diff --git a/doc/D01_StlContainers.dox b/doc/D01_StlContainers.dox index b5dbf0698..f55db3125 100644 --- a/doc/D01_StlContainers.dox +++ b/doc/D01_StlContainers.dox @@ -38,7 +38,7 @@ The situation with std::vector was even worse (explanation below) so we had to s Here is an example: \code #include -\/* ... *\/ +/* ... */ std::vector > \endcode @@ -52,7 +52,7 @@ the compiler will compile that particular instance with the default std::allocat Here is an example: \code #include -\/* ... *\/ +/* ... */ EIGEN_DEFINE_STL_VECTOR_SPECIALIZATION(Matrix2d) std::vector \endcode diff --git a/doc/I02_HiPerformance.dox b/doc/I02_HiPerformance.dox index ac1c2ca2b..d7a02fb5c 100644 --- a/doc/I02_HiPerformance.dox +++ b/doc/I02_HiPerformance.dox @@ -79,7 +79,7 @@ temp = m2 * m3; m1 += temp.adjoint(); \endcode \code m1.noalias() += m3.adjoint() - * m2.adjoint(); \endcode +* * m2.adjoint(); \endcode This is because the product expression has the EvalBeforeNesting bit which enforces the evaluation of the product by the Tranpose expression. diff --git a/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h b/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h index 0226139ae..6825a7882 100644 --- a/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h +++ b/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h @@ -228,7 +228,7 @@ template EIGEN_STRONG_INLINE void MatrixExponential::pade9(const MatrixType &A) { const RealScalar b[] = {17643225600., 8821612800., 2075673600., 302702400., 30270240., - 2162160., 110880., 3960., 90., 1.}; + 2162160., 110880., 3960., 90., 1.}; MatrixType A2 = A * A; MatrixType A4 = A2 * A2; MatrixType A6 = A4 * A2; @@ -242,8 +242,8 @@ template EIGEN_STRONG_INLINE void MatrixExponential::pade13(const MatrixType &A) { const RealScalar b[] = {64764752532480000., 32382376266240000., 7771770303897600., - 1187353796428800., 129060195264000., 10559470521600., 670442572800., - 33522128640., 1323241920., 40840800., 960960., 16380., 182., 1.}; + 1187353796428800., 129060195264000., 10559470521600., 670442572800., + 33522128640., 1323241920., 40840800., 960960., 16380., 182., 1.}; MatrixType A2 = A * A; MatrixType A4 = A2 * A2; m_tmp1.noalias() = A4 * A2; @@ -261,11 +261,11 @@ template EIGEN_STRONG_INLINE void MatrixExponential::pade17(const MatrixType &A) { const RealScalar b[] = {830034394580628357120000.L, 415017197290314178560000.L, - 100610229646136770560000.L, 15720348382208870400000.L, - 1774878043152614400000.L, 153822763739893248000.L, 10608466464820224000.L, - 595373117923584000.L, 27563570274240000.L, 1060137318240000.L, - 33924394183680.L, 899510451840.L, 19554575040.L, 341863200.L, 4651200.L, - 46512.L, 306.L, 1.L}; + 100610229646136770560000.L, 15720348382208870400000.L, + 1774878043152614400000.L, 153822763739893248000.L, 10608466464820224000.L, + 595373117923584000.L, 27563570274240000.L, 1060137318240000.L, + 33924394183680.L, 899510451840.L, 19554575040.L, 341863200.L, 4651200.L, + 46512.L, 306.L, 1.L}; MatrixType A2 = A * A; MatrixType A4 = A2 * A2; MatrixType A6 = A4 * A2; diff --git a/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h b/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h index 7b40c0a43..18bcf3d0d 100644 --- a/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h +++ b/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h @@ -71,7 +71,7 @@ private: std::numeric_limits::digits<= 53? 7: // double precision std::numeric_limits::digits<= 64? 8: // extended precision std::numeric_limits::digits<=106? 10: // double-double - 11; // quadruple precision + 11; // quadruple precision // Prevent copying MatrixLogarithmAtomic(const MatrixLogarithmAtomic&); @@ -300,10 +300,10 @@ void MatrixLogarithmAtomic::computePade6(MatrixType& result, const M const int degree = 6; const RealScalar nodes[] = { 0.0337652428984239860938492227530027L, 0.1693953067668677431693002024900473L, 0.3806904069584015456847491391596440L, 0.6193095930415984543152508608403560L, - 0.8306046932331322568306997975099527L, 0.9662347571015760139061507772469973L }; + 0.8306046932331322568306997975099527L, 0.9662347571015760139061507772469973L }; const RealScalar weights[] = { 0.0856622461895851725201480710863665L, 0.1803807865240693037849167569188581L, 0.2339569672863455236949351719947755L, 0.2339569672863455236949351719947755L, - 0.1803807865240693037849167569188581L, 0.0856622461895851725201480710863665L }; + 0.1803807865240693037849167569188581L, 0.0856622461895851725201480710863665L }; assert(degree <= maxPadeDegree); MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows()); result.setZero(T.rows(), T.rows()); diff --git a/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h b/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h index 10319fa17..3786510c0 100644 --- a/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h +++ b/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h @@ -60,17 +60,17 @@ class MatrixSquareRootQuasiTriangular void computeOffDiagonalPartOfSqrt(MatrixType& sqrtT, const MatrixType& T); void compute2x2diagonalBlock(MatrixType& sqrtT, const MatrixType& T, typename MatrixType::Index i); void compute1x1offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T, - typename MatrixType::Index i, typename MatrixType::Index j); + typename MatrixType::Index i, typename MatrixType::Index j); void compute1x2offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T, - typename MatrixType::Index i, typename MatrixType::Index j); + typename MatrixType::Index i, typename MatrixType::Index j); void compute2x1offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T, - typename MatrixType::Index i, typename MatrixType::Index j); + typename MatrixType::Index i, typename MatrixType::Index j); void compute2x2offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T, - typename MatrixType::Index i, typename MatrixType::Index j); + typename MatrixType::Index i, typename MatrixType::Index j); template static void solveAuxiliaryEquation(SmallMatrixType& X, const SmallMatrixType& A, - const SmallMatrixType& B, const SmallMatrixType& C); + const SmallMatrixType& B, const SmallMatrixType& C); const MatrixType& m_A; };