;
Index* m_innerNonZeros; // optional, if null then the data are compressed Index* m_innerNonZeros; // optional, if null then the data is compressed
CompressedStorage<Scalar,Index> m_data; CompressedStorage<Scalar,Index> m_data;
Eigen::Map<Matrix<Index,Dynamic,1> > innerNonZeros() { return Eigen::Map<Matrix<Index,Dynamic,1> >(m_innerNonZeros, m_innerNonZeros?m_outerSize:0); } Eigen::Map<Matrix<Index,Dynamic,1> > innerNonZeros() { return Eigen::Map<Matrix<Index,Dynamic,1> >(m_innerNonZeros, m_innerNonZeros?m_outerSize:0); }
@ -115,18 +117,32 @@ class SparseMatrix
return m_innerNonZeros ? m_innerNonZeros[j] : m_outerIndex[j+1]-m_outerIndex[j]; return m_innerNonZeros ? m_innerNonZeros[j] : m_outerIndex[j+1]-m_outerIndex[j];
} }
/** \internal
* \returns a const pointer to the array of values */
inline const Scalar* _valuePtr() const { return &m_data.value(0); } inline const Scalar* _valuePtr() const { return &m_data.value(0); }
/** \internal
* \returns a non-const pointer to the array of values */
inline Scalar* _valuePtr() { return &m_data.value(0); } inline Scalar* _valuePtr() { return &m_data.value(0); }
/** \internal
* \returns a const pointer to the array of inner indices */
inline const Index* _innerIndexPtr() const { return &m_data.index(0); } inline const Index* _innerIndexPtr() const { return &m_data.index(0); }
/** \internal
* \returns a non-const pointer to the array of inner indices */
inline Index* _innerIndexPtr() { return &m_data.index(0); } inline Index* _innerIndexPtr() { return &m_data.index(0); }
/** \internal
* \returns a const pointer to the array of the starting positions of the inner vectors */
inline const Index* _outerIndexPtr() const { return m_outerIndex; } inline const Index* _outerIndexPtr() const { return m_outerIndex; }
/** \internal
* \returns a non-const pointer to the array of the starting positions of the inner vectors */
inline Index* _outerIndexPtr() { return m_outerIndex; } inline Index* _outerIndexPtr() { return m_outerIndex; }
inline Storage& data() { return m_data; } inline Storage& data() { return m_data; }
inline const Storage& data() const { return m_data; } inline const Storage& data() const { return m_data; }
/** \returns the value of the matrix at position \a i, \a j
* This function returns Scalar(0) if the element is an explicit \em zero */
inline Scalar coeff(Index row, Index col) const inline Scalar coeff(Index row, Index col) const
{ {
const Index outer = IsRowMajor ? row : col; const Index outer = IsRowMajor ? row : col;
@ -135,6 +151,8 @@ class SparseMatrix
return m_data.atInRange(m_outerIndex[outer], end, inner); return m_data.atInRange(m_outerIndex[outer], end, inner);
} }
/** \returns a non-const reference to the value of the matrix at position \a i, \a j
* The element \b have to be a non-zero element. */
inline Scalar& coeffRef(Index row, Index col) inline Scalar& coeffRef(Index row, Index col)
{ {
const Index outer = IsRowMajor ? row : col; const Index outer = IsRowMajor ? row : col;
@ -180,9 +198,9 @@ class SparseMatrix
} }
#ifdef EIGEN_PARSED_BY_DOXYGEN #ifdef EIGEN_PARSED_BY_DOXYGEN
/** Preallocates \a reserveSize non zeros. /** Preallocates \a reserveSize[\c j] non zeros for each column (resp. row) \c j.
* *
* Precondition: the matrix must be in compressed mode. */ * This function turns the matrix in non-compressed() mode */
template<class SizesType> template<class SizesType>
inline void reserve(const SizesType& reserveSizes); inline void reserve(const SizesType& reserveSizes);
#else #else
@ -207,7 +225,6 @@ class SparseMatrix
if(compressed()) if(compressed())
{ {
std::size_t totalReserveSize = 0; std::size_t totalReserveSize = 0;
// std::cerr << "reserve from compressed format\n";
// turn the matrix into non-compressed mode // turn the matrix into non-compressed mode
m_innerNonZeros = new Index[m_outerSize]; m_innerNonZeros = new Index[m_outerSize];
@ -221,17 +238,13 @@ class SparseMatrix
count += reserveSizes[j] + (m_outerIndex[j+1]-m_outerIndex[j]); count += reserveSizes[j] + (m_outerIndex[j+1]-m_outerIndex[j]);
totalReserveSize += reserveSizes[j]; totalReserveSize += reserveSizes[j];
} }
// std::cerr << "data.r " << totalReserveSize << "\n";
m_data.reserve(totalReserveSize); m_data.reserve(totalReserveSize);
// std::cerr << "data.r OK\n";
std::ptrdiff_t previousOuterIndex = m_outerIndex[m_outerSize]; std::ptrdiff_t previousOuterIndex = m_outerIndex[m_outerSize];
for(std::ptrdiff_t j=m_outerSize-1; j>=0; --j) for(std::ptrdiff_t j=m_outerSize-1; j>=0; --j)
{ {
ptrdiff_t innerNNZ = previousOuterIndex - m_outerIndex[j]; ptrdiff_t innerNNZ = previousOuterIndex - m_outerIndex[j];
// std::cerr << j << " innerNNZ=" << innerNNZ << "\n";
for(std::ptrdiff_t i=innerNNZ-1; i>=0; --i) for(std::ptrdiff_t i=innerNNZ-1; i>=0; --i)
{ {
// std::cerr << " " << i << " " << newOuterIndex[j]+i << "\n";
m_data.index(newOuterIndex[j]+i) = m_data.index(m_outerIndex[j]+i); m_data.index(newOuterIndex[j]+i) = m_data.index(m_outerIndex[j]+i);
m_data.value(newOuterIndex[j]+i) = m_data.value(m_outerIndex[j]+i); m_data.value(newOuterIndex[j]+i) = m_data.value(m_outerIndex[j]+i);
} }
@ -239,17 +252,12 @@ class SparseMatrix
m_outerIndex[j] = newOuterIndex[j]; m_outerIndex[j] = newOuterIndex[j];
m_innerNonZeros[j] = innerNNZ; m_innerNonZeros[j] = innerNNZ;
} }
// std::cerr << "OK" << "\n";
m_outerIndex[m_outerSize] = m_outerIndex[m_outerSize-1] + m_innerNonZeros[m_outerSize-1] + reserveSizes[m_outerSize-1]; m_outerIndex[m_outerSize] = m_outerIndex[m_outerSize-1] + m_innerNonZeros[m_outerSize-1] + reserveSizes[m_outerSize-1];
m_data.resize(m_outerIndex[m_outerSize]); m_data.resize(m_outerIndex[m_outerSize]);
// std::cout << Matrix<Index,1,Dynamic>::Map(m_outerIndex, m_outerSize+1) << "\n";
// std::cout << Matrix<Index,1,Dynamic>::Map(m_innerNonZeros, m_outerSize) << "\n";
} }
else else
{ {
// std::cerr << "reserve from uncompressed format\n";
Index* newOuterIndex = new Index[m_outerSize+1]; Index* newOuterIndex = new Index[m_outerSize+1];
Index count = 0; Index count = 0;
for(Index j=0; j<m_outerSize; ++j) for(Index j=0; j<m_outerSize; ++j)
@ -267,11 +275,9 @@ class SparseMatrix
std::ptrdiff_t offset = newOuterIndex[j] - m_outerIndex[j]; std::ptrdiff_t offset = newOuterIndex[j] - m_outerIndex[j];
if(offset>0) if(offset>0)
{ {
// std::cout << "offset=" << offset << " m_data.size()=" << m_data.size() << "\n";
std::ptrdiff_t innerNNZ = m_innerNonZeros[j]; std::ptrdiff_t innerNNZ = m_innerNonZeros[j];
for(std::ptrdiff_t i=innerNNZ-1; i>=0; --i) for(std::ptrdiff_t i=innerNNZ-1; i>=0; --i)
{ {
// std::cout << newOuterIndex[j]+i << " <- " << m_outerIndex[j]+i << "\n";
m_data.index(newOuterIndex[j]+i) = m_data.index(m_outerIndex[j]+i); m_data.index(newOuterIndex[j]+i) = m_data.index(m_outerIndex[j]+i);
m_data.value(newOuterIndex[j]+i) = m_data.value(m_outerIndex[j]+i); m_data.value(newOuterIndex[j]+i) = m_data.value(m_outerIndex[j]+i);
} }
@ -287,7 +293,8 @@ class SparseMatrix
//--- low level purely coherent filling --- //--- low level purely coherent filling ---
/** \returns a reference to the non zero coefficient at position \a row, \a col assuming that: /** \internal
* \returns a reference to the non zero coefficient at position \a row, \a col assuming that:
* - the nonzero does not already exist * - the nonzero does not already exist
* - the new coefficient is the last one according to the storage order * - the new coefficient is the last one according to the storage order
* *
@ -301,7 +308,8 @@ class SparseMatrix
return insertBackByOuterInner(IsRowMajor?row:col, IsRowMajor?col:row); return insertBackByOuterInner(IsRowMajor?row:col, IsRowMajor?col:row);
} }
/** \sa insertBack, startVec */ /** \internal
* \sa insertBack, startVec */
inline Scalar& insertBackByOuterInner(Index outer, Index inner) inline Scalar& insertBackByOuterInner(Index outer, Index inner)
{ {
eigen_assert(size_t(m_outerIndex[outer+1]) == m_data.size() && "Invalid ordered insertion (invalid outer index)"); eigen_assert(size_t(m_outerIndex[outer+1]) == m_data.size() && "Invalid ordered insertion (invalid outer index)");
@ -312,7 +320,8 @@ class SparseMatrix
return m_data.value(p); return m_data.value(p);
} }
/** \warning use it only if you know what you are doing */ /** \internal
* \warning use it only if you know what you are doing */
inline Scalar& insertBackByOuterInnerUnordered(Index outer, Index inner) inline Scalar& insertBackByOuterInnerUnordered(Index outer, Index inner)
{ {
Index p = m_outerIndex[outer+1]; Index p = m_outerIndex[outer+1];
@ -321,7 +330,8 @@ class SparseMatrix
return m_data.value(p); return m_data.value(p);
} }
/** \sa insertBack, insertBackByOuterInner */ /** \internal
* \sa insertBack, insertBackByOuterInner */
inline void startVec(Index outer) inline void startVec(Index outer)
{ {
eigen_assert(m_outerIndex[outer]==int(m_data.size()) && "You must call startVec for each inner vector sequentially"); eigen_assert(m_outerIndex[outer]==int(m_data.size()) && "You must call startVec for each inner vector sequentially");
@ -347,154 +357,7 @@ class SparseMatrix
return insertUncompressed(row,col); return insertUncompressed(row,col);
} }
EIGEN_DONT_INLINE Scalar& insertCompressed(Index row, Index col)
{
eigen_assert(compressed());
const Index outer = IsRowMajor ? row : col;
const Index inner = IsRowMajor ? col : row;
Index previousOuter = outer;
if (m_outerIndex[outer+1]==0)
{
// we start a new inner vector
while (previousOuter>=0 && m_outerIndex[previousOuter]==0)
{
m_outerIndex[previousOuter] = static_cast<Index>(m_data.size());
--previousOuter;
}
m_outerIndex[outer+1] = m_outerIndex[outer];
}
// here we have to handle the tricky case where the outerIndex array
// starts with: [ 0 0 0 0 0 1 ...] and we are inserting in, e.g.,
// the 2nd inner vector...
bool isLastVec = (!(previousOuter==-1 && m_data.size()!=0))
&& (size_t(m_outerIndex[outer+1]) == m_data.size());
size_t startId = m_outerIndex[outer];
// FIXME let's make sure sizeof(long int) == sizeof(size_t)
size_t p = m_outerIndex[outer+1];
++m_outerIndex[outer+1];
float reallocRatio = 1;
if (m_data.allocatedSize()<=m_data.size())
{
// if there is no preallocated memory, let's reserve a minimum of 32 elements
if (m_data.size()==0)
{
m_data.reserve(32);
}
else
{
// we need to reallocate the data, to reduce multiple reallocations
// we use a smart resize algorithm based on the current filling ratio
// in addition, we use float to avoid integers overflows
float nnzEstimate = float(m_outerIndex[outer])*float(m_outerSize)/float(outer+1);
reallocRatio = (nnzEstimate-float(m_data.size()))/float(m_data.size());
// furthermore we bound the realloc ratio to:
// 1) reduce multiple minor realloc when the matrix is almost filled
// 2) avoid to allocate too much memory when the matrix is almost empty
reallocRatio = (std::min)((std::max)(reallocRatio,1.5f),8.f);
}
}
m_data.resize(m_data.size()+1,reallocRatio);
if (!isLastVec)
{
if (previousOuter==-1)
{
// oops wrong guess.
// let's correct the outer offsets
for (Index k=0; k<=(outer+1); ++k)
m_outerIndex[k] = 0;
Index k=outer+1;
while(m_outerIndex[k]==0)
m_outerIndex[k++] = 1;
while (k<=m_outerSize && m_outerIndex[k]!=0)
m_outerIndex[k++]++;
p = 0;
--k;
k = m_outerIndex[k]-1;
while (k>0)
{
m_data.index(k) = m_data.index(k-1);
m_data.value(k) = m_data.value(k-1);
k--;
}
}
else
{
// we are not inserting into the last inner vec
// update outer indices:
Index j = outer+2;
while (j<=m_outerSize && m_outerIndex[j]!=0)
m_outerIndex[j++]++;
--j;
// shift data of last vecs:
Index k = m_outerIndex[j]-1;
while (k>=Index(p))
{
m_data.index(k) = m_data.index(k-1);
m_data.value(k) = m_data.value(k-1);
k--;
}
}
}
while ( (p > startId) && (m_data.index(p-1) > inner) )
{
m_data.index(p) = m_data.index(p-1);
m_data.value(p) = m_data.value(p-1);
--p;
}
m_data.index(p) = inner;
return (m_data.value(p) = 0);
}
class SingletonVector
{
Index m_index;
Index m_value;
public:
typedef Index value_type;
SingletonVector(Index i, Index v)
: m_index(i), m_value(v)
{}
Index operator[](Index i) const { return i==m_index ? m_value : 0; }
};
EIGEN_DONT_INLINE Scalar& insertUncompressed(Index row, Index col)
{
eigen_assert(!compressed());
const Index outer = IsRowMajor ? row : col;
const Index inner = IsRowMajor ? col : row;
std::ptrdiff_t room = m_outerIndex[outer+1] - m_outerIndex[outer];
std::ptrdiff_t innerNNZ = m_innerNonZeros[outer];
if(innerNNZ>=room)
{
// this inner vector is full, we need to reallocate the whole buffer :(
reserve(SingletonVector(outer,std::max<std::ptrdiff_t>(2,innerNNZ)));
}
Index startId = m_outerIndex[outer];
Index p = startId + m_innerNonZeros[outer];
while ( (p > startId) && (m_data.index(p-1) > inner) )
{
m_data.index(p) = m_data.index(p-1);
m_data.value(p) = m_data.value(p-1);
--p;
}
m_innerNonZeros[outer]++;
m_data.index(p) = inner;
return (m_data.value(p) = 0);
}
/** Must be called after inserting a set of non zero entries. /** Must be called after inserting a set of non zero entries.
@ -517,16 +380,13 @@ class SparseMatrix
} }
} }
/** Turns the matrix into the \em compressed format.
*/
void makeCompressed() void makeCompressed()
{ {
if(compressed()) if(compressed())
return; return;
// std::cout << Matrix<Index,1,Dynamic>::Map(m_outerIndex, m_outerSize+1) << "\n";
// std::cout << Matrix<Index,1,Dynamic>::Map(m_innerNonZeros, m_outerSize) << "\n";
// std::cout << Matrix<Index,1,Dynamic>::Map(&m_data.index(0), nonZeros()) << "\n";
// std::cout << Matrix<Scalar,1,Dynamic>::Map(&m_data.value(0), nonZeros()) << "\n";
Index oldStart = m_outerIndex[1]; Index oldStart = m_outerIndex[1];
m_outerIndex[1] = m_innerNonZeros[0]; m_outerIndex[1] = m_innerNonZeros[0];
for(Index j=1; j<m_outerSize; ++j) for(Index j=1; j<m_outerSize; ++j)
@ -548,9 +408,6 @@ class SparseMatrix
m_innerNonZeros = 0; m_innerNonZeros = 0;
m_data.resize(m_outerIndex[m_outerSize]); m_data.resize(m_outerIndex[m_outerSize]);
m_data.squeeze(); m_data.squeeze();
// std::cout << Matrix<Index,1,Dynamic>::Map(m_outerIndex, m_outerSize+1) << "\n";
// std::cout << Matrix<Index,1,Dynamic>::Map(&m_data.index(0), nonZeros()) << "\n";
// std::cout << Matrix<Scalar,1,Dynamic>::Map(&m_data.value(0), nonZeros()) << "\n";
} }
/** Suppress all nonzeros which are \b much \b smaller \b than \a reference under the tolerence \a epsilon */ /** Suppress all nonzeros which are \b much \b smaller \b than \a reference under the tolerence \a epsilon */
@ -611,9 +468,11 @@ class SparseMatrix
memset(m_outerIndex, 0, (m_outerSize+1)*sizeof(Index)); memset(m_outerIndex, 0, (m_outerSize+1)*sizeof(Index));
} }
/** Low level API /** \deprecated
* \internal
* Low level API
* Resize the nonzero vector to \a size * Resize the nonzero vector to \a size
* \deprecated */ * */
void resizeNonZeros(Index size) void resizeNonZeros(Index size)
{ {
// TODO remove this function // TODO remove this function
@ -662,7 +521,6 @@ class SparseMatrix
inline SparseMatrix& operator=(const SparseMatrix& other) inline SparseMatrix& operator=(const SparseMatrix& other)
{ {
// std::cout << "SparseMatrix& operator=(const SparseMatrix& other)\n";
if (other.isRValue()) if (other.isRValue())
{ {
swap(other.const_cast_derived()); swap(other.const_cast_derived());
@ -786,66 +644,165 @@ class SparseMatrix
/** Overloaded for performance */ /** Overloaded for performance */
Scalar sum() const; Scalar sum() const;
public:
/** \deprecated use setZero() and reserve()
* Initializes the filling process of \c *this.
* \param reserveSize approximate number of nonzeros
* Note that the matrix \c *this is zero-ed.
*/
EIGEN_DEPRECATED void startFill(Index reserveSize = 1000)
{
setZero();
m_data.reserve(reserveSize);
}
/** \deprecated use insert()
* Like fill() but with random inner coordinates.
*/
EIGEN_DEPRECATED Scalar& fillrand(Index row, Index col)
{
return insert(row,col);
}
/** \deprecated use insert()
*/
EIGEN_DEPRECATED Scalar& fill(Index row, Index col)
{
const Index outer = IsRowMajor ? row : col;
const Index inner = IsRowMajor ? col : row;
if (m_outerIndex[outer+1]==0)
{
// we start a new inner vector
Index i = outer;
while (i>=0 && m_outerIndex[i]==0)
{
m_outerIndex[i] = m_data.size();
--i;
}
m_outerIndex[outer+1] = m_outerIndex[outer];
}
else
{
eigen_assert(m_data.index(m_data.size()-1)<inner && "wrong sorted insertion");
}
// std::cerr << size_t(m_outerIndex[outer+1]) << " == " << m_data.size() << "\n";
assert(size_t(m_outerIndex[outer+1]) == m_data.size());
Index p = m_outerIndex[outer+1];
++m_outerIndex[outer+1];
m_data.append(0, inner);
return m_data.value(p);
}
/** \deprecated use finalize */
EIGEN_DEPRECATED void endFill() { finalize(); }
# ifdef EIGEN_SPARSEMATRIX_PLUGIN # ifdef EIGEN_SPARSEMATRIX_PLUGIN
# include EIGEN_SPARSEMATRIX_PLUGIN # include EIGEN_SPARSEMATRIX_PLUGIN
# endif # endif
protected:
/** \internal
* \sa insert(Index,Index) */
EIGEN_DONT_INLINE Scalar& insertCompressed(Index row, Index col)
{
eigen_assert(compressed());
const Index outer = IsRowMajor ? row : col;
const Index inner = IsRowMajor ? col : row;
Index previousOuter = outer;
if (m_outerIndex[outer+1]==0)
{
// we start a new inner vector
while (previousOuter>=0 && m_outerIndex[previousOuter]==0)
{
m_outerIndex[previousOuter] = static_cast<Index>(m_data.size());
--previousOuter;
}
m_outerIndex[outer+1] = m_outerIndex[outer];
}
// here we have to handle the tricky case where the outerIndex array
// starts with: [ 0 0 0 0 0 1 ...] and we are inserting in, e.g.,
// the 2nd inner vector...
bool isLastVec = (!(previousOuter==-1 && m_data.size()!=0))
&& (size_t(m_outerIndex[outer+1]) == m_data.size());
size_t startId = m_outerIndex[outer];
// FIXME let's make sure sizeof(long int) == sizeof(size_t)
size_t p = m_outerIndex[outer+1];
++m_outerIndex[outer+1];
float reallocRatio = 1;
if (m_data.allocatedSize()<=m_data.size())
{
// if there is no preallocated memory, let's reserve a minimum of 32 elements
if (m_data.size()==0)
{
m_data.reserve(32);
}
else
{
// we need to reallocate the data, to reduce multiple reallocations
// we use a smart resize algorithm based on the current filling ratio
// in addition, we use float to avoid integers overflows
float nnzEstimate = float(m_outerIndex[outer])*float(m_outerSize)/float(outer+1);
reallocRatio = (nnzEstimate-float(m_data.size()))/float(m_data.size());
// furthermore we bound the realloc ratio to:
// 1) reduce multiple minor realloc when the matrix is almost filled
// 2) avoid to allocate too much memory when the matrix is almost empty
reallocRatio = (std::min)((std::max)(reallocRatio,1.5f),8.f);
}
}
m_data.resize(m_data.size()+1,reallocRatio);
if (!isLastVec)
{
if (previousOuter==-1)
{
// oops wrong guess.
// let's correct the outer offsets
for (Index k=0; k<=(outer+1); ++k)
m_outerIndex[k] = 0;
Index k=outer+1;
while(m_outerIndex[k]==0)
m_outerIndex[k++] = 1;
while (k<=m_outerSize && m_outerIndex[k]!=0)
m_outerIndex[k++]++;
p = 0;
--k;
k = m_outerIndex[k]-1;
while (k>0)
{
m_data.index(k) = m_data.index(k-1);
m_data.value(k) = m_data.value(k-1);
k--;
}
}
else
{
// we are not inserting into the last inner vec
// update outer indices:
Index j = outer+2;
while (j<=m_outerSize && m_outerIndex[j]!=0)
m_outerIndex[j++]++;
--j;
// shift data of last vecs:
Index k = m_outerIndex[j]-1;
while (k>=Index(p))
{
m_data.index(k) = m_data.index(k-1);
m_data.value(k) = m_data.value(k-1);
k--;
}
}
}
while ( (p > startId) && (m_data.index(p-1) > inner) )
{
m_data.index(p) = m_data.index(p-1);
m_data.value(p) = m_data.value(p-1);
--p;
}
m_data.index(p) = inner;
return (m_data.value(p) = 0);
}
class SingletonVector
{
Index m_index;
Index m_value;
public:
typedef Index value_type;
SingletonVector(Index i, Index v)
: m_index(i), m_value(v)
{}
Index operator[](Index i) const { return i==m_index ? m_value : 0; }
};
/** \internal
* \sa insert(Index,Index) */
EIGEN_DONT_INLINE Scalar& insertUncompressed(Index row, Index col)
{
eigen_assert(!compressed());
const Index outer = IsRowMajor ? row : col;
const Index inner = IsRowMajor ? col : row;
std::ptrdiff_t room = m_outerIndex[outer+1] - m_outerIndex[outer];
std::ptrdiff_t innerNNZ = m_innerNonZeros[outer];
if(innerNNZ>=room)
{
// this inner vector is full, we need to reallocate the whole buffer :(
reserve(SingletonVector(outer,std::max<std::ptrdiff_t>(2,innerNNZ)));
}
Index startId = m_outerIndex[outer];
Index p = startId + m_innerNonZeros[outer];
while ( (p > startId) && (m_data.index(p-1) > inner) )
{
m_data.index(p) = m_data.index(p-1);
m_data.value(p) = m_data.value(p-1);
--p;
}
m_innerNonZeros[outer]++;
m_data.index(p) = inner;
return (m_data.value(p) = 0);
}
private: private:
struct default_prunning_func { struct default_prunning_func {
default_prunning_func(Scalar ref, RealScalar eps) : reference(ref), epsilon(eps) {} default_prunning_func(Scalar ref, RealScalar eps) : reference(ref), epsilon(eps) {}

View File

@ -1,7 +1,7 @@
// This file is part of Eigen, a lightweight C++ template library // This file is part of Eigen, a lightweight C++ template library
// for linear algebra. // for linear algebra.
// //
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
// //
// Eigen is free software; you can redistribute it and/or // Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public // modify it under the terms of the GNU Lesser General Public
@ -25,7 +25,7 @@
#ifndef EIGEN_SPARSEMATRIXBASE_H #ifndef EIGEN_SPARSEMATRIXBASE_H
#define EIGEN_SPARSEMATRIXBASE_H #define EIGEN_SPARSEMATRIXBASE_H
/** \ingroup Sparse_Module /** \ingroup SparseCore_Module
* *
* \class SparseMatrixBase * \class SparseMatrixBase
* *
@ -57,8 +57,6 @@ template<typename Derived> class SparseMatrixBase : public EigenBase<Derived>
other.derived().evalTo(derived()); other.derived().evalTo(derived());
return derived(); return derived();
} }
// using Base::operator=;
enum { enum {
@ -110,15 +108,6 @@ template<typename Derived> class SparseMatrixBase : public EigenBase<Derived>
#endif #endif
}; };
/* \internal the return type of MatrixBase::conjugate() */
// typedef typename internal::conditional<NumTraits<Scalar>::IsComplex,
// const SparseCwiseUnaryOp<internal::scalar_conjugate_op<Scalar>, Derived>,
// const Derived&
// >::type ConjugateReturnType;
/* \internal the return type of MatrixBase::real() */
// typedef SparseCwiseUnaryOp<internal::scalar_real_op<Scalar>, Derived> RealReturnType;
/* \internal the return type of MatrixBase::imag() */
// typedef SparseCwiseUnaryOp<internal::scalar_imag_op<Scalar>, Derived> ImagReturnType;
/** \internal the return type of MatrixBase::adjoint() */ /** \internal the return type of MatrixBase::adjoint() */
typedef typename internal::conditional<NumTraits<Scalar>::IsComplex, typedef typename internal::conditional<NumTraits<Scalar>::IsComplex,
CwiseUnaryOp<internal::scalar_conjugate_op<Scalar>, Eigen::Transpose<const Derived> >, CwiseUnaryOp<internal::scalar_conjugate_op<Scalar>, Eigen::Transpose<const Derived> >,
@ -213,7 +202,6 @@ template<typename Derived> class SparseMatrixBase : public EigenBase<Derived>
template<typename OtherDerived> template<typename OtherDerived>
inline void assignGeneric(const OtherDerived& other) inline void assignGeneric(const OtherDerived& other)
{ {
// std::cout << "Derived& operator=(const MatrixBase<OtherDerived>& other)\n";
//const bool transpose = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit); //const bool transpose = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit);
eigen_assert(( ((internal::traits<Derived>::SupportedAccessPatterns&OuterRandomAccessPattern)==OuterRandomAccessPattern) || eigen_assert(( ((internal::traits<Derived>::SupportedAccessPatterns&OuterRandomAccessPattern)==OuterRandomAccessPattern) ||
(!((Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit)))) && (!((Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit)))) &&
@ -246,10 +234,7 @@ template<typename Derived> class SparseMatrixBase : public EigenBase<Derived>
template<typename OtherDerived> template<typename OtherDerived>
inline Derived& operator=(const SparseMatrixBase<OtherDerived>& other) inline Derived& operator=(const SparseMatrixBase<OtherDerived>& other)
{ {
// std::cout << typeid(OtherDerived).name() << "\n";
// std::cout << Flags << " " << OtherDerived::Flags << "\n";
const bool transpose = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit); const bool transpose = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit);
// std::cout << "eval transpose = " << transpose << "\n";
const Index outerSize = (int(OtherDerived::Flags) & RowMajorBit) ? other.rows() : other.cols(); const Index outerSize = (int(OtherDerived::Flags) & RowMajorBit) ? other.rows() : other.cols();
if ((!transpose) && other.isRValue()) if ((!transpose) && other.isRValue())
{ {
@ -324,24 +309,11 @@ template<typename Derived> class SparseMatrixBase : public EigenBase<Derived>
return s; return s;
} }
// const SparseCwiseUnaryOp<internal::scalar_opposite_op<typename internal::traits<Derived>::Scalar>,Derived> operator-() const;
// template<typename OtherDerived>
// const CwiseBinaryOp<internal::scalar_sum_op<typename internal::traits<Derived>::Scalar>, Derived, OtherDerived>
// operator+(const SparseMatrixBase<OtherDerived> &other) const;
// template<typename OtherDerived>
// const CwiseBinaryOp<internal::scalar_difference_op<typename internal::traits<Derived>::Scalar>, Derived, OtherDerived>
// operator-(const SparseMatrixBase<OtherDerived> &other) const;
template<typename OtherDerived> template<typename OtherDerived>
Derived& operator+=(const SparseMatrixBase<OtherDerived>& other); Derived& operator+=(const SparseMatrixBase<OtherDerived>& other);
template<typename OtherDerived> template<typename OtherDerived>
Derived& operator-=(const SparseMatrixBase<OtherDerived>& other); Derived& operator-=(const SparseMatrixBase<OtherDerived>& other);
// template<typename Lhs,typename Rhs>
// Derived& operator+=(const Flagged<Product<Lhs,Rhs,CacheFriendlyProduct>, 0, EvalBeforeNestingBit | EvalBeforeAssigningBit>& other);
Derived& operator*=(const Scalar& other); Derived& operator*=(const Scalar& other);
Derived& operator/=(const Scalar& other); Derived& operator/=(const Scalar& other);
@ -361,16 +333,6 @@ template<typename Derived> class SparseMatrixBase : public EigenBase<Derived>
EIGEN_STRONG_INLINE const EIGEN_SPARSE_CWISE_PRODUCT_RETURN_TYPE EIGEN_STRONG_INLINE const EIGEN_SPARSE_CWISE_PRODUCT_RETURN_TYPE
cwiseProduct(const MatrixBase<OtherDerived> &other) const; cwiseProduct(const MatrixBase<OtherDerived> &other) const;
// const SparseCwiseUnaryOp<internal::scalar_multiple_op<typename internal::traits<Derived>::Scalar>, Derived>
// operator*(const Scalar& scalar) const;
// const SparseCwiseUnaryOp<internal::scalar_quotient1_op<typename internal::traits<Derived>::Scalar>, Derived>
// operator/(const Scalar& scalar) const;
// inline friend const SparseCwiseUnaryOp<internal::scalar_multiple_op<typename internal::traits<Derived>::Scalar>, Derived>
// operator*(const Scalar& scalar, const SparseMatrixBase& matrix)
// { return matrix*scalar; }
// sparse * sparse // sparse * sparse
template<typename OtherDerived> template<typename OtherDerived>
const typename SparseSparseProductReturnType<Derived,OtherDerived>::Type const typename SparseSparseProductReturnType<Derived,OtherDerived>::Type
@ -410,8 +372,6 @@ template<typename Derived> class SparseMatrixBase : public EigenBase<Derived>
// deprecated // deprecated
template<typename OtherDerived> template<typename OtherDerived>
void solveTriangularInPlace(MatrixBase<OtherDerived>& other) const; void solveTriangularInPlace(MatrixBase<OtherDerived>& other) const;
// template<typename OtherDerived>
// void solveTriangularInPlace(SparseMatrixBase<OtherDerived>& other) const;
#endif // EIGEN2_SUPPORT #endif // EIGEN2_SUPPORT
template<int Mode> template<int Mode>
@ -424,12 +384,9 @@ template<typename Derived> class SparseMatrixBase : public EigenBase<Derived>
template<typename OtherDerived> Scalar dot(const SparseMatrixBase<OtherDerived>& other) const; template<typename OtherDerived> Scalar dot(const SparseMatrixBase<OtherDerived>& other) const;
RealScalar squaredNorm() const; RealScalar squaredNorm() const;
RealScalar norm() const; RealScalar norm() const;
// const PlainObject normalized() const;
// void normalize();
Transpose<Derived> transpose() { return derived(); } Transpose<Derived> transpose() { return derived(); }
const Transpose<const Derived> transpose() const { return derived(); } const Transpose<const Derived> transpose() const { return derived(); }
// void transposeInPlace();
const AdjointReturnType adjoint() const { return transpose(); } const AdjointReturnType adjoint() const { return transpose(); }
// sub-vector // sub-vector
@ -446,7 +403,6 @@ template<typename Derived> class SparseMatrixBase : public EigenBase<Derived>
SparseInnerVectorSet<Derived,Dynamic> subcols(Index start, Index size); SparseInnerVectorSet<Derived,Dynamic> subcols(Index start, Index size);
const SparseInnerVectorSet<Derived,Dynamic> subcols(Index start, Index size) const; const SparseInnerVectorSet<Derived,Dynamic> subcols(Index start, Index size) const;
SparseInnerVectorSet<Derived,Dynamic> middleRows(Index start, Index size); SparseInnerVectorSet<Derived,Dynamic> middleRows(Index start, Index size);
const SparseInnerVectorSet<Derived,Dynamic> middleRows(Index start, Index size) const; const SparseInnerVectorSet<Derived,Dynamic> middleRows(Index start, Index size) const;
SparseInnerVectorSet<Derived,Dynamic> middleCols(Index start, Index size); SparseInnerVectorSet<Derived,Dynamic> middleCols(Index start, Index size);
@ -454,74 +410,6 @@ template<typename Derived> class SparseMatrixBase : public EigenBase<Derived>
SparseInnerVectorSet<Derived,Dynamic> innerVectors(Index outerStart, Index outerSize); SparseInnerVectorSet<Derived,Dynamic> innerVectors(Index outerStart, Index outerSize);
const SparseInnerVectorSet<Derived,Dynamic> innerVectors(Index outerStart, Index outerSize) const; const SparseInnerVectorSet<Derived,Dynamic> innerVectors(Index outerStart, Index outerSize) const;
// typename BlockReturnType<Derived>::Type block(int startRow, int startCol, int blockRows, int blockCols);
// const typename BlockReturnType<Derived>::Type
// block(int startRow, int startCol, int blockRows, int blockCols) const;
//
// typename BlockReturnType<Derived>::SubVectorType segment(int start, int size);
// const typename BlockReturnType<Derived>::SubVectorType segment(int start, int size) const;
//
// typename BlockReturnType<Derived,Dynamic>::SubVectorType start(int size);
// const typename BlockReturnType<Derived,Dynamic>::SubVectorType start(int size) const;
//
// typename BlockReturnType<Derived,Dynamic>::SubVectorType end(int size);
// const typename BlockReturnType<Derived,Dynamic>::SubVectorType end(int size) const;
//
// template<int BlockRows, int BlockCols>
// typename BlockReturnType<Derived, BlockRows, BlockCols>::Type block(int startRow, int startCol);
// template<int BlockRows, int BlockCols>
// const typename BlockReturnType<Derived, BlockRows, BlockCols>::Type block(int startRow, int startCol) const;
// template<int Size> typename BlockReturnType<Derived,Size>::SubVectorType start(void);
// template<int Size> const typename BlockReturnType<Derived,Size>::SubVectorType start() const;
// template<int Size> typename BlockReturnType<Derived,Size>::SubVectorType end();
// template<int Size> const typename BlockReturnType<Derived,Size>::SubVectorType end() const;
// template<int Size> typename BlockReturnType<Derived,Size>::SubVectorType segment(int start);
// template<int Size> const typename BlockReturnType<Derived,Size>::SubVectorType segment(int start) const;
// Diagonal<Derived> diagonal();
// const Diagonal<Derived> diagonal() const;
// template<unsigned int Mode> Part<Derived, Mode> part();
// template<unsigned int Mode> const Part<Derived, Mode> part() const;
// static const ConstantReturnType Constant(int rows, int cols, const Scalar& value);
// static const ConstantReturnType Constant(int size, const Scalar& value);
// static const ConstantReturnType Constant(const Scalar& value);
// template<typename CustomNullaryOp>
// static const CwiseNullaryOp<CustomNullaryOp, Derived> NullaryExpr(int rows, int cols, const CustomNullaryOp& func);
// template<typename CustomNullaryOp>
// static const CwiseNullaryOp<CustomNullaryOp, Derived> NullaryExpr(int size, const CustomNullaryOp& func);
// template<typename CustomNullaryOp>
// static const CwiseNullaryOp<CustomNullaryOp, Derived> NullaryExpr(const CustomNullaryOp& func);
// static const ConstantReturnType Zero(int rows, int cols);
// static const ConstantReturnType Zero(int size);
// static const ConstantReturnType Zero();
// static const ConstantReturnType Ones(int rows, int cols);
// static const ConstantReturnType Ones(int size);
// static const ConstantReturnType Ones();
// static const IdentityReturnType Identity();
// static const IdentityReturnType Identity(int rows, int cols);
// static const BasisReturnType Unit(int size, int i);
// static const BasisReturnType Unit(int i);
// static const BasisReturnType UnitX();
// static const BasisReturnType UnitY();
// static const BasisReturnType UnitZ();
// static const BasisReturnType UnitW();
// const DiagonalMatrix<Derived> asDiagonal() const;
// Derived& setConstant(const Scalar& value);
// Derived& setZero();
// Derived& setOnes();
// Derived& setRandom();
// Derived& setIdentity();
/** \internal use operator= */ /** \internal use operator= */
template<typename DenseDerived> template<typename DenseDerived>
void evalTo(MatrixBase<DenseDerived>& dst) const void evalTo(MatrixBase<DenseDerived>& dst) const
@ -546,37 +434,6 @@ template<typename Derived> class SparseMatrixBase : public EigenBase<Derived>
bool isApprox(const MatrixBase<OtherDerived>& other, bool isApprox(const MatrixBase<OtherDerived>& other,
RealScalar prec = NumTraits<Scalar>::dummy_precision()) const RealScalar prec = NumTraits<Scalar>::dummy_precision()) const
{ return toDense().isApprox(other,prec); } { return toDense().isApprox(other,prec); }
// bool isMuchSmallerThan(const RealScalar& other,
// RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
// template<typename OtherDerived>
// bool isMuchSmallerThan(const MatrixBase<OtherDerived>& other,
// RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
// bool isApproxToConstant(const Scalar& value, RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
// bool isZero(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
// bool isOnes(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
// bool isIdentity(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
// bool isDiagonal(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
// bool isUpper(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
// bool isLower(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
// template<typename OtherDerived>
// bool isOrthogonal(const MatrixBase<OtherDerived>& other,
// RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
// bool isUnitary(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
// template<typename OtherDerived>
// inline bool operator==(const MatrixBase<OtherDerived>& other) const
// { return (cwise() == other).all(); }
// template<typename OtherDerived>
// inline bool operator!=(const MatrixBase<OtherDerived>& other) const
// { return (cwise() != other).any(); }
// template<typename NewType>
// const SparseCwiseUnaryOp<internal::scalar_cast_op<typename internal::traits<Derived>::Scalar, NewType>, Derived> cast() const;
/** \returns the matrix or vector obtained by evaluating this expression. /** \returns the matrix or vector obtained by evaluating this expression.
* *
@ -586,126 +443,7 @@ template<typename Derived> class SparseMatrixBase : public EigenBase<Derived>
inline const typename internal::eval<Derived>::type eval() const inline const typename internal::eval<Derived>::type eval() const
{ return typename internal::eval<Derived>::type(derived()); } { return typename internal::eval<Derived>::type(derived()); }
// template<typename OtherDerived>
// void swap(MatrixBase<OtherDerived> const & other);
// template<unsigned int Added>
// const SparseFlagged<Derived, Added, 0> marked() const;
// const Flagged<Derived, 0, EvalBeforeNestingBit | EvalBeforeAssigningBit> lazy() const;
/** \returns number of elements to skip to pass from one row (resp. column) to another
* for a row-major (resp. column-major) matrix.
* Combined with coeffRef() and the \ref flags flags, it allows a direct access to the data
* of the underlying matrix.
*/
// inline int stride(void) const { return derived().stride(); }
// FIXME
// ConjugateReturnType conjugate() const;
// const RealReturnType real() const;
// const ImagReturnType imag() const;
// template<typename CustomUnaryOp>
// const SparseCwiseUnaryOp<CustomUnaryOp, Derived> unaryExpr(const CustomUnaryOp& func = CustomUnaryOp()) const;
// template<typename CustomBinaryOp, typename OtherDerived>
// const CwiseBinaryOp<CustomBinaryOp, Derived, OtherDerived>
// binaryExpr(const MatrixBase<OtherDerived> &other, const CustomBinaryOp& func = CustomBinaryOp()) const;
Scalar sum() const; Scalar sum() const;
// Scalar trace() const;
// typename internal::traits<Derived>::Scalar minCoeff() const;
// typename internal::traits<Derived>::Scalar maxCoeff() const;
// typename internal::traits<Derived>::Scalar minCoeff(int* row, int* col = 0) const;
// typename internal::traits<Derived>::Scalar maxCoeff(int* row, int* col = 0) const;
// template<typename BinaryOp>
// typename internal::result_of<BinaryOp(typename internal::traits<Derived>::Scalar)>::type
// redux(const BinaryOp& func) const;
// template<typename Visitor>
// void visit(Visitor& func) const;
// const SparseCwise<Derived> cwise() const;
// SparseCwise<Derived> cwise();
// inline const WithFormat<Derived> format(const IOFormat& fmt) const;
/////////// Array module ///////////
/*
bool all(void) const;
bool any(void) const;
const VectorwiseOp<Derived,Horizontal> rowwise() const;
const VectorwiseOp<Derived,Vertical> colwise() const;
static const CwiseNullaryOp<internal::scalar_random_op<Scalar>,Derived> Random(int rows, int cols);
static const CwiseNullaryOp<internal::scalar_random_op<Scalar>,Derived> Random(int size);
static const CwiseNullaryOp<internal::scalar_random_op<Scalar>,Derived> Random();
template<typename ThenDerived,typename ElseDerived>
const Select<Derived,ThenDerived,ElseDerived>
select(const MatrixBase<ThenDerived>& thenMatrix,
const MatrixBase<ElseDerived>& elseMatrix) const;
template<typename ThenDerived>
inline const Select<Derived,ThenDerived, typename ThenDerived::ConstantReturnType>
select(const MatrixBase<ThenDerived>& thenMatrix, typename ThenDerived::Scalar elseScalar) const;
template<typename ElseDerived>
inline const Select<Derived, typename ElseDerived::ConstantReturnType, ElseDerived >
select(typename ElseDerived::Scalar thenScalar, const MatrixBase<ElseDerived>& elseMatrix) const;
template<int p> RealScalar lpNorm() const;
*/
// template<typename OtherDerived>
// Scalar dot(const MatrixBase<OtherDerived>& other) const
// {
// EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
// EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
// EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
// YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
//
// eigen_assert(derived().size() == other.size());
// // short version, but the assembly looks more complicated because
// // of the CwiseBinaryOp iterator complexity
// // return res = (derived().cwise() * other.derived().conjugate()).sum();
//
// // optimized, generic version
// typename Derived::InnerIterator i(derived(),0);
// typename OtherDerived::InnerIterator j(other.derived(),0);
// Scalar res = 0;
// while (i && j)
// {
// if (i.index()==j.index())
// {
// // std::cerr << i.value() << " * " << j.value() << "\n";
// res += i.value() * internal::conj(j.value());
// ++i; ++j;
// }
// else if (i.index()<j.index())
// ++i;
// else
// ++j;
// }
// return res;
// }
//
// Scalar sum() const
// {
// Scalar res = 0;
// for (typename Derived::InnerIterator iter(*this,0); iter; ++iter)
// {
// res += iter.value();
// }
// return res;
// }
protected: protected:

View File

@ -25,8 +25,8 @@
#ifndef EIGEN_SPARSE_SELFADJOINTVIEW_H #ifndef EIGEN_SPARSE_SELFADJOINTVIEW_H
#define EIGEN_SPARSE_SELFADJOINTVIEW_H #define EIGEN_SPARSE_SELFADJOINTVIEW_H
/** \class SparseSelfAdjointView /** \ingroup SparseCore_Module
* * \class SparseSelfAdjointView
* *
* \brief Pseudo expression to manipulate a triangular sparse matrix as a selfadjoint matrix. * \brief Pseudo expression to manipulate a triangular sparse matrix as a selfadjoint matrix.
* *

View File

@ -25,7 +25,8 @@
#ifndef EIGEN_SPARSEVECTOR_H #ifndef EIGEN_SPARSEVECTOR_H
#define EIGEN_SPARSEVECTOR_H #define EIGEN_SPARSEVECTOR_H
/** \class SparseVector /** \ingroup SparseCore_Module
* \class SparseVector
* *
* \brief a sparse vector class * \brief a sparse vector class
* *
@ -67,7 +68,6 @@ class SparseVector
EIGEN_SPARSE_PUBLIC_INTERFACE(SparseVector) EIGEN_SPARSE_PUBLIC_INTERFACE(SparseVector)
EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseVector, +=) EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseVector, +=)
EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseVector, -=) EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseVector, -=)
// EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseVector, =)
protected: protected:
public: public:
@ -262,56 +262,6 @@ class SparseVector
} }
#endif #endif
// const bool needToTranspose = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit);
// if (needToTranspose)
// {
// // two passes algorithm:
// // 1 - compute the number of coeffs per dest inner vector
// // 2 - do the actual copy/eval
// // Since each coeff of the rhs has to be evaluated twice, let's evauluate it if needed
// typedef typename internal::nested<OtherDerived,2>::type OtherCopy;
// OtherCopy otherCopy(other.derived());
// typedef typename internal::remove_all<OtherCopy>::type _OtherCopy;
//
// resize(other.rows(), other.cols());
// Eigen::Map<VectorXi>(m_outerIndex,outerSize()).setZero();
// // pass 1
// // FIXME the above copy could be merged with that pass
// for (int j=0; j<otherCopy.outerSize(); ++j)
// for (typename _OtherCopy::InnerIterator it(otherCopy, j); it; ++it)
// ++m_outerIndex[it.index()];
//
// // prefix sum
// int count = 0;
// VectorXi positions(outerSize());
// for (int j=0; j<outerSize(); ++j)
// {
// int tmp = m_outerIndex[j];
// m_outerIndex[j] = count;
// positions[j] = count;
// count += tmp;
// }
// m_outerIndex[outerSize()] = count;
// // alloc
// m_data.resize(count);
// // pass 2
// for (int j=0; j<otherCopy.outerSize(); ++j)
// for (typename _OtherCopy::InnerIterator it(otherCopy, j); it; ++it)
// {
// int pos = positions[it.index()]++;
// m_data.index(pos) = j;
// m_data.value(pos) = it.value();
// }
//
// return *this;
// }
// else
// {
// // there is no special optimization
// return SparseMatrixBase<SparseMatrix>::operator=(other.derived());
// }
// }
friend std::ostream & operator << (std::ostream & s, const SparseVector& m) friend std::ostream & operator << (std::ostream & s, const SparseVector& m)
{ {
for (Index i=0; i<m.nonZeros(); ++i) for (Index i=0; i<m.nonZeros(); ++i)
@ -320,28 +270,6 @@ class SparseVector
return s; return s;
} }
// this specialized version does not seems to be faster
// Scalar dot(const SparseVector& other) const
// {
// int i=0, j=0;
// Scalar res = 0;
// asm("#begindot");
// while (i<nonZeros() && j<other.nonZeros())
// {
// if (m_data.index(i)==other.m_data.index(j))
// {
// res += m_data.value(i) * internal::conj(other.m_data.value(j));
// ++i; ++j;
// }
// else if (m_data.index(i)<other.m_data.index(j))
// ++i;
// else
// ++j;
// }
// asm("#enddot");
// return res;
// }
/** Destructor */ /** Destructor */
inline ~SparseVector() {} inline ~SparseVector() {}

View File

@ -296,7 +296,10 @@ MappedSparseMatrix<Scalar,Flags,Index> map_superlu(SluMatrix& sluMat)
} // end namespace internal } // end namespace internal
/** \ingroup SuperLUSupport_Module
* \class SuperLUBase
* \brief The base class for the direct and incomplete LU factorization of SuperLU
*/
template<typename _MatrixType, typename Derived> template<typename _MatrixType, typename Derived>
class SuperLUBase class SuperLUBase
{ {
@ -468,6 +471,18 @@ class SuperLUBase
}; };
/** \ingroup SuperLUSupport_Module
* \class SuperLU
* \brief A sparse direct LU factorization and solver based on the SuperLU library
*
* This class allows to solve for A.X = B sparse linear problems via a direct LU factorization
* using the SuperLU library. The sparse matrix A must be squared and invertible. The vectors or matrices
* X and B can be either dense or sparse.
*
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
*
* \sa \ref TutorialSparseDirectSolvers
*/
template<typename _MatrixType> template<typename _MatrixType>
class SuperLU : public SuperLUBase<_MatrixType,SuperLU<_MatrixType> > class SuperLU : public SuperLUBase<_MatrixType,SuperLU<_MatrixType> >
{ {
@ -785,6 +800,19 @@ typename SuperLU<MatrixType>::Scalar SuperLU<MatrixType>::determinant() const
} }
#ifdef EIGEN_SUPERLU_HAS_ILU #ifdef EIGEN_SUPERLU_HAS_ILU
/** \ingroup SuperLUSupport_Module
* \class SuperILU
* \brief A sparse direct \b incomplete LU factorization and solver based on the SuperLU library
*
* This class allows to solve for an approximate solution of A.X = B sparse linear problems via an incomplete LU factorization
* using the SuperLU library. This class is aimed to be used as a preconditioner of the iterative linear solvers.
*
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
*
* \sa \ref TutorialSparseDirectSolvers, class ConjugateGradient, class BiCGSTAB
*/
template<typename _MatrixType> template<typename _MatrixType>
class SuperILU : public SuperLUBase<_MatrixType,SuperILU<_MatrixType> > class SuperILU : public SuperLUBase<_MatrixType,SuperILU<_MatrixType> >
{ {

View File

@ -120,7 +120,8 @@ inline int umfpack_get_determinant(std::complex<double> *Mx, double *Ex, void *N
return umfpack_zi_get_determinant(&mx_real,0,Ex,NumericHandle,User_Info); return umfpack_zi_get_determinant(&mx_real,0,Ex,NumericHandle,User_Info);
} }
/** \brief A sparse LU factorization and solver based on UmfPack /** \ingroup UmfPackSupport_Module
* \brief A sparse LU factorization and solver based on UmfPack
* *
* This class allows to solve for A.X = B sparse linear problems via a LU factorization * This class allows to solve for A.X = B sparse linear problems via a LU factorization
* using the UmfPack library. The sparse matrix A must be column-major, squared and full rank. * using the UmfPack library. The sparse matrix A must be column-major, squared and full rank.
@ -128,6 +129,7 @@ inline int umfpack_get_determinant(std::complex<double> *Mx, double *Ex, void *N
* *
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<> * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
* *
* \sa \ref TutorialSparseDirectSolvers
*/ */
template<typename _MatrixType> template<typename _MatrixType>
class UmfPackLU class UmfPackLU