mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-16 14:49:39 +08:00
- make MatrixBase and all expressions aware of their preferred traversal order.
Honor this preference in operator=. - add several methods to the API - rework API for diagonal matrices - add benchmarking code
This commit is contained in:
parent
23ffede3d0
commit
d1d55e67e9
@ -67,9 +67,10 @@ template<typename MatrixType, int BlockRows, int BlockCols> class Block
|
||||
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Block)
|
||||
|
||||
private:
|
||||
static const TraversalOrder _Order = MatrixType::Order;
|
||||
static const int _RowsAtCompileTime = BlockRows,
|
||||
_ColsAtCompileTime = BlockCols;
|
||||
|
||||
|
||||
const Block& _ref() const { return *this; }
|
||||
int _rows() const { return BlockRows; }
|
||||
int _cols() const { return BlockCols; }
|
||||
|
@ -57,6 +57,7 @@ template<typename NewScalar, typename MatrixType> class Cast : NoOperatorEquals,
|
||||
Cast(const MatRef& matrix) : m_matrix(matrix) {}
|
||||
|
||||
private:
|
||||
static const TraversalOrder _Order = MatrixType::Order;
|
||||
static const int _RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
_ColsAtCompileTime = MatrixType::ColsAtCompileTime;
|
||||
const Cast& _ref() const { return *this; }
|
||||
|
@ -63,6 +63,7 @@ template<typename MatrixType> class Column
|
||||
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Column)
|
||||
|
||||
private:
|
||||
static const TraversalOrder _Order = ColumnMajor;
|
||||
static const int _RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
_ColsAtCompileTime = 1;
|
||||
const Column& _ref() const { return *this; }
|
||||
|
@ -49,6 +49,7 @@ template<typename MatrixType> class Conjugate : NoOperatorEquals,
|
||||
Conjugate(const MatRef& matrix) : m_matrix(matrix) {}
|
||||
|
||||
private:
|
||||
static const TraversalOrder _Order = MatrixType::Order;
|
||||
static const int _RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
_ColsAtCompileTime = MatrixType::ColsAtCompileTime;
|
||||
|
||||
|
@ -51,6 +51,7 @@ template<typename MatrixType> class DiagonalCoeffs
|
||||
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(DiagonalCoeffs)
|
||||
|
||||
private:
|
||||
static const TraversalOrder _Order = ColumnMajor;
|
||||
static const int _RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
_ColsAtCompileTime = 1;
|
||||
|
||||
|
@ -26,27 +26,39 @@
|
||||
#ifndef EIGEN_DIAGONALMATRIX_H
|
||||
#define EIGEN_DIAGONALMATRIX_H
|
||||
|
||||
template<typename MatrixType, typename CoeffsVectorType>
|
||||
/** \class DiagonalMatrix
|
||||
*
|
||||
* \brief Expression of a diagonal matrix
|
||||
*
|
||||
* \param CoeffsVectorType the type of the vector of diagonal coefficients
|
||||
*
|
||||
* This class is an expression of a diagonal matrix with given vector of diagonal
|
||||
* coefficients. It is the return
|
||||
* type of MatrixBase::diagonal(const OtherDerived&) and most of the time this is
|
||||
* the only way it is used.
|
||||
*
|
||||
* \sa MatrixBase::diagonal(const OtherDerived&)
|
||||
*/
|
||||
template<typename CoeffsVectorType>
|
||||
class DiagonalMatrix : NoOperatorEquals,
|
||||
public MatrixBase<typename MatrixType::Scalar,
|
||||
DiagonalMatrix<MatrixType, CoeffsVectorType> >
|
||||
public MatrixBase<typename CoeffsVectorType::Scalar,
|
||||
DiagonalMatrix<CoeffsVectorType> >
|
||||
{
|
||||
public:
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename CoeffsVectorType::Scalar Scalar;
|
||||
typedef typename CoeffsVectorType::Ref CoeffsVecRef;
|
||||
friend class MatrixBase<Scalar, DiagonalMatrix<MatrixType, CoeffsVectorType> >;
|
||||
friend class MatrixBase<Scalar, DiagonalMatrix<CoeffsVectorType> >;
|
||||
|
||||
DiagonalMatrix(const CoeffsVecRef& coeffs) : m_coeffs(coeffs)
|
||||
{
|
||||
assert(CoeffsVectorType::IsVectorAtCompileTime
|
||||
&& _RowsAtCompileTime == _ColsAtCompileTime
|
||||
&& _RowsAtCompileTime == CoeffsVectorType::SizeAtCompileTime
|
||||
&& coeffs.size() > 0);
|
||||
}
|
||||
|
||||
private:
|
||||
static const int _RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
_ColsAtCompileTime = MatrixType::ColsAtCompileTime;
|
||||
static const TraversalOrder _Order = Indifferent;
|
||||
static const int _RowsAtCompileTime = CoeffsVectorType::SizeAtCompileTime,
|
||||
_ColsAtCompileTime = CoeffsVectorType::SizeAtCompileTime;
|
||||
|
||||
const DiagonalMatrix& _ref() const { return *this; }
|
||||
int _rows() const { return m_coeffs.size(); }
|
||||
@ -61,12 +73,20 @@ class DiagonalMatrix : NoOperatorEquals,
|
||||
CoeffsVecRef m_coeffs;
|
||||
};
|
||||
|
||||
/** \returns an expression of a diagonal matrix with *this as vector of diagonal coefficients
|
||||
*
|
||||
* \only_for_vectors
|
||||
*
|
||||
* Example: \include MatrixBase_asDiagonal.cpp
|
||||
* Output: \verbinclude MatrixBase_asDiagonal.out
|
||||
*
|
||||
* \sa class DiagonalMatrix
|
||||
**/
|
||||
template<typename Scalar, typename Derived>
|
||||
template<typename OtherDerived>
|
||||
const DiagonalMatrix<Derived, OtherDerived>
|
||||
MatrixBase<Scalar, Derived>::diagonal(const OtherDerived& coeffs)
|
||||
const DiagonalMatrix<Derived>
|
||||
MatrixBase<Scalar, Derived>::asDiagonal() const
|
||||
{
|
||||
return DiagonalMatrix<Derived, OtherDerived>(coeffs);
|
||||
return DiagonalMatrix<Derived>(ref());
|
||||
}
|
||||
|
||||
#endif // EIGEN_DIAGONALMATRIX_H
|
||||
|
@ -42,6 +42,7 @@ template<typename Lhs, typename Rhs> class Difference : NoOperatorEquals,
|
||||
}
|
||||
|
||||
private:
|
||||
static const TraversalOrder _Order = Lhs::Order;
|
||||
static const int _RowsAtCompileTime = Lhs::RowsAtCompileTime,
|
||||
_ColsAtCompileTime = Rhs::ColsAtCompileTime;
|
||||
|
||||
|
@ -123,4 +123,27 @@ MatrixBase<Scalar, Derived>::normalized() const
|
||||
return (*this) / norm();
|
||||
}
|
||||
|
||||
template<typename Scalar, typename Derived>
|
||||
template<typename OtherDerived>
|
||||
bool MatrixBase<Scalar, Derived>::isOrtho
|
||||
(const OtherDerived& other,
|
||||
const typename NumTraits<Scalar>::Real& prec = precision<Scalar>()) const
|
||||
{
|
||||
return abs2(dot(other)) <= prec * prec * norm2() * other.norm2();
|
||||
}
|
||||
|
||||
template<typename Scalar, typename Derived>
|
||||
bool MatrixBase<Scalar, Derived>::isOrtho
|
||||
(const typename NumTraits<Scalar>::Real& prec = precision<Scalar>()) const
|
||||
{
|
||||
for(int i = 0; i < cols(); i++)
|
||||
{
|
||||
if(!isApprox(col(i).norm2(), static_cast<Scalar>(1)))
|
||||
return false;
|
||||
for(int j = 0; j < i; j++)
|
||||
if(!isMuchSmallerThan(col(i).dot(col(j)), static_cast<Scalar>(1)))
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
#endif // EIGEN_DOT_H
|
||||
|
@ -67,6 +67,7 @@ template<typename MatrixType> class DynBlock
|
||||
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(DynBlock)
|
||||
|
||||
private:
|
||||
static const TraversalOrder _Order = MatrixType::Order;
|
||||
static const int
|
||||
_RowsAtCompileTime = MatrixType::RowsAtCompileTime == 1 ? 1 : Dynamic,
|
||||
_ColsAtCompileTime = MatrixType::ColsAtCompileTime == 1 ? 1 : Dynamic;
|
||||
|
@ -30,7 +30,7 @@ template<typename Scalar, typename Derived>
|
||||
template<typename OtherDerived>
|
||||
bool MatrixBase<Scalar, Derived>::isApprox(
|
||||
const OtherDerived& other,
|
||||
const typename NumTraits<Scalar>::Real& prec
|
||||
const typename NumTraits<Scalar>::Real& prec = precision<Scalar>()
|
||||
) const
|
||||
{
|
||||
assert(rows() == other.rows() && cols() == other.cols());
|
||||
@ -51,7 +51,7 @@ bool MatrixBase<Scalar, Derived>::isApprox(
|
||||
template<typename Scalar, typename Derived>
|
||||
bool MatrixBase<Scalar, Derived>::isMuchSmallerThan(
|
||||
const typename NumTraits<Scalar>::Real& other,
|
||||
const typename NumTraits<Scalar>::Real& prec
|
||||
const typename NumTraits<Scalar>::Real& prec = precision<Scalar>()
|
||||
) const
|
||||
{
|
||||
if(IsVectorAtCompileTime)
|
||||
@ -71,7 +71,7 @@ template<typename Scalar, typename Derived>
|
||||
template<typename OtherDerived>
|
||||
bool MatrixBase<Scalar, Derived>::isMuchSmallerThan(
|
||||
const MatrixBase<Scalar, OtherDerived>& other,
|
||||
const typename NumTraits<Scalar>::Real& prec
|
||||
const typename NumTraits<Scalar>::Real& prec = precision<Scalar>()
|
||||
) const
|
||||
{
|
||||
assert(rows() == other.rows() && cols() == other.cols());
|
||||
|
@ -39,6 +39,7 @@ template<typename MatrixType> class Identity : NoOperatorEquals,
|
||||
}
|
||||
|
||||
private:
|
||||
static const TraversalOrder _Order = Indifferent;
|
||||
static const int _RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
_ColsAtCompileTime = MatrixType::ColsAtCompileTime;
|
||||
|
||||
@ -61,4 +62,20 @@ const Identity<Derived> MatrixBase<Scalar, Derived>::identity(int rows)
|
||||
return Identity<Derived>(rows);
|
||||
}
|
||||
|
||||
template<typename Scalar, typename Derived>
|
||||
bool MatrixBase<Scalar, Derived>::isIdentity
|
||||
(const typename NumTraits<Scalar>::Real& prec = precision<Scalar>()) const
|
||||
{
|
||||
for(int j = 0; j < col(); j++)
|
||||
{
|
||||
if(!isApprox(coeff(j, j), static_cast<Scalar>(1)))
|
||||
return false;
|
||||
for(int i = 0; i < j; i++)
|
||||
if(!isMuchSmallerThan(coeff(i, j), static_cast<Scalar>(1)))
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
#endif // EIGEN_IDENTITY_H
|
||||
|
@ -47,10 +47,10 @@ template<typename MatrixType> class Map
|
||||
friend class MatrixBase<Scalar, Map<MatrixType> >;
|
||||
|
||||
private:
|
||||
static const TraversalOrder _Order = MatrixType::Order;
|
||||
static const int _RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
_ColsAtCompileTime = MatrixType::ColsAtCompileTime;
|
||||
|
||||
static const MatrixStorageOrder _StorageOrder = MatrixType::StorageOrder;
|
||||
|
||||
const Map& _ref() const { return *this; }
|
||||
int _rows() const { return m_rows; }
|
||||
@ -58,17 +58,17 @@ template<typename MatrixType> class Map
|
||||
|
||||
const Scalar& _coeff(int row, int col) const
|
||||
{
|
||||
if(_StorageOrder == ColumnDominant)
|
||||
if(_Order == ColumnMajor)
|
||||
return m_data[row + col * m_rows];
|
||||
else // RowDominant
|
||||
else // RowMajor
|
||||
return m_data[col + row * m_cols];
|
||||
}
|
||||
|
||||
Scalar& _coeffRef(int row, int col)
|
||||
{
|
||||
if(_StorageOrder == ColumnDominant)
|
||||
if(_Order == ColumnMajor)
|
||||
return const_cast<Scalar*>(m_data)[row + col * m_rows];
|
||||
else // RowDominant
|
||||
else // RowMajor
|
||||
return const_cast<Scalar*>(m_data)[col + row * m_cols];
|
||||
}
|
||||
|
||||
@ -89,7 +89,7 @@ template<typename MatrixType> class Map
|
||||
};
|
||||
|
||||
/** This is the const version of map(Scalar*,int,int). */
|
||||
template<typename _Scalar, int _Rows, int _Cols, MatrixStorageOrder _StorageOrder>
|
||||
template<typename _Scalar, int _Rows, int _Cols, TraversalOrder _StorageOrder>
|
||||
const Map<Matrix<_Scalar, _Rows, _Cols, _StorageOrder> >
|
||||
Matrix<_Scalar, _Rows, _Cols, _StorageOrder>::map(const Scalar* data, int rows, int cols)
|
||||
{
|
||||
@ -97,7 +97,7 @@ Matrix<_Scalar, _Rows, _Cols, _StorageOrder>::map(const Scalar* data, int rows,
|
||||
}
|
||||
|
||||
/** This is the const version of map(Scalar*,int). */
|
||||
template<typename _Scalar, int _Rows, int _Cols, MatrixStorageOrder _StorageOrder>
|
||||
template<typename _Scalar, int _Rows, int _Cols, TraversalOrder _StorageOrder>
|
||||
const Map<Matrix<_Scalar, _Rows, _Cols, _StorageOrder> >
|
||||
Matrix<_Scalar, _Rows, _Cols, _StorageOrder>::map(const Scalar* data, int size)
|
||||
{
|
||||
@ -109,7 +109,7 @@ Matrix<_Scalar, _Rows, _Cols, _StorageOrder>::map(const Scalar* data, int size)
|
||||
}
|
||||
|
||||
/** This is the const version of map(Scalar*). */
|
||||
template<typename _Scalar, int _Rows, int _Cols, MatrixStorageOrder _StorageOrder>
|
||||
template<typename _Scalar, int _Rows, int _Cols, TraversalOrder _StorageOrder>
|
||||
const Map<Matrix<_Scalar, _Rows, _Cols, _StorageOrder> >
|
||||
Matrix<_Scalar, _Rows, _Cols, _StorageOrder>::map(const Scalar* data)
|
||||
{
|
||||
@ -124,8 +124,10 @@ Matrix<_Scalar, _Rows, _Cols, _StorageOrder>::map(const Scalar* data)
|
||||
*
|
||||
* Example: \include MatrixBase_map_int_int.cpp
|
||||
* Output: \verbinclude MatrixBase_map_int_int.out
|
||||
*
|
||||
* \sa map(const Scalar*, int, int), map(Scalar*, int), map(Scalar*), class Map
|
||||
*/
|
||||
template<typename _Scalar, int _Rows, int _Cols, MatrixStorageOrder _StorageOrder>
|
||||
template<typename _Scalar, int _Rows, int _Cols, TraversalOrder _StorageOrder>
|
||||
Map<Matrix<_Scalar, _Rows, _Cols, _StorageOrder> >
|
||||
Matrix<_Scalar, _Rows, _Cols, _StorageOrder>::map(Scalar* data, int rows, int cols)
|
||||
{
|
||||
@ -135,14 +137,16 @@ Matrix<_Scalar, _Rows, _Cols, _StorageOrder>::map(Scalar* data, int rows, int co
|
||||
/** \returns a expression of a vector mapping the given data.
|
||||
*
|
||||
* \param data The array of data to map
|
||||
* \param rows The size (number of coefficients) of the expression to construct
|
||||
* \param size The size (number of coefficients) of the expression to construct
|
||||
*
|
||||
* \only_for_vectors
|
||||
*
|
||||
* Example: \include MatrixBase_map_int.cpp
|
||||
* Output: \verbinclude MatrixBase_map_int.out
|
||||
*
|
||||
* \sa map(const Scalar*, int), map(Scalar*, int, int), map(Scalar*), class Map
|
||||
*/
|
||||
template<typename _Scalar, int _Rows, int _Cols, MatrixStorageOrder _StorageOrder>
|
||||
template<typename _Scalar, int _Rows, int _Cols, TraversalOrder _StorageOrder>
|
||||
Map<Matrix<_Scalar, _Rows, _Cols, _StorageOrder> >
|
||||
Matrix<_Scalar, _Rows, _Cols, _StorageOrder>::map(Scalar* data, int size)
|
||||
{
|
||||
@ -159,15 +163,25 @@ Matrix<_Scalar, _Rows, _Cols, _StorageOrder>::map(Scalar* data, int size)
|
||||
*
|
||||
* Example: \include MatrixBase_map.cpp
|
||||
* Output: \verbinclude MatrixBase_map.out
|
||||
*
|
||||
* \sa map(const Scalar*), map(Scalar*, int), map(Scalar*, int, int), class Map
|
||||
*/
|
||||
template<typename _Scalar, int _Rows, int _Cols, MatrixStorageOrder _StorageOrder>
|
||||
template<typename _Scalar, int _Rows, int _Cols, TraversalOrder _StorageOrder>
|
||||
Map<Matrix<_Scalar, _Rows, _Cols, _StorageOrder> >
|
||||
Matrix<_Scalar, _Rows, _Cols, _StorageOrder>::map(Scalar* data)
|
||||
{
|
||||
return Map<Matrix>(data, _Rows, _Cols);
|
||||
}
|
||||
|
||||
template<typename _Scalar, int _Rows, int _Cols, MatrixStorageOrder _StorageOrder>
|
||||
/** Constructor copying an existing array of data. Only useful for dynamic-size matrices:
|
||||
* for fixed-size matrices, it is redundant to pass the \a rows and \a cols parameters.
|
||||
* \param data The array of data to copy
|
||||
* \param rows The number of rows of the matrix to construct
|
||||
* \param cols The number of columns of the matrix to construct
|
||||
*
|
||||
* \sa Matrix(const Scalar *), Matrix::map(const Scalar *, int, int)
|
||||
*/
|
||||
template<typename _Scalar, int _Rows, int _Cols, TraversalOrder _StorageOrder>
|
||||
Matrix<_Scalar, _Rows, _Cols, _StorageOrder>
|
||||
::Matrix(const Scalar *data, int rows, int cols)
|
||||
: Storage(rows, cols)
|
||||
@ -175,7 +189,17 @@ Matrix<_Scalar, _Rows, _Cols, _StorageOrder>
|
||||
*this = map(data, rows, cols);
|
||||
}
|
||||
|
||||
template<typename _Scalar, int _Rows, int _Cols, MatrixStorageOrder _StorageOrder>
|
||||
/** Constructor copying an existing array of data. Only useful for dynamic-size vectors:
|
||||
* for fixed-size vectors, it is redundant to pass the \a size parameter.
|
||||
*
|
||||
* \only_for_vectors
|
||||
*
|
||||
* \param data The array of data to copy
|
||||
* \param size The size of the vector to construct
|
||||
*
|
||||
* \sa Matrix(const Scalar *), Matrix::map(const Scalar *, int)
|
||||
*/
|
||||
template<typename _Scalar, int _Rows, int _Cols, TraversalOrder _StorageOrder>
|
||||
Matrix<_Scalar, _Rows, _Cols, _StorageOrder>
|
||||
::Matrix(const Scalar *data, int size)
|
||||
: Storage(size)
|
||||
@ -183,7 +207,17 @@ Matrix<_Scalar, _Rows, _Cols, _StorageOrder>
|
||||
*this = map(data, size);
|
||||
}
|
||||
|
||||
template<typename _Scalar, int _Rows, int _Cols, MatrixStorageOrder _StorageOrder>
|
||||
/** Constructor copying an existing array of data.
|
||||
* Only for fixed-size matrices and vectors.
|
||||
* \param data The array of data to copy
|
||||
*
|
||||
* For dynamic-size matrices and vectors, see the variants taking additional int parameters
|
||||
* for the dimensions.
|
||||
*
|
||||
* \sa Matrix(const Scalar *, int), Matrix(const Scalar *, int, int),
|
||||
* Matrix::map(const Scalar *)
|
||||
*/
|
||||
template<typename _Scalar, int _Rows, int _Cols, TraversalOrder _StorageOrder>
|
||||
Matrix<_Scalar, _Rows, _Cols, _StorageOrder>
|
||||
::Matrix(const Scalar *data)
|
||||
: Storage()
|
||||
|
@ -26,9 +26,54 @@
|
||||
#ifndef EIGEN_MATRIX_H
|
||||
#define EIGEN_MATRIX_H
|
||||
|
||||
/** \class Matrix */
|
||||
/** \class Matrix
|
||||
*
|
||||
* \brief The matrix class, also used for vectors and row-vectors
|
||||
*
|
||||
* \param _Scalar the scalar type, i.e. the type of the coefficients
|
||||
* \param _Rows the number of rows at compile-time. Use the special value \a Dynamic to specify that the number of rows is dynamic, i.e. is not fixed at compile-time.
|
||||
* \param _Cols the number of columns at compile-time. Use the special value \a Dynamic to specify that the number of columns is dynamic, i.e. is not fixed at compile-time.
|
||||
* \param _StorageOrder can be either \a RowMajor or \a ColumnMajor.
|
||||
* This template parameter has a default value (EIGEN_DEFAULT_MATRIX_STORAGE_ORDER)
|
||||
* which, if not predefined, is defined to \a ColumnMajor. You can override this behavior by
|
||||
* predefining it before including Eigen headers.
|
||||
*
|
||||
* This single class template covers all kinds of matrix and vectors that Eigen can handle.
|
||||
* All matrix and vector types are just typedefs to specializations of this class template.
|
||||
*
|
||||
* These typedefs are as follows:
|
||||
* \li \c %Matrix##Size##Type for square matrices
|
||||
* \li \c Vector##Size##Type for vectors (matrices with one column)
|
||||
* \li \c RowVector##Size##Type for row-vectors (matrices with one row)
|
||||
*
|
||||
* where \c Size can be
|
||||
* \li \c 2 for fixed size 2
|
||||
* \li \c 3 for fixed size 3
|
||||
* \li \c 4 for fixed size 4
|
||||
* \li \c X for dynamic size
|
||||
*
|
||||
* and \c Type can be
|
||||
* \li \c i for type \c int
|
||||
* \li \c f for type \c float
|
||||
* \li \c d for type \c double
|
||||
* \li \c cf for type \c std::complex<float>
|
||||
* \li \c cd for type \c std::complex<float>
|
||||
*
|
||||
* Examples:
|
||||
* \li \c Matrix2d is a typedef for \c Matrix<double,2,2>
|
||||
* \li \c VectorXf is a typedef for \c Matrix<float,Dynamic,1>
|
||||
* \li \c RowVector3i is a typedef for \c Matrix<int,1,3>
|
||||
*
|
||||
* Of course these typedefs do not exhaust all the possibilities offered by the Matrix class
|
||||
* template, they only address some of the most common cases. For instance, if you want a
|
||||
* fixed-size matrix with 3 rows and 5 columns, there is no typedef for that, so you should use
|
||||
* \c Matrix<double,3,5>.
|
||||
*
|
||||
* Note that most of the API is in the base class MatrixBase, and that the base class
|
||||
* MatrixStorage also provides the MatrixStorage::resize() public method.
|
||||
*/
|
||||
template<typename _Scalar, int _Rows, int _Cols,
|
||||
MatrixStorageOrder _StorageOrder = EIGEN_DEFAULT_MATRIX_STORAGE_ORDER>
|
||||
TraversalOrder _StorageOrder = EIGEN_DEFAULT_MATRIX_STORAGE_ORDER>
|
||||
class Matrix : public MatrixBase<_Scalar, Matrix<_Scalar, _Rows, _Cols, _StorageOrder> >,
|
||||
public MatrixStorage<_Scalar, _Rows, _Cols>
|
||||
{
|
||||
@ -46,30 +91,37 @@ class Matrix : public MatrixBase<_Scalar, Matrix<_Scalar, _Rows, _Cols, _Storage
|
||||
Scalar* data()
|
||||
{ return Storage::m_data; }
|
||||
|
||||
static const MatrixStorageOrder StorageOrder = _StorageOrder;
|
||||
|
||||
private:
|
||||
static const TraversalOrder _Order = _StorageOrder;
|
||||
static const int _RowsAtCompileTime = _Rows, _ColsAtCompileTime = _Cols;
|
||||
|
||||
Ref _ref() const { return Ref(*this); }
|
||||
|
||||
const Scalar& _coeff(int row, int col) const
|
||||
{
|
||||
if(_StorageOrder == ColumnDominant)
|
||||
if(_Order == ColumnMajor)
|
||||
return (Storage::m_data)[row + col * Storage::_rows()];
|
||||
else // RowDominant
|
||||
else // RowMajor
|
||||
return (Storage::m_data)[col + row * Storage::_cols()];
|
||||
}
|
||||
|
||||
Scalar& _coeffRef(int row, int col)
|
||||
{
|
||||
if(_StorageOrder == ColumnDominant)
|
||||
if(_Order == ColumnMajor)
|
||||
return (Storage::m_data)[row + col * Storage::_rows()];
|
||||
else // RowDominant
|
||||
else // RowMajor
|
||||
return (Storage::m_data)[col + row * Storage::_cols()];
|
||||
}
|
||||
|
||||
public:
|
||||
/** Copies the value of the expression \a other into *this.
|
||||
*
|
||||
* *this is resized (if possible) to match the dimensions of \a other.
|
||||
*
|
||||
* As a special exception, copying a row-vector into a vector (and conversely)
|
||||
* is allowed. The resizing, if any, is then done in the appropriate way so that
|
||||
* row-vectors remain row-vectors and vectors remain vectors.
|
||||
*/
|
||||
template<typename OtherDerived>
|
||||
Matrix& operator=(const MatrixBase<Scalar, OtherDerived>& other)
|
||||
{
|
||||
@ -87,6 +139,9 @@ class Matrix : public MatrixBase<_Scalar, Matrix<_Scalar, _Rows, _Cols, _Storage
|
||||
return Base::operator=(other);
|
||||
}
|
||||
|
||||
/** This is a special case of the templated operator=. Its purpose is to
|
||||
* prevent a default operator= from hiding the templated operator=.
|
||||
*/
|
||||
Matrix& operator=(const Matrix& other)
|
||||
{
|
||||
return operator=<Matrix>(other);
|
||||
@ -104,10 +159,21 @@ class Matrix : public MatrixBase<_Scalar, Matrix<_Scalar, _Rows, _Cols, _Storage
|
||||
static Map<Matrix> map(Scalar* array, int size);
|
||||
static Map<Matrix> map(Scalar* array);
|
||||
|
||||
/** Default constructor, does nothing. Only for fixed-size matrices.
|
||||
* For dynamic-size matrices and vectors, this constructor is forbidden (guarded by
|
||||
* an assertion) because it would leave the matrix without an allocated data buffer.
|
||||
*/
|
||||
explicit Matrix() : Storage()
|
||||
{
|
||||
assert(_RowsAtCompileTime > 0 && _ColsAtCompileTime > 0);
|
||||
}
|
||||
|
||||
/** Constructs a vector or row-vector with given dimension. \only_for_vectors
|
||||
*
|
||||
* Note that this is only useful for dynamic-size vectors. For fixed-size vectors,
|
||||
* it is redundant to pass the dimension here, so it makes more sense to use the default
|
||||
* constructor Matrix() instead.
|
||||
*/
|
||||
explicit Matrix(int dim) : Storage(dim)
|
||||
{
|
||||
assert(dim > 0);
|
||||
@ -117,14 +183,16 @@ class Matrix : public MatrixBase<_Scalar, Matrix<_Scalar, _Rows, _Cols, _Storage
|
||||
&& (_RowsAtCompileTime == Dynamic || _RowsAtCompileTime == dim)));
|
||||
}
|
||||
|
||||
// this constructor is very tricky.
|
||||
// When Matrix is a fixed-size vector type of size 2,
|
||||
// Matrix(x,y) should mean "construct vector with coefficients x,y".
|
||||
// Otherwise, Matrix(x,y) should mean "construct matrix with x rows and y cols".
|
||||
// Note that in the case of fixed-size, Storage::Storage(int,int) does nothing,
|
||||
// so it is harmless to call it and afterwards we just fill the m_data array
|
||||
// with the two coefficients. In the case of dynamic size, Storage::Storage(int,int)
|
||||
// does what we want to, so it only remains to add some asserts.
|
||||
/** This constructor has two very different behaviors, depending on the type of *this.
|
||||
*
|
||||
* \li When Matrix is a fixed-size vector type of size 2, this constructor constructs
|
||||
* an initialized vector. The parameters \a x, \a y are copied into the first and second
|
||||
* coords of the vector respectively.
|
||||
* \li Otherwise, this constructor constructs an uninitialized matrix with \a x rows and
|
||||
* \a y columns. This is useful for dynamic-size matrices. For fixed-size matrices,
|
||||
* it is redundant to pass these parameters, so one should use the default constructor
|
||||
* Matrix() instead.
|
||||
*/
|
||||
Matrix(int x, int y) : Storage(x, y)
|
||||
{
|
||||
if((_RowsAtCompileTime == 1 && _ColsAtCompileTime == 2)
|
||||
@ -139,6 +207,7 @@ class Matrix : public MatrixBase<_Scalar, Matrix<_Scalar, _Rows, _Cols, _Storage
|
||||
&& y > 0 && (_ColsAtCompileTime == Dynamic || _ColsAtCompileTime == y));
|
||||
}
|
||||
}
|
||||
/** constructs an initialized 2D vector with given coefficients */
|
||||
Matrix(const float& x, const float& y)
|
||||
{
|
||||
assert((_RowsAtCompileTime == 1 && _ColsAtCompileTime == 2)
|
||||
@ -146,6 +215,7 @@ class Matrix : public MatrixBase<_Scalar, Matrix<_Scalar, _Rows, _Cols, _Storage
|
||||
(Storage::m_data)[0] = x;
|
||||
(Storage::m_data)[1] = y;
|
||||
}
|
||||
/** constructs an initialized 2D vector with given coefficients */
|
||||
Matrix(const double& x, const double& y)
|
||||
{
|
||||
assert((_RowsAtCompileTime == 1 && _ColsAtCompileTime == 2)
|
||||
@ -153,6 +223,7 @@ class Matrix : public MatrixBase<_Scalar, Matrix<_Scalar, _Rows, _Cols, _Storage
|
||||
(Storage::m_data)[0] = x;
|
||||
(Storage::m_data)[1] = y;
|
||||
}
|
||||
/** constructs an initialized 3D vector with given coefficients */
|
||||
Matrix(const Scalar& x, const Scalar& y, const Scalar& z)
|
||||
{
|
||||
assert((_RowsAtCompileTime == 1 && _ColsAtCompileTime == 3)
|
||||
@ -161,6 +232,7 @@ class Matrix : public MatrixBase<_Scalar, Matrix<_Scalar, _Rows, _Cols, _Storage
|
||||
(Storage::m_data)[1] = y;
|
||||
(Storage::m_data)[2] = z;
|
||||
}
|
||||
/** constructs an initialized 4D vector with given coefficients */
|
||||
Matrix(const Scalar& x, const Scalar& y, const Scalar& z, const Scalar& w)
|
||||
{
|
||||
assert((_RowsAtCompileTime == 1 && _ColsAtCompileTime == 4)
|
||||
@ -174,16 +246,19 @@ class Matrix : public MatrixBase<_Scalar, Matrix<_Scalar, _Rows, _Cols, _Storage
|
||||
Matrix(const Scalar *data, int size);
|
||||
explicit Matrix(const Scalar *data);
|
||||
|
||||
/** Constructor copying the value of the expression \a other */
|
||||
template<typename OtherDerived>
|
||||
Matrix(const MatrixBase<Scalar, OtherDerived>& other)
|
||||
: Storage(other.rows(), other.cols())
|
||||
{
|
||||
*this = other;
|
||||
}
|
||||
/** Copy constructor */
|
||||
Matrix(const Matrix& other) : Storage(other.rows(), other.cols())
|
||||
{
|
||||
*this = other;
|
||||
}
|
||||
/** Destructor */
|
||||
~Matrix() {}
|
||||
};
|
||||
|
||||
|
@ -57,6 +57,8 @@
|
||||
template<typename Scalar, typename Derived> class MatrixBase
|
||||
{
|
||||
public:
|
||||
static const TraversalOrder Order = Derived::_Order;
|
||||
|
||||
/** The number of rows at compile-time. This is just a copy of the value provided
|
||||
* by the \a Derived type. If a value is not known at compile-time,
|
||||
* it is set to the \a Dynamic constant.
|
||||
@ -154,6 +156,10 @@ template<typename Scalar, typename Derived> class MatrixBase
|
||||
RealScalar norm2() const;
|
||||
RealScalar norm() const;
|
||||
const ScalarMultiple<RealScalar, Derived> normalized() const;
|
||||
template<typename OtherDerived>
|
||||
bool isOrtho(const OtherDerived& other,
|
||||
const typename NumTraits<Scalar>::Real& prec) const;
|
||||
bool isOrtho(const typename NumTraits<Scalar>::Real& prec) const;
|
||||
|
||||
static const Eval<Random<Derived> > random(int rows, int cols);
|
||||
static const Eval<Random<Derived> > random(int size);
|
||||
@ -166,9 +172,11 @@ template<typename Scalar, typename Derived> class MatrixBase
|
||||
static const Ones<Derived> ones();
|
||||
static const Identity<Derived> identity(int rows = RowsAtCompileTime);
|
||||
|
||||
template<typename OtherDerived>
|
||||
static const DiagonalMatrix<Derived, OtherDerived>
|
||||
diagonal(const OtherDerived& coeffs);
|
||||
bool isZero(const typename NumTraits<Scalar>::Real& prec) const;
|
||||
bool isOnes(const typename NumTraits<Scalar>::Real& prec) const;
|
||||
bool isIdentity(const typename NumTraits<Scalar>::Real& prec) const;
|
||||
|
||||
const DiagonalMatrix<Derived> asDiagonal() const;
|
||||
|
||||
DiagonalCoeffs<Derived> diagonal();
|
||||
const DiagonalCoeffs<Derived> diagonal() const;
|
||||
@ -176,16 +184,16 @@ template<typename Scalar, typename Derived> class MatrixBase
|
||||
template<typename OtherDerived>
|
||||
bool isApprox(
|
||||
const OtherDerived& other,
|
||||
const typename NumTraits<Scalar>::Real& prec = precision<Scalar>()
|
||||
const typename NumTraits<Scalar>::Real& prec
|
||||
) const;
|
||||
bool isMuchSmallerThan(
|
||||
const typename NumTraits<Scalar>::Real& other,
|
||||
const typename NumTraits<Scalar>::Real& prec = precision<Scalar>()
|
||||
const typename NumTraits<Scalar>::Real& prec
|
||||
) const;
|
||||
template<typename OtherDerived>
|
||||
bool isMuchSmallerThan(
|
||||
const MatrixBase<Scalar, OtherDerived>& other,
|
||||
const typename NumTraits<Scalar>::Real& prec = precision<Scalar>()
|
||||
const typename NumTraits<Scalar>::Real& prec
|
||||
) const;
|
||||
|
||||
template<typename OtherDerived>
|
||||
|
@ -39,6 +39,7 @@ template<typename MatrixType> class MatrixRef
|
||||
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(MatrixRef)
|
||||
|
||||
private:
|
||||
static const TraversalOrder _Order = MatrixType::Order;
|
||||
static const int _RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
_ColsAtCompileTime = MatrixType::ColsAtCompileTime;
|
||||
|
||||
|
@ -57,6 +57,7 @@ template<typename MatrixType> class Minor
|
||||
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Minor)
|
||||
|
||||
private:
|
||||
static const TraversalOrder _Order = MatrixType::Order;
|
||||
static const int
|
||||
_RowsAtCompileTime = (MatrixType::RowsAtCompileTime != Dynamic) ?
|
||||
MatrixType::RowsAtCompileTime - 1 : Dynamic,
|
||||
|
@ -40,6 +40,7 @@ template<typename MatrixType> class Ones : NoOperatorEquals,
|
||||
friend class MatrixBase<Scalar, Ones<MatrixType> >;
|
||||
|
||||
private:
|
||||
static const TraversalOrder _Order = Indifferent;
|
||||
static const int _RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
_ColsAtCompileTime = MatrixType::ColsAtCompileTime;
|
||||
|
||||
@ -125,4 +126,15 @@ const Ones<Derived> MatrixBase<Scalar, Derived>::ones()
|
||||
return Ones<Derived>(RowsAtCompileTime, ColsAtCompileTime);
|
||||
}
|
||||
|
||||
template<typename Scalar, typename Derived>
|
||||
bool MatrixBase<Scalar, Derived>::isOnes
|
||||
(const typename NumTraits<Scalar>::Real& prec = precision<Scalar>()) const
|
||||
{
|
||||
for(int j = 0; j < col(); j++)
|
||||
for(int i = 0; i < row(); i++)
|
||||
if(!isApprox(coeff(i, j), static_cast<Scalar>(1)))
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
#endif // EIGEN_ONES_H
|
||||
|
@ -27,28 +27,25 @@
|
||||
#ifndef EIGEN_OPERATOREQUALS_H
|
||||
#define EIGEN_OPERATOREQUALS_H
|
||||
|
||||
template<typename Derived1, typename Derived2, int UnrollCount, int Rows>
|
||||
template<typename Derived1, typename Derived2, int UnrollCount, TraversalOrder Order>
|
||||
struct MatrixOperatorEqualsUnroller
|
||||
{
|
||||
static const int col = (UnrollCount-1) / Rows;
|
||||
static const int row = (UnrollCount-1) % Rows;
|
||||
static const int col = (Order == ColumnMajor)
|
||||
? (UnrollCount-1) / Derived1::RowsAtCompileTime
|
||||
: (UnrollCount-1) % Derived1::ColsAtCompileTime;
|
||||
static const int row = (Order == ColumnMajor)
|
||||
? (UnrollCount-1) % Derived1::RowsAtCompileTime
|
||||
: (UnrollCount-1) / Derived1::ColsAtCompileTime;
|
||||
|
||||
static void run(Derived1 &dst, const Derived2 &src)
|
||||
{
|
||||
MatrixOperatorEqualsUnroller<Derived1, Derived2, UnrollCount-1, Rows>::run(dst, src);
|
||||
MatrixOperatorEqualsUnroller<Derived1, Derived2, UnrollCount-1, Order>::run(dst, src);
|
||||
dst.coeffRef(row, col) = src.coeff(row, col);
|
||||
}
|
||||
};
|
||||
|
||||
// prevent buggy user code from causing an infinite recursion
|
||||
template<typename Derived1, typename Derived2, int UnrollCount>
|
||||
struct MatrixOperatorEqualsUnroller<Derived1, Derived2, UnrollCount, 0>
|
||||
{
|
||||
static void run(Derived1 &, const Derived2 &) {}
|
||||
};
|
||||
|
||||
template<typename Derived1, typename Derived2, int Rows>
|
||||
struct MatrixOperatorEqualsUnroller<Derived1, Derived2, 1, Rows>
|
||||
template<typename Derived1, typename Derived2, TraversalOrder Order>
|
||||
struct MatrixOperatorEqualsUnroller<Derived1, Derived2, 1, Order>
|
||||
{
|
||||
static void run(Derived1 &dst, const Derived2 &src)
|
||||
{
|
||||
@ -56,8 +53,15 @@ struct MatrixOperatorEqualsUnroller<Derived1, Derived2, 1, Rows>
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Derived1, typename Derived2, int Rows>
|
||||
struct MatrixOperatorEqualsUnroller<Derived1, Derived2, Dynamic, Rows>
|
||||
// prevent buggy user code from causing an infinite recursion
|
||||
template<typename Derived1, typename Derived2, TraversalOrder Order>
|
||||
struct MatrixOperatorEqualsUnroller<Derived1, Derived2, 0, Order>
|
||||
{
|
||||
static void run(Derived1 &, const Derived2 &) {}
|
||||
};
|
||||
|
||||
template<typename Derived1, typename Derived2, TraversalOrder Order>
|
||||
struct MatrixOperatorEqualsUnroller<Derived1, Derived2, Dynamic, Order>
|
||||
{
|
||||
static void run(Derived1 &, const Derived2 &) {}
|
||||
};
|
||||
@ -101,7 +105,8 @@ template<typename OtherDerived>
|
||||
Derived& MatrixBase<Scalar, Derived>
|
||||
::operator=(const MatrixBase<Scalar, OtherDerived>& other)
|
||||
{
|
||||
if(IsVectorAtCompileTime && OtherDerived::IsVectorAtCompileTime) // copying a vector expression into a vector
|
||||
if(IsVectorAtCompileTime && OtherDerived::IsVectorAtCompileTime)
|
||||
// copying a vector expression into a vector
|
||||
{
|
||||
assert(size() == other.size());
|
||||
if(EIGEN_UNROLLED_LOOPS && SizeAtCompileTime != Dynamic && SizeAtCompileTime <= 25)
|
||||
@ -113,17 +118,24 @@ Derived& MatrixBase<Scalar, Derived>
|
||||
coeffRef(i) = other.coeff(i);
|
||||
return *static_cast<Derived*>(this);
|
||||
}
|
||||
else // all other cases (typically, but not necessarily, copying a matrix)
|
||||
else // copying a matrix expression into a matrix
|
||||
{
|
||||
assert(rows() == other.rows() && cols() == other.cols());
|
||||
if(EIGEN_UNROLLED_LOOPS && SizeAtCompileTime != Dynamic && SizeAtCompileTime <= 25)
|
||||
MatrixOperatorEqualsUnroller
|
||||
<Derived, OtherDerived, SizeAtCompileTime, RowsAtCompileTime>::run
|
||||
<Derived, OtherDerived, SizeAtCompileTime, Order>::run
|
||||
(*static_cast<Derived*>(this), *static_cast<const OtherDerived*>(&other));
|
||||
else
|
||||
for(int j = 0; j < cols(); j++) //traverse in column-dominant order
|
||||
{
|
||||
if(Order == ColumnMajor)
|
||||
for(int j = 0; j < cols(); j++)
|
||||
for(int i = 0; i < rows(); i++)
|
||||
coeffRef(i, j) = other.coeff(i, j);
|
||||
else // RowMajor
|
||||
for(int i = 0; i < rows(); i++)
|
||||
coeffRef(i, j) = other.coeff(i, j);
|
||||
for(int j = 0; j < cols(); j++)
|
||||
coeffRef(i, j) = other.coeff(i, j);
|
||||
}
|
||||
return *static_cast<Derived*>(this);
|
||||
}
|
||||
}
|
||||
|
@ -37,6 +37,7 @@ template<typename MatrixType> class Opposite : NoOperatorEquals,
|
||||
Opposite(const MatRef& matrix) : m_matrix(matrix) {}
|
||||
|
||||
private:
|
||||
static const TraversalOrder _Order = MatrixType::Order;
|
||||
static const int _RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
_ColsAtCompileTime = MatrixType::ColsAtCompileTime;
|
||||
|
||||
|
@ -40,6 +40,7 @@ template<typename MatrixType> class Random : NoOperatorEquals,
|
||||
friend class MatrixBase<Scalar, Random<MatrixType> >;
|
||||
|
||||
private:
|
||||
static const TraversalOrder _Order = Indifferent;
|
||||
static const int _RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
_ColsAtCompileTime = MatrixType::ColsAtCompileTime;
|
||||
|
||||
|
@ -69,6 +69,7 @@ template<typename MatrixType> class Row
|
||||
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Row)
|
||||
|
||||
private:
|
||||
static const TraversalOrder _Order = RowMajor;
|
||||
static const int _RowsAtCompileTime = 1,
|
||||
_ColsAtCompileTime = MatrixType::ColsAtCompileTime;
|
||||
|
||||
|
@ -38,6 +38,7 @@ template<typename FactorType, typename MatrixType> class ScalarMultiple : NoOper
|
||||
: m_matrix(matrix), m_factor(factor) {}
|
||||
|
||||
private:
|
||||
static const TraversalOrder _Order = MatrixType::Order;
|
||||
static const int _RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
_ColsAtCompileTime = MatrixType::ColsAtCompileTime;
|
||||
|
||||
|
@ -42,6 +42,7 @@ template<typename Lhs, typename Rhs> class Sum : NoOperatorEquals,
|
||||
}
|
||||
|
||||
private:
|
||||
static const TraversalOrder _Order = Lhs::Order;
|
||||
static const int _RowsAtCompileTime = Lhs::RowsAtCompileTime,
|
||||
_ColsAtCompileTime = Rhs::ColsAtCompileTime;
|
||||
|
||||
|
@ -51,6 +51,8 @@ template<typename MatrixType> class Transpose
|
||||
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Transpose)
|
||||
|
||||
private:
|
||||
static const TraversalOrder _Order = (MatrixType::Order == ColumnMajor)
|
||||
? RowMajor : ColumnMajor;
|
||||
static const int _RowsAtCompileTime = MatrixType::ColsAtCompileTime,
|
||||
_ColsAtCompileTime = MatrixType::RowsAtCompileTime;
|
||||
|
||||
|
@ -33,7 +33,7 @@
|
||||
#endif
|
||||
|
||||
#ifndef EIGEN_DEFAULT_MATRIX_STORAGE_ORDER
|
||||
#define EIGEN_DEFAULT_MATRIX_STORAGE_ORDER ColumnDominant
|
||||
#define EIGEN_DEFAULT_MATRIX_STORAGE_ORDER Indifferent
|
||||
#endif
|
||||
|
||||
#undef minor
|
||||
@ -88,14 +88,15 @@ EIGEN_INHERIT_SCALAR_ASSIGNMENT_OPERATOR(Derived, /=)
|
||||
|
||||
const int Dynamic = -1;
|
||||
|
||||
enum MatrixStorageOrder
|
||||
enum TraversalOrder
|
||||
{
|
||||
ColumnDominant,
|
||||
RowDominant
|
||||
ColumnMajor,
|
||||
RowMajor,
|
||||
Indifferent = ColumnMajor
|
||||
};
|
||||
|
||||
//forward declarations
|
||||
template<typename _Scalar, int _Rows, int _Cols, MatrixStorageOrder _StorageOrder>
|
||||
template<typename _Scalar, int _Rows, int _Cols, TraversalOrder _StorageOrder>
|
||||
class Matrix;
|
||||
template<typename MatrixType> class MatrixRef;
|
||||
template<typename NewScalar, typename MatrixType> class Cast;
|
||||
@ -114,7 +115,7 @@ template<typename FactorType, typename MatrixType> class ScalarMultiple;
|
||||
template<typename MatrixType> class Random;
|
||||
template<typename MatrixType> class Zero;
|
||||
template<typename MatrixType> class Ones;
|
||||
template<typename MatrixType, typename CoeffsVectorType> class DiagonalMatrix;
|
||||
template<typename CoeffsVectorType> class DiagonalMatrix;
|
||||
template<typename MatrixType> class DiagonalCoeffs;
|
||||
template<typename MatrixType> class Identity;
|
||||
template<typename ExpressionType> class Eval;
|
||||
@ -125,7 +126,7 @@ template<typename T> struct ForwardDecl
|
||||
typedef T Ref;
|
||||
};
|
||||
|
||||
template<typename _Scalar, int _Rows, int _Cols, MatrixStorageOrder _StorageOrder>
|
||||
template<typename _Scalar, int _Rows, int _Cols, TraversalOrder _StorageOrder>
|
||||
struct ForwardDecl<Matrix<_Scalar, _Rows, _Cols, _StorageOrder> >
|
||||
{
|
||||
typedef MatrixRef<Matrix<_Scalar, _Rows, _Cols, _StorageOrder> > Ref;
|
||||
|
@ -40,6 +40,7 @@ template<typename MatrixType> class Zero : NoOperatorEquals,
|
||||
friend class MatrixBase<Scalar, Zero<MatrixType> >;
|
||||
|
||||
private:
|
||||
static const TraversalOrder _Order = Indifferent;
|
||||
static const int _RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
||||
_ColsAtCompileTime = MatrixType::ColsAtCompileTime;
|
||||
|
||||
@ -125,4 +126,15 @@ const Zero<Derived> MatrixBase<Scalar, Derived>::zero()
|
||||
return Zero<Derived>(RowsAtCompileTime, ColsAtCompileTime);
|
||||
}
|
||||
|
||||
template<typename Scalar, typename Derived>
|
||||
bool MatrixBase<Scalar, Derived>::isZero
|
||||
(const typename NumTraits<Scalar>::Real& prec = precision<Scalar>()) const
|
||||
{
|
||||
for(int j = 0; j < col(); j++)
|
||||
for(int i = 0; i < row(); i++)
|
||||
if(!isMuchSmallerThan(coeff(i, j), static_cast<Scalar>(1)))
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
#endif // EIGEN_ZERO_H
|
||||
|
22
doc/benchmarkX.cpp
Normal file
22
doc/benchmarkX.cpp
Normal file
@ -0,0 +1,22 @@
|
||||
// g++ -O3 -DNDEBUG benchmarkX.cpp -o benchmarkX && time ./benchmarkX
|
||||
|
||||
#include <Eigen/Core>
|
||||
|
||||
using namespace std;
|
||||
USING_PART_OF_NAMESPACE_EIGEN
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
MatrixXd I = MatrixXd::identity(20);
|
||||
MatrixXd m(20,20);
|
||||
for(int i = 0; i < 20; i++) for(int j = 0; j < 20; j++)
|
||||
{
|
||||
m(i,j) = 0.1 * (i+20*j);
|
||||
}
|
||||
for(int a = 0; a < 1000000; a++)
|
||||
{
|
||||
m = I + 0.00005 * (m + m*m);
|
||||
}
|
||||
cout << m << endl;
|
||||
return 0;
|
||||
}
|
16
doc/benchmark_suite
Executable file
16
doc/benchmark_suite
Executable file
@ -0,0 +1,16 @@
|
||||
echo "Fixed size 3x3, ColumnMajor, -DNDEBUG"
|
||||
g++ -O3 -I .. -DEIGEN_DEFAULT_MATRIX_STORAGE_ORDER=ColumnMajor -DNDEBUG benchmark.cpp -o benchmark && time ./benchmark >/dev/null
|
||||
echo "Fixed size 3x3, ColumnMajor, with asserts"
|
||||
g++ -O3 -I .. -DEIGEN_DEFAULT_MATRIX_STORAGE_ORDER=ColumnMajor benchmark.cpp -o benchmark && time ./benchmark >/dev/null
|
||||
echo "Fixed size 3x3, RowMajor, -DNDEBUG"
|
||||
g++ -O3 -I .. -DEIGEN_DEFAULT_MATRIX_STORAGE_ORDER=RowMajor -DNDEBUG benchmark.cpp -o benchmark && time ./benchmark >/dev/null
|
||||
echo "Fixed size 3x3, RowMajor, with asserts"
|
||||
g++ -O3 -I .. -DEIGEN_DEFAULT_MATRIX_STORAGE_ORDER=RowMajor benchmark.cpp -o benchmark && time ./benchmark >/dev/null
|
||||
echo "Dynamic size 20x20, ColumnMajor, -DNDEBUG"
|
||||
g++ -O3 -I .. -DEIGEN_DEFAULT_MATRIX_STORAGE_ORDER=ColumnMajor -DNDEBUG benchmarkX.cpp -o benchmarkX && time ./benchmarkX >/dev/null
|
||||
echo "Dynamic size 20x20, ColumnMajor, with asserts"
|
||||
g++ -O3 -I .. -DEIGEN_DEFAULT_MATRIX_STORAGE_ORDER=ColumnMajor benchmarkX.cpp -o benchmarkX && time ./benchmarkX >/dev/null
|
||||
echo "Dynamic size 20x20, RowMajor, -DNDEBUG"
|
||||
g++ -O3 -I .. -DEIGEN_DEFAULT_MATRIX_STORAGE_ORDER=RowMajor -DNDEBUG benchmarkX.cpp -o benchmarkX && time ./benchmarkX >/dev/null
|
||||
echo "Dynamic size 20x20, RowMajor, with asserts"
|
||||
g++ -O3 -I .. -DEIGEN_DEFAULT_MATRIX_STORAGE_ORDER=RowMajor benchmarkX.cpp -o benchmarkX && time ./benchmarkX >/dev/null
|
1
doc/snippets/MatrixBase_asDiagonal.cpp
Normal file
1
doc/snippets/MatrixBase_asDiagonal.cpp
Normal file
@ -0,0 +1 @@
|
||||
cout << Vector3i(2,5,6).asDiagonal() << endl;
|
@ -1,4 +1,4 @@
|
||||
Matrix4d m = Matrix4d::diagonal(Vector4d(1,2,3,4));
|
||||
Matrix4d m = Vector4d(1,2,3,4).asDiagonal();
|
||||
cout << "Here is the matrix m:" << endl << m << endl;
|
||||
cout << "Here is m.block<2, 2>(2, 2):" << endl << m.block<2, 2>(2, 2) << endl;
|
||||
m.block<2, 2>(2, 0) = m.block<2, 2>(2, 2);
|
||||
|
@ -1,4 +1,4 @@
|
||||
Matrix3d m = Matrix3d::diagonal(Vector3d(1,2,3));
|
||||
Matrix3d m = Vector3d(1,2,3).asDiagonal();
|
||||
cout << "Here is the matrix m:" << endl << m << endl;
|
||||
cout << "Here is m.dynBlock(1, 1, 2, 1):" << endl << m.dynBlock(1, 1, 2, 1) << endl;
|
||||
m.dynBlock(1, 0, 2, 1) = m.dynBlock(1, 1, 2, 1);
|
||||
|
@ -28,6 +28,7 @@
|
||||
|
||||
#include <QtTest/QtTest>
|
||||
|
||||
//#define EIGEN_DEFAULT_MATRIX_STORAGE_ORDER RowMajor
|
||||
#define EIGEN_INTERNAL_DEBUGGING
|
||||
#include <Eigen/Core>
|
||||
|
||||
|
@ -46,7 +46,7 @@ template<typename MatrixType> void miscMatrices(const MatrixType& m)
|
||||
VectorType v1 = VectorType::random(rows);
|
||||
v1[0];
|
||||
Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>
|
||||
square = MatrixType::diagonal(v1);
|
||||
square = v1.asDiagonal();
|
||||
if(r==r2) VERIFY_IS_APPROX(square(r,r2), v1[r]);
|
||||
else VERIFY_IS_MUCH_SMALLER_THAN(square(r,r2), static_cast<Scalar>(1));
|
||||
square = MatrixType::zero(rows, rows);
|
||||
|
Loading…
x
Reference in New Issue
Block a user