mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-06-03 02:03:59 +08:00
reduce float warnings (comparisons and implicit conversions)
This commit is contained in:
parent
51311ec651
commit
d271a7d545
@ -440,7 +440,7 @@ template<> struct ldlt_inplace<Lower>
|
||||
// Update the terms of L
|
||||
Index rs = size-j-1;
|
||||
w.tail(rs) -= wj * mat.col(j).tail(rs);
|
||||
if(gamma != 0)
|
||||
if(!numext::is_exactly_zero(gamma))
|
||||
mat.col(j).tail(rs) += (sigma*numext::conj(wj)/gamma)*w.tail(rs);
|
||||
}
|
||||
return true;
|
||||
|
@ -297,7 +297,7 @@ static Index llt_rank_update_lower(MatrixType& mat, const VectorType& vec, const
|
||||
if(rs)
|
||||
{
|
||||
temp.tail(rs) -= (wj/Ljj) * mat.col(j).tail(rs);
|
||||
if(gamma != 0)
|
||||
if(!numext::is_exactly_zero(gamma))
|
||||
mat.col(j).tail(rs) = (nLjj/Ljj) * mat.col(j).tail(rs) + (nLjj * sigma*numext::conj(wj)/gamma)*temp.tail(rs);
|
||||
}
|
||||
}
|
||||
|
@ -162,12 +162,12 @@ rcond_estimate_helper(typename Decomposition::RealScalar matrix_norm, const Deco
|
||||
{
|
||||
typedef typename Decomposition::RealScalar RealScalar;
|
||||
eigen_assert(dec.rows() == dec.cols());
|
||||
if (dec.rows() == 0) return NumTraits<RealScalar>::infinity();
|
||||
if (matrix_norm == RealScalar(0)) return RealScalar(0);
|
||||
if (dec.rows() == 1) return RealScalar(1);
|
||||
if (dec.rows() == 0) return NumTraits<RealScalar>::infinity();
|
||||
if (numext::is_exactly_zero(matrix_norm)) return RealScalar(0);
|
||||
if (dec.rows() == 1) return RealScalar(1);
|
||||
const RealScalar inverse_matrix_norm = rcond_invmatrix_L1_norm_estimate(dec);
|
||||
return (inverse_matrix_norm == RealScalar(0) ? RealScalar(0)
|
||||
: (RealScalar(1) / inverse_matrix_norm) / matrix_norm);
|
||||
return (numext::is_exactly_zero(inverse_matrix_norm) ? RealScalar(0)
|
||||
: (RealScalar(1) / inverse_matrix_norm) / matrix_norm);
|
||||
}
|
||||
|
||||
} // namespace internal
|
||||
|
@ -219,7 +219,6 @@ template<> struct gemv_dense_selector<OnTheRight,ColMajor,true>
|
||||
typedef typename Lhs::Scalar LhsScalar;
|
||||
typedef typename Rhs::Scalar RhsScalar;
|
||||
typedef typename Dest::Scalar ResScalar;
|
||||
typedef typename Dest::RealScalar RealScalar;
|
||||
|
||||
typedef internal::blas_traits<Lhs> LhsBlasTraits;
|
||||
typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType;
|
||||
@ -264,7 +263,7 @@ template<> struct gemv_dense_selector<OnTheRight,ColMajor,true>
|
||||
{
|
||||
gemv_static_vector_if<ResScalar,ActualDest::SizeAtCompileTime,ActualDest::MaxSizeAtCompileTime,MightCannotUseDest> static_dest;
|
||||
|
||||
const bool alphaIsCompatible = (!ComplexByReal) || (numext::imag(actualAlpha)==RealScalar(0));
|
||||
const bool alphaIsCompatible = (!ComplexByReal) || (numext::is_exactly_zero(numext::imag(actualAlpha)));
|
||||
const bool evalToDest = EvalToDestAtCompileTime && alphaIsCompatible;
|
||||
|
||||
ei_declare_aligned_stack_constructed_variable(ResScalar,actualDestPtr,dest.size(),
|
||||
|
@ -119,7 +119,7 @@ RealScalar positive_real_hypot(const RealScalar& x, const RealScalar& y)
|
||||
EIGEN_USING_STD(sqrt);
|
||||
RealScalar p, qp;
|
||||
p = numext::maxi(x,y);
|
||||
if(p==RealScalar(0)) return RealScalar(0);
|
||||
if(numext::is_exactly_zero(p)) return RealScalar(0);
|
||||
qp = numext::mini(y,x) / p;
|
||||
return p * sqrt(RealScalar(1) + qp*qp);
|
||||
}
|
||||
@ -169,8 +169,8 @@ EIGEN_DEVICE_FUNC std::complex<T> complex_sqrt(const std::complex<T>& z) {
|
||||
|
||||
return
|
||||
(numext::isinf)(y) ? std::complex<T>(NumTraits<T>::infinity(), y)
|
||||
: x == zero ? std::complex<T>(w, y < zero ? -w : w)
|
||||
: x > zero ? std::complex<T>(w, y / (2 * w))
|
||||
: numext::is_exactly_zero(x) ? std::complex<T>(w, y < zero ? -w : w)
|
||||
: x > zero ? std::complex<T>(w, y / (2 * w))
|
||||
: std::complex<T>(numext::abs(y) / (2 * w), y < zero ? -w : w );
|
||||
}
|
||||
|
||||
@ -208,10 +208,10 @@ EIGEN_DEVICE_FUNC std::complex<T> complex_rsqrt(const std::complex<T>& z) {
|
||||
const T woz = w / abs_z;
|
||||
// Corner cases consistent with 1/sqrt(z) on gcc/clang.
|
||||
return
|
||||
abs_z == zero ? std::complex<T>(NumTraits<T>::infinity(), NumTraits<T>::quiet_NaN())
|
||||
: ((numext::isinf)(x) || (numext::isinf)(y)) ? std::complex<T>(zero, zero)
|
||||
: x == zero ? std::complex<T>(woz, y < zero ? woz : -woz)
|
||||
: x > zero ? std::complex<T>(woz, -y / (2 * w * abs_z))
|
||||
numext::is_exactly_zero(abs_z) ? std::complex<T>(NumTraits<T>::infinity(), NumTraits<T>::quiet_NaN())
|
||||
: ((numext::isinf)(x) || (numext::isinf)(y)) ? std::complex<T>(zero, zero)
|
||||
: numext::is_exactly_zero(x) ? std::complex<T>(woz, y < zero ? woz : -woz)
|
||||
: x > zero ? std::complex<T>(woz, -y / (2 * w * abs_z))
|
||||
: std::complex<T>(numext::abs(y) / (2 * w * abs_z), y < zero ? woz : -woz );
|
||||
}
|
||||
|
||||
|
@ -460,7 +460,7 @@ protected:
|
||||
void eval_dynamic_impl(Dst& dst, const LhsT& lhs, const RhsT& rhs, const Func &func, const Scalar& s /* == 1 */, false_type)
|
||||
{
|
||||
EIGEN_UNUSED_VARIABLE(s);
|
||||
eigen_internal_assert(s==Scalar(1));
|
||||
eigen_internal_assert(numext::is_exactly_one(s));
|
||||
call_restricted_packet_assignment_no_alias(dst, lhs.lazyProduct(rhs), func);
|
||||
}
|
||||
|
||||
|
@ -453,12 +453,12 @@ struct triangular_product_impl<Mode,LhsIsTriangular,Lhs,false,Rhs,false>
|
||||
// Apply correction if the diagonal is unit and a scalar factor was nested:
|
||||
if ((Mode&UnitDiag)==UnitDiag)
|
||||
{
|
||||
if (LhsIsTriangular && lhs_alpha!=LhsScalar(1))
|
||||
if (LhsIsTriangular && !numext::is_exactly_one(lhs_alpha))
|
||||
{
|
||||
Index diagSize = (std::min)(lhs.rows(),lhs.cols());
|
||||
dst.topRows(diagSize) -= ((lhs_alpha-LhsScalar(1))*a_rhs).topRows(diagSize);
|
||||
}
|
||||
else if ((!LhsIsTriangular) && rhs_alpha!=RhsScalar(1))
|
||||
else if ((!LhsIsTriangular) && !numext::is_exactly_one(rhs_alpha))
|
||||
{
|
||||
Index diagSize = (std::min)(rhs.rows(),rhs.cols());
|
||||
dst.leftCols(diagSize) -= (rhs_alpha-RhsScalar(1))*a_lhs.leftCols(diagSize);
|
||||
|
@ -211,7 +211,6 @@ template<int Mode> struct trmv_selector<Mode,ColMajor>
|
||||
typedef typename Lhs::Scalar LhsScalar;
|
||||
typedef typename Rhs::Scalar RhsScalar;
|
||||
typedef typename Dest::Scalar ResScalar;
|
||||
typedef typename Dest::RealScalar RealScalar;
|
||||
|
||||
typedef internal::blas_traits<Lhs> LhsBlasTraits;
|
||||
typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType;
|
||||
@ -237,7 +236,7 @@ template<int Mode> struct trmv_selector<Mode,ColMajor>
|
||||
|
||||
gemv_static_vector_if<ResScalar,Dest::SizeAtCompileTime,Dest::MaxSizeAtCompileTime,MightCannotUseDest> static_dest;
|
||||
|
||||
bool alphaIsCompatible = (!ComplexByReal) || (numext::imag(actualAlpha)==RealScalar(0));
|
||||
bool alphaIsCompatible = (!ComplexByReal) || numext::is_exactly_zero(numext::imag(actualAlpha));
|
||||
bool evalToDest = EvalToDestAtCompileTime && alphaIsCompatible;
|
||||
|
||||
RhsScalar compatibleAlpha = get_factor<ResScalar,RhsScalar>::run(actualAlpha);
|
||||
@ -278,7 +277,7 @@ template<int Mode> struct trmv_selector<Mode,ColMajor>
|
||||
dest = MappedDest(actualDestPtr, dest.size());
|
||||
}
|
||||
|
||||
if ( ((Mode&UnitDiag)==UnitDiag) && (lhs_alpha!=LhsScalar(1)) )
|
||||
if ( ((Mode&UnitDiag)==UnitDiag) && !numext::is_exactly_one(lhs_alpha) )
|
||||
{
|
||||
Index diagSize = (std::min)(lhs.rows(),lhs.cols());
|
||||
dest.head(diagSize) -= (lhs_alpha-LhsScalar(1))*rhs.head(diagSize);
|
||||
@ -337,7 +336,7 @@ template<int Mode> struct trmv_selector<Mode,RowMajor>
|
||||
dest.data(),dest.innerStride(),
|
||||
actualAlpha);
|
||||
|
||||
if ( ((Mode&UnitDiag)==UnitDiag) && (lhs_alpha!=LhsScalar(1)) )
|
||||
if ( ((Mode&UnitDiag)==UnitDiag) && !numext::is_exactly_one(lhs_alpha) )
|
||||
{
|
||||
Index diagSize = (std::min)(lhs.rows(),lhs.cols());
|
||||
dest.head(diagSize) -= (lhs_alpha-LhsScalar(1))*rhs.head(diagSize);
|
||||
|
@ -397,6 +397,8 @@ struct aligned_storage {
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
template<typename T> struct NumTraits;
|
||||
|
||||
namespace numext {
|
||||
|
||||
#if defined(EIGEN_GPU_COMPILE_PHASE)
|
||||
@ -429,6 +431,20 @@ template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC
|
||||
bool equal_strict(const double& x,const double& y) { return std::equal_to<double>()(x,y); }
|
||||
#endif
|
||||
|
||||
/**
|
||||
* \internal Performs an exact comparison of x to zero, e.g. to decide whether a term can be ignored.
|
||||
* Use this to to bypass -Wfloat-equal warnings when exact zero is what needs to be tested.
|
||||
*/
|
||||
template<typename X> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC
|
||||
bool is_exactly_zero(const X& x) { return equal_strict(x, typename NumTraits<X>::Literal{0}); }
|
||||
|
||||
/**
|
||||
* \internal Performs an exact comparison of x to one, e.g. to decide whether a factor needs to be multiplied.
|
||||
* Use this to to bypass -Wfloat-equal warnings when exact one is what needs to be tested.
|
||||
*/
|
||||
template<typename X> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC
|
||||
bool is_exactly_one(const X& x) { return equal_strict(x, typename NumTraits<X>::Literal{1}); }
|
||||
|
||||
template<typename X, typename Y> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC
|
||||
bool not_equal_strict(const X& x,const Y& y) { return x != y; }
|
||||
|
||||
|
@ -308,7 +308,7 @@ typename ComplexSchur<MatrixType>::ComplexScalar ComplexSchur<MatrixType>::compu
|
||||
// In this case, det==0, and all we have to do is checking that eival2_norm!=0
|
||||
if(eival1_norm > eival2_norm)
|
||||
eival2 = det / eival1;
|
||||
else if(eival2_norm!=RealScalar(0))
|
||||
else if(!numext::is_exactly_zero(eival2_norm))
|
||||
eival1 = det / eival2;
|
||||
|
||||
// choose the eigenvalue closest to the bottom entry of the diagonal
|
||||
|
@ -239,7 +239,7 @@ namespace Eigen {
|
||||
for (Index i=dim-1; i>=j+2; i--) {
|
||||
JRs G;
|
||||
// kill S(i,j)
|
||||
if(m_S.coeff(i,j) != 0)
|
||||
if(!numext::is_exactly_zero(m_S.coeff(i, j)))
|
||||
{
|
||||
G.makeGivens(m_S.coeff(i-1,j), m_S.coeff(i,j), &m_S.coeffRef(i-1, j));
|
||||
m_S.coeffRef(i,j) = Scalar(0.0);
|
||||
@ -250,7 +250,7 @@ namespace Eigen {
|
||||
m_Q.applyOnTheRight(i-1,i,G);
|
||||
}
|
||||
// kill T(i,i-1)
|
||||
if(m_T.coeff(i,i-1)!=Scalar(0))
|
||||
if(!numext::is_exactly_zero(m_T.coeff(i, i - 1)))
|
||||
{
|
||||
G.makeGivens(m_T.coeff(i,i), m_T.coeff(i,i-1), &m_T.coeffRef(i,i));
|
||||
m_T.coeffRef(i,i-1) = Scalar(0.0);
|
||||
@ -288,7 +288,7 @@ namespace Eigen {
|
||||
while (res > 0)
|
||||
{
|
||||
Scalar s = abs(m_S.coeff(res-1,res-1)) + abs(m_S.coeff(res,res));
|
||||
if (s == Scalar(0.0))
|
||||
if (numext::is_exactly_zero(s))
|
||||
s = m_normOfS;
|
||||
if (abs(m_S.coeff(res,res-1)) < NumTraits<Scalar>::epsilon() * s)
|
||||
break;
|
||||
@ -318,7 +318,7 @@ namespace Eigen {
|
||||
using std::abs;
|
||||
using std::sqrt;
|
||||
const Index dim=m_S.cols();
|
||||
if (abs(m_S.coeff(i+1,i))==Scalar(0))
|
||||
if (numext::is_exactly_zero(abs(m_S.coeff(i + 1, i))))
|
||||
return;
|
||||
Index j = findSmallDiagEntry(i,i+1);
|
||||
if (j==i-1)
|
||||
@ -629,7 +629,7 @@ namespace Eigen {
|
||||
{
|
||||
for(Index i=0; i<dim-1; ++i)
|
||||
{
|
||||
if(m_S.coeff(i+1, i) != Scalar(0))
|
||||
if(!numext::is_exactly_zero(m_S.coeff(i + 1, i)))
|
||||
{
|
||||
JacobiRotation<Scalar> j_left, j_right;
|
||||
internal::real_2x2_jacobi_svd(m_T, i, i+1, &j_left, &j_right);
|
||||
|
@ -314,7 +314,7 @@ RealSchur<MatrixType>& RealSchur<MatrixType>::computeFromHessenberg(const HessMa
|
||||
Scalar considerAsZero = numext::maxi<Scalar>( norm * numext::abs2(NumTraits<Scalar>::epsilon()),
|
||||
(std::numeric_limits<Scalar>::min)() );
|
||||
|
||||
if(norm!=Scalar(0))
|
||||
if(!numext::is_exactly_zero(norm))
|
||||
{
|
||||
while (iu >= 0)
|
||||
{
|
||||
@ -517,7 +517,7 @@ inline void RealSchur<MatrixType>::performFrancisQRStep(Index il, Index im, Inde
|
||||
Matrix<Scalar, 2, 1> ess;
|
||||
v.makeHouseholder(ess, tau, beta);
|
||||
|
||||
if (beta != Scalar(0)) // if v is not zero
|
||||
if (!numext::is_exactly_zero(beta)) // if v is not zero
|
||||
{
|
||||
if (firstIteration && k > il)
|
||||
m_matT.coeffRef(k,k-1) = -m_matT.coeff(k,k-1);
|
||||
@ -537,7 +537,7 @@ inline void RealSchur<MatrixType>::performFrancisQRStep(Index il, Index im, Inde
|
||||
Matrix<Scalar, 1, 1> ess;
|
||||
v.makeHouseholder(ess, tau, beta);
|
||||
|
||||
if (beta != Scalar(0)) // if v is not zero
|
||||
if (!numext::is_exactly_zero(beta)) // if v is not zero
|
||||
{
|
||||
m_matT.coeffRef(iu-1, iu-2) = beta;
|
||||
m_matT.block(iu-1, iu-1, 2, size-iu+1).applyHouseholderOnTheLeft(ess, tau, workspace);
|
||||
|
@ -447,7 +447,7 @@ SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>
|
||||
// map the matrix coefficients to [-1:1] to avoid over- and underflow.
|
||||
mat = matrix.template triangularView<Lower>();
|
||||
RealScalar scale = mat.cwiseAbs().maxCoeff();
|
||||
if(scale==RealScalar(0)) scale = RealScalar(1);
|
||||
if(numext::is_exactly_zero(scale)) scale = RealScalar(1);
|
||||
mat.template triangularView<Lower>() /= scale;
|
||||
m_subdiag.resize(n-1);
|
||||
m_hcoeffs.resize(n-1);
|
||||
@ -526,7 +526,7 @@ ComputationInfo computeFromTridiagonal_impl(DiagType& diag, SubDiagType& subdiag
|
||||
}
|
||||
|
||||
// find the largest unreduced block at the end of the matrix.
|
||||
while (end>0 && subdiag[end-1]==RealScalar(0))
|
||||
while (end>0 && numext::is_exactly_zero(subdiag[end - 1]))
|
||||
{
|
||||
end--;
|
||||
}
|
||||
@ -538,7 +538,7 @@ ComputationInfo computeFromTridiagonal_impl(DiagType& diag, SubDiagType& subdiag
|
||||
if(iter > maxIterations * n) break;
|
||||
|
||||
start = end - 1;
|
||||
while (start>0 && subdiag[start-1]!=0)
|
||||
while (start>0 && !numext::is_exactly_zero(subdiag[start - 1]))
|
||||
start--;
|
||||
|
||||
internal::tridiagonal_qr_step<MatrixType::Flags&RowMajorBit ? RowMajor : ColMajor>(diag.data(), subdiag.data(), start, end, computeEigenvectors ? eivec.data() : (Scalar*)0, n);
|
||||
@ -843,12 +843,12 @@ static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index sta
|
||||
// RealScalar mu = diag[end] - e2 / (td + (td>0 ? 1 : -1) * sqrt(td*td + e2));
|
||||
// This explain the following, somewhat more complicated, version:
|
||||
RealScalar mu = diag[end];
|
||||
if(td==RealScalar(0)) {
|
||||
if(numext::is_exactly_zero(td)) {
|
||||
mu -= numext::abs(e);
|
||||
} else if (e != RealScalar(0)) {
|
||||
} else if (!numext::is_exactly_zero(e)) {
|
||||
const RealScalar e2 = numext::abs2(e);
|
||||
const RealScalar h = numext::hypot(td,e);
|
||||
if(e2 == RealScalar(0)) {
|
||||
if(numext::is_exactly_zero(e2)) {
|
||||
mu -= e / ((td + (td>RealScalar(0) ? h : -h)) / e);
|
||||
} else {
|
||||
mu -= e2 / (td + (td>RealScalar(0) ? h : -h));
|
||||
@ -859,7 +859,7 @@ static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index sta
|
||||
RealScalar z = subdiag[start];
|
||||
// If z ever becomes zero, the Givens rotation will be the identity and
|
||||
// z will stay zero for all future iterations.
|
||||
for (Index k = start; k < end && z != RealScalar(0); ++k)
|
||||
for (Index k = start; k < end && !numext::is_exactly_zero(z); ++k)
|
||||
{
|
||||
JacobiRotation<RealScalar> rot;
|
||||
rot.makeGivens(x, z);
|
||||
|
@ -124,7 +124,7 @@ void MatrixBase<Derived>::applyHouseholderOnTheLeft(
|
||||
{
|
||||
*this *= Scalar(1)-tau;
|
||||
}
|
||||
else if(tau!=Scalar(0))
|
||||
else if(!numext::is_exactly_zero(tau))
|
||||
{
|
||||
Map<typename internal::plain_row_type<PlainObject>::type> tmp(workspace,cols());
|
||||
Block<Derived, EssentialPart::SizeAtCompileTime, Derived::ColsAtCompileTime> bottom(derived(), 1, 0, rows()-1, cols());
|
||||
@ -162,7 +162,7 @@ void MatrixBase<Derived>::applyHouseholderOnTheRight(
|
||||
{
|
||||
*this *= Scalar(1)-tau;
|
||||
}
|
||||
else if(tau!=Scalar(0))
|
||||
else if(!numext::is_exactly_zero(tau))
|
||||
{
|
||||
Map<typename internal::plain_col_type<PlainObject>::type> tmp(workspace,rows());
|
||||
Block<Derived, Derived::RowsAtCompileTime, EssentialPart::SizeAtCompileTime> right(derived(), 0, 1, rows(), cols()-1);
|
||||
|
@ -234,13 +234,13 @@ void JacobiRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar
|
||||
{
|
||||
using std::sqrt;
|
||||
using std::abs;
|
||||
if(q==Scalar(0))
|
||||
if(numext::is_exactly_zero(q))
|
||||
{
|
||||
m_c = p<Scalar(0) ? Scalar(-1) : Scalar(1);
|
||||
m_s = Scalar(0);
|
||||
if(r) *r = abs(p);
|
||||
}
|
||||
else if(p==Scalar(0))
|
||||
else if(numext::is_exactly_zero(p))
|
||||
{
|
||||
m_c = Scalar(0);
|
||||
m_s = q<Scalar(0) ? Scalar(1) : Scalar(-1);
|
||||
@ -468,7 +468,7 @@ void /*EIGEN_DONT_INLINE*/ apply_rotation_in_the_plane(DenseBase<VectorX>& xpr_x
|
||||
|
||||
OtherScalar c = j.c();
|
||||
OtherScalar s = j.s();
|
||||
if (c==OtherScalar(1) && s==OtherScalar(0))
|
||||
if (numext::is_exactly_one(c) && numext::is_exactly_zero(s))
|
||||
return;
|
||||
|
||||
apply_rotation_in_the_plane_selector<
|
||||
|
@ -519,7 +519,7 @@ void FullPivLU<MatrixType>::computeInPlace()
|
||||
row_of_biggest_in_corner += k; // correct the values! since they were computed in the corner,
|
||||
col_of_biggest_in_corner += k; // need to add k to them.
|
||||
|
||||
if(biggest_in_corner==Score(0))
|
||||
if(numext::is_exactly_zero(biggest_in_corner))
|
||||
{
|
||||
// before exiting, make sure to initialize the still uninitialized transpositions
|
||||
// in a sane state without destroying what we already have.
|
||||
|
@ -378,7 +378,7 @@ struct partial_lu_impl
|
||||
|
||||
row_transpositions[k] = PivIndex(row_of_biggest_in_col);
|
||||
|
||||
if(biggest_in_corner != Score(0))
|
||||
if(!numext::is_exactly_zero(biggest_in_corner))
|
||||
{
|
||||
if(k != row_of_biggest_in_col)
|
||||
{
|
||||
@ -404,7 +404,7 @@ struct partial_lu_impl
|
||||
{
|
||||
Index k = endk;
|
||||
row_transpositions[k] = PivIndex(k);
|
||||
if (Scoring()(lu(k, k)) == Score(0) && first_zero_pivot == -1)
|
||||
if (numext::is_exactly_zero(Scoring()(lu(k, k))) && first_zero_pivot == -1)
|
||||
first_zero_pivot = k;
|
||||
}
|
||||
|
||||
|
@ -552,7 +552,7 @@ void ColPivHouseholderQR<MatrixType>::computeInPlace()
|
||||
// http://www.netlib.org/lapack/lawnspdf/lawn176.pdf
|
||||
// and used in LAPACK routines xGEQPF and xGEQP3.
|
||||
// See lines 278-297 in http://www.netlib.org/lapack/explore-html/dc/df4/sgeqpf_8f_source.html
|
||||
if (m_colNormsUpdated.coeffRef(j) != RealScalar(0)) {
|
||||
if (!numext::is_exactly_zero(m_colNormsUpdated.coeffRef(j))) {
|
||||
RealScalar temp = abs(m_qr.coeffRef(k, j)) / m_colNormsUpdated.coeffRef(j);
|
||||
temp = (RealScalar(1) + temp) * (RealScalar(1) - temp);
|
||||
temp = temp < RealScalar(0) ? RealScalar(0) : temp;
|
||||
|
@ -139,7 +139,7 @@ class SPQR : public SparseSolverBase<SPQR<MatrixType_> >
|
||||
{
|
||||
RealScalar max2Norm = 0.0;
|
||||
for (int j = 0; j < mat.cols(); j++) max2Norm = numext::maxi(max2Norm, mat.col(j).norm());
|
||||
if(max2Norm==RealScalar(0))
|
||||
if(numext::is_exactly_zero(max2Norm))
|
||||
max2Norm = RealScalar(1);
|
||||
pivotThreshold = 20 * (mat.rows() + mat.cols()) * max2Norm * NumTraits<RealScalar>::epsilon();
|
||||
}
|
||||
|
@ -282,7 +282,7 @@ BDCSVD<MatrixType>& BDCSVD<MatrixType>::compute(const MatrixType& matrix, unsign
|
||||
return *this;
|
||||
}
|
||||
|
||||
if(scale==Literal(0)) scale = Literal(1);
|
||||
if(numext::is_exactly_zero(scale)) scale = Literal(1);
|
||||
MatrixX copy;
|
||||
if (m_isTranspose) copy = matrix.adjoint()/scale;
|
||||
else copy = matrix/scale;
|
||||
@ -621,7 +621,10 @@ void BDCSVD<MatrixType>::computeSVDofM(Eigen::Index firstCol, Eigen::Index n, Ma
|
||||
// but others are interleaved and we must ignore them at this stage.
|
||||
// To this end, let's compute a permutation skipping them:
|
||||
Index actual_n = n;
|
||||
while(actual_n>1 && diag(actual_n-1)==Literal(0)) {--actual_n; eigen_internal_assert(col0(actual_n)==Literal(0)); }
|
||||
while(actual_n>1 && numext::is_exactly_zero(diag(actual_n - 1))) {
|
||||
--actual_n;
|
||||
eigen_internal_assert(numext::is_exactly_zero(col0(actual_n)));
|
||||
}
|
||||
Index m = 0; // size of the deflated problem
|
||||
for(Index k=0;k<actual_n;++k)
|
||||
if(abs(col0(k))>considerZero)
|
||||
@ -753,11 +756,11 @@ void BDCSVD<MatrixType>::computeSingVals(const ArrayRef& col0, const ArrayRef& d
|
||||
Index actual_n = n;
|
||||
// Note that here actual_n is computed based on col0(i)==0 instead of diag(i)==0 as above
|
||||
// because 1) we have diag(i)==0 => col0(i)==0 and 2) if col0(i)==0, then diag(i) is already a singular value.
|
||||
while(actual_n>1 && col0(actual_n-1)==Literal(0)) --actual_n;
|
||||
while(actual_n>1 && numext::is_exactly_zero(col0(actual_n - 1))) --actual_n;
|
||||
|
||||
for (Index k = 0; k < n; ++k)
|
||||
{
|
||||
if (col0(k) == Literal(0) || actual_n==1)
|
||||
if (numext::is_exactly_zero(col0(k)) || actual_n == 1)
|
||||
{
|
||||
// if col0(k) == 0, then entry is deflated, so singular value is on diagonal
|
||||
// if actual_n==1, then the deflated problem is already diagonalized
|
||||
@ -778,7 +781,7 @@ void BDCSVD<MatrixType>::computeSingVals(const ArrayRef& col0, const ArrayRef& d
|
||||
// recall that at this stage we assume that z[j]!=0 and all entries for which z[j]==0 have been put aside.
|
||||
// This should be equivalent to using perm[]
|
||||
Index l = k+1;
|
||||
while(col0(l)==Literal(0)) { ++l; eigen_internal_assert(l<actual_n); }
|
||||
while(numext::is_exactly_zero(col0(l))) { ++l; eigen_internal_assert(l < actual_n); }
|
||||
right = diag(l);
|
||||
}
|
||||
|
||||
@ -813,7 +816,8 @@ void BDCSVD<MatrixType>::computeSingVals(const ArrayRef& col0, const ArrayRef& d
|
||||
{
|
||||
// check that after the shift, f(mid) is still negative:
|
||||
RealScalar midShifted = (right - left) / RealScalar(2);
|
||||
if(shift==right)
|
||||
// we can test exact equality here, because shift comes from `... ? left : right`
|
||||
if(numext::equal_strict(shift, right))
|
||||
midShifted = -midShifted;
|
||||
RealScalar fMidShifted = secularEq(midShifted, col0, diag, perm, diagShifted, shift);
|
||||
if(fMidShifted>0)
|
||||
@ -826,7 +830,8 @@ void BDCSVD<MatrixType>::computeSingVals(const ArrayRef& col0, const ArrayRef& d
|
||||
|
||||
// initial guess
|
||||
RealScalar muPrev, muCur;
|
||||
if (shift == left)
|
||||
// we can test exact equality here, because shift comes from `... ? left : right`
|
||||
if (numext::equal_strict(shift, left))
|
||||
{
|
||||
muPrev = (right - left) * RealScalar(0.1);
|
||||
if (k == actual_n-1) muCur = right - left;
|
||||
@ -849,7 +854,7 @@ void BDCSVD<MatrixType>::computeSingVals(const ArrayRef& col0, const ArrayRef& d
|
||||
// rational interpolation: fit a function of the form a / mu + b through the two previous
|
||||
// iterates and use its zero to compute the next iterate
|
||||
bool useBisection = fPrev*fCur>Literal(0);
|
||||
while (fCur!=Literal(0) && abs(muCur - muPrev) > Literal(8) * NumTraits<RealScalar>::epsilon() * numext::maxi<RealScalar>(abs(muCur), abs(muPrev)) && abs(fCur - fPrev)>NumTraits<RealScalar>::epsilon() && !useBisection)
|
||||
while (!numext::is_exactly_zero(fCur) && abs(muCur - muPrev) > Literal(8) * NumTraits<RealScalar>::epsilon() * numext::maxi<RealScalar>(abs(muCur), abs(muPrev)) && abs(fCur - fPrev) > NumTraits<RealScalar>::epsilon() && !useBisection)
|
||||
{
|
||||
++m_numIters;
|
||||
|
||||
@ -869,8 +874,9 @@ void BDCSVD<MatrixType>::computeSingVals(const ArrayRef& col0, const ArrayRef& d
|
||||
muCur = muZero;
|
||||
fCur = fZero;
|
||||
|
||||
if (shift == left && (muCur < Literal(0) || muCur > right - left)) useBisection = true;
|
||||
if (shift == right && (muCur < -(right - left) || muCur > Literal(0))) useBisection = true;
|
||||
// we can test exact equality here, because shift comes from `... ? left : right`
|
||||
if (numext::equal_strict(shift, left) && (muCur < Literal(0) || muCur > right - left)) useBisection = true;
|
||||
if (numext::equal_strict(shift, right) && (muCur < -(right - left) || muCur > Literal(0))) useBisection = true;
|
||||
if (abs(fCur)>abs(fPrev)) useBisection = true;
|
||||
}
|
||||
|
||||
@ -881,7 +887,8 @@ void BDCSVD<MatrixType>::computeSingVals(const ArrayRef& col0, const ArrayRef& d
|
||||
std::cout << "useBisection for k = " << k << ", actual_n = " << actual_n << "\n";
|
||||
#endif
|
||||
RealScalar leftShifted, rightShifted;
|
||||
if (shift == left)
|
||||
// we can test exact equality here, because shift comes from `... ? left : right`
|
||||
if (numext::equal_strict(shift, left))
|
||||
{
|
||||
// to avoid overflow, we must have mu > max(real_min, |z(k)|/sqrt(real_max)),
|
||||
// the factor 2 is to be more conservative
|
||||
@ -959,7 +966,8 @@ void BDCSVD<MatrixType>::computeSingVals(const ArrayRef& col0, const ArrayRef& d
|
||||
// Instead fo abbording or entering an infinite loop,
|
||||
// let's just use the middle as the estimated zero-crossing:
|
||||
muCur = (right - left) * RealScalar(0.5);
|
||||
if(shift == right)
|
||||
// we can test exact equality here, because shift comes from `... ? left : right`
|
||||
if(numext::equal_strict(shift, right))
|
||||
muCur = -muCur;
|
||||
}
|
||||
}
|
||||
@ -1004,7 +1012,7 @@ void BDCSVD<MatrixType>::perturbCol0
|
||||
// The offset permits to skip deflated entries while computing zhat
|
||||
for (Index k = 0; k < n; ++k)
|
||||
{
|
||||
if (col0(k) == Literal(0)) // deflated
|
||||
if (numext::is_exactly_zero(col0(k))) // deflated
|
||||
zhat(k) = Literal(0);
|
||||
else
|
||||
{
|
||||
@ -1077,7 +1085,7 @@ void BDCSVD<MatrixType>::computeSingVecs
|
||||
|
||||
for (Index k = 0; k < n; ++k)
|
||||
{
|
||||
if (zhat(k) == Literal(0))
|
||||
if (numext::is_exactly_zero(zhat(k)))
|
||||
{
|
||||
U.col(k) = VectorType::Unit(n+1, k);
|
||||
if (m_compV) V.col(k) = VectorType::Unit(n, k);
|
||||
@ -1123,7 +1131,7 @@ void BDCSVD<MatrixType>::deflation43(Eigen::Index firstCol, Eigen::Index shift,
|
||||
RealScalar c = m_computed(start, start);
|
||||
RealScalar s = m_computed(start+i, start);
|
||||
RealScalar r = numext::hypot(c,s);
|
||||
if (r == Literal(0))
|
||||
if (numext::is_exactly_zero(r))
|
||||
{
|
||||
m_computed(start+i, start+i) = Literal(0);
|
||||
return;
|
||||
@ -1163,7 +1171,7 @@ void BDCSVD<MatrixType>::deflation44(Eigen::Index firstColu , Eigen::Index first
|
||||
<< m_computed(firstColm + i+1, firstColm+i+1) << " "
|
||||
<< m_computed(firstColm + i+2, firstColm+i+2) << "\n";
|
||||
#endif
|
||||
if (r==Literal(0))
|
||||
if (numext::is_exactly_zero(r))
|
||||
{
|
||||
m_computed(firstColm + i, firstColm + i) = m_computed(firstColm + j, firstColm + j);
|
||||
return;
|
||||
|
@ -377,7 +377,7 @@ struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, true>
|
||||
const RealScalar considerAsZero = (std::numeric_limits<RealScalar>::min)();
|
||||
const RealScalar precision = NumTraits<Scalar>::epsilon();
|
||||
|
||||
if(n==0)
|
||||
if(numext::is_exactly_zero(n))
|
||||
{
|
||||
// make sure first column is zero
|
||||
work_matrix.coeffRef(p,p) = work_matrix.coeffRef(q,p) = Scalar(0);
|
||||
@ -684,7 +684,7 @@ JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsig
|
||||
m_info = InvalidInput;
|
||||
return *this;
|
||||
}
|
||||
if(scale==RealScalar(0)) scale = RealScalar(1);
|
||||
if(numext::is_exactly_zero(scale)) scale = RealScalar(1);
|
||||
|
||||
/*** step 1. The R-SVD step: we use a QR decomposition to reduce to the case of a square matrix */
|
||||
|
||||
@ -777,7 +777,7 @@ JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsig
|
||||
{
|
||||
Index pos;
|
||||
RealScalar maxRemainingSingularValue = m_singularValues.tail(m_diagSize-i).maxCoeff(&pos);
|
||||
if(maxRemainingSingularValue == RealScalar(0))
|
||||
if(numext::is_exactly_zero(maxRemainingSingularValue))
|
||||
{
|
||||
m_nonzeroSingularValues = i;
|
||||
break;
|
||||
|
@ -116,7 +116,7 @@ struct sparse_solve_triangular_selector<Lhs,Rhs,Mode,Lower,ColMajor>
|
||||
for(Index i=0; i<lhs.cols(); ++i)
|
||||
{
|
||||
Scalar& tmp = other.coeffRef(i,col);
|
||||
if (tmp!=Scalar(0)) // optimization when other is actually sparse
|
||||
if (!numext::is_exactly_zero(tmp)) // optimization when other is actually sparse
|
||||
{
|
||||
LhsIterator it(lhsEval, i);
|
||||
while(it && it.index()<i)
|
||||
@ -151,7 +151,7 @@ struct sparse_solve_triangular_selector<Lhs,Rhs,Mode,Upper,ColMajor>
|
||||
for(Index i=lhs.cols()-1; i>=0; --i)
|
||||
{
|
||||
Scalar& tmp = other.coeffRef(i,col);
|
||||
if (tmp!=Scalar(0)) // optimization when other is actually sparse
|
||||
if (!numext::is_exactly_zero(tmp)) // optimization when other is actually sparse
|
||||
{
|
||||
if(!(Mode & UnitDiag))
|
||||
{
|
||||
@ -241,7 +241,7 @@ struct sparse_solve_triangular_sparse_selector<Lhs,Rhs,Mode,UpLo,ColMajor>
|
||||
{
|
||||
tempVector.restart();
|
||||
Scalar& ci = tempVector.coeffRef(i);
|
||||
if (ci!=Scalar(0))
|
||||
if (!numext::is_exactly_zero(ci))
|
||||
{
|
||||
// find
|
||||
typename Lhs::InnerIterator it(lhs, i);
|
||||
|
@ -32,12 +32,12 @@ class AnnoyingScalar
|
||||
{
|
||||
public:
|
||||
AnnoyingScalar() { init(); *v = 0; }
|
||||
AnnoyingScalar(long double _v) { init(); *v = _v; }
|
||||
AnnoyingScalar(double _v) { init(); *v = _v; }
|
||||
AnnoyingScalar(long double _v) { init(); *v = static_cast<float>(_v); }
|
||||
AnnoyingScalar(double _v) { init(); *v = static_cast<float>(_v); }
|
||||
AnnoyingScalar(float _v) { init(); *v = _v; }
|
||||
AnnoyingScalar(int _v) { init(); *v = _v; }
|
||||
AnnoyingScalar(long _v) { init(); *v = _v; }
|
||||
AnnoyingScalar(long long _v) { init(); *v = _v; }
|
||||
AnnoyingScalar(int _v) { init(); *v = static_cast<float>(_v); }
|
||||
AnnoyingScalar(long _v) { init(); *v = static_cast<float>(_v); }
|
||||
AnnoyingScalar(long long _v) { init(); *v = static_cast<float>(_v); }
|
||||
AnnoyingScalar(const AnnoyingScalar& other) { init(); *v = *(other.v); }
|
||||
~AnnoyingScalar() {
|
||||
if(v!=&data)
|
||||
@ -81,8 +81,8 @@ class AnnoyingScalar
|
||||
AnnoyingScalar& operator/=(const AnnoyingScalar& other) { *v /= *other.v; return *this; }
|
||||
AnnoyingScalar& operator= (const AnnoyingScalar& other) { *v = *other.v; return *this; }
|
||||
|
||||
bool operator==(const AnnoyingScalar& other) const { return *v == *other.v; }
|
||||
bool operator!=(const AnnoyingScalar& other) const { return *v != *other.v; }
|
||||
bool operator==(const AnnoyingScalar& other) const { return numext::equal_strict(*v, *other.v); }
|
||||
bool operator!=(const AnnoyingScalar& other) const { return numext::not_equal_strict(*v, *other.v); }
|
||||
bool operator<=(const AnnoyingScalar& other) const { return *v <= *other.v; }
|
||||
bool operator< (const AnnoyingScalar& other) const { return *v < *other.v; }
|
||||
bool operator>=(const AnnoyingScalar& other) const { return *v >= *other.v; }
|
||||
|
@ -45,7 +45,7 @@ template<> struct adjoint_specific<false> {
|
||||
VERIFY_IS_APPROX((v1*0).normalized(), (v1*0));
|
||||
#if (!EIGEN_ARCH_i386) || defined(EIGEN_VECTORIZE)
|
||||
RealScalar very_small = (std::numeric_limits<RealScalar>::min)();
|
||||
VERIFY( (v1*very_small).norm() == 0 );
|
||||
VERIFY( numext::is_exactly_zero((v1*very_small).norm()) );
|
||||
VERIFY_IS_APPROX((v1*very_small).normalized(), (v1*very_small));
|
||||
v3 = v1*very_small;
|
||||
v3.normalize();
|
||||
|
@ -149,11 +149,11 @@ template<typename MatrixType> void block(const MatrixType& m)
|
||||
}
|
||||
|
||||
// stress some basic stuffs with block matrices
|
||||
VERIFY(numext::real(ones.col(c1).sum()) == RealScalar(rows));
|
||||
VERIFY(numext::real(ones.row(r1).sum()) == RealScalar(cols));
|
||||
VERIFY_IS_EQUAL(numext::real(ones.col(c1).sum()), RealScalar(rows));
|
||||
VERIFY_IS_EQUAL(numext::real(ones.row(r1).sum()), RealScalar(cols));
|
||||
|
||||
VERIFY(numext::real(ones.col(c1).dot(ones.col(c2))) == RealScalar(rows));
|
||||
VERIFY(numext::real(ones.row(r1).dot(ones.row(r2))) == RealScalar(cols));
|
||||
VERIFY_IS_EQUAL(numext::real(ones.col(c1).dot(ones.col(c2))), RealScalar(rows));
|
||||
VERIFY_IS_EQUAL(numext::real(ones.row(r1).dot(ones.row(r2))), RealScalar(cols));
|
||||
|
||||
// check that linear acccessors works on blocks
|
||||
m1 = m1_copy;
|
||||
|
@ -26,7 +26,7 @@ void verify_euler(const Matrix<Scalar,3,1>& ea, int i, int j, int k)
|
||||
VERIFY_IS_APPROX(m, mbis);
|
||||
/* If I==K, and ea[1]==0, then there no unique solution. */
|
||||
/* The remark apply in the case where I!=K, and |ea[1]| is close to pi/2. */
|
||||
if( (i!=k || ea[1]!=0) && (i==k || !internal::isApprox(abs(ea[1]),Scalar(EIGEN_PI/2),test_precision<Scalar>())) )
|
||||
if((i!=k || !numext::is_exactly_zero(ea[1])) && (i == k || !internal::isApprox(abs(ea[1]), Scalar(EIGEN_PI / 2), test_precision<Scalar>())) )
|
||||
VERIFY((ea-eabis).norm() <= test_precision<Scalar>());
|
||||
|
||||
// approx_or_less_than does not work for 0
|
||||
|
@ -29,8 +29,8 @@ template<int Alignment,typename VectorType> void map_class_vector(const VectorTy
|
||||
map = v;
|
||||
for(int i = 0; i < size; ++i)
|
||||
{
|
||||
VERIFY(array[3*i] == v[i]);
|
||||
VERIFY(map[i] == v[i]);
|
||||
VERIFY_IS_EQUAL(array[3*i], v[i]);
|
||||
VERIFY_IS_EQUAL(map[i], v[i]);
|
||||
}
|
||||
}
|
||||
|
||||
@ -39,8 +39,8 @@ template<int Alignment,typename VectorType> void map_class_vector(const VectorTy
|
||||
map = v;
|
||||
for(int i = 0; i < size; ++i)
|
||||
{
|
||||
VERIFY(array[2*i] == v[i]);
|
||||
VERIFY(map[i] == v[i]);
|
||||
VERIFY_IS_EQUAL(array[2*i], v[i]);
|
||||
VERIFY_IS_EQUAL(map[i], v[i]);
|
||||
}
|
||||
}
|
||||
|
||||
@ -84,8 +84,8 @@ template<int Alignment,typename MatrixType> void map_class_matrix(const MatrixTy
|
||||
for(int i = 0; i < m.outerSize(); ++i)
|
||||
for(int j = 0; j < m.innerSize(); ++j)
|
||||
{
|
||||
VERIFY(array[map.outerStride()*i+j] == m.coeffByOuterInner(i,j));
|
||||
VERIFY(map.coeffByOuterInner(i,j) == m.coeffByOuterInner(i,j));
|
||||
VERIFY_IS_EQUAL(array[map.outerStride()*i+j], m.coeffByOuterInner(i,j));
|
||||
VERIFY_IS_EQUAL(map.coeffByOuterInner(i,j), m.coeffByOuterInner(i,j));
|
||||
}
|
||||
VERIFY_IS_APPROX(s1*map,s1*m);
|
||||
map *= s1;
|
||||
@ -111,8 +111,8 @@ template<int Alignment,typename MatrixType> void map_class_matrix(const MatrixTy
|
||||
for(int i = 0; i < m.outerSize(); ++i)
|
||||
for(int j = 0; j < m.innerSize(); ++j)
|
||||
{
|
||||
VERIFY(array[map.outerStride()*i+j] == m.coeffByOuterInner(i,j));
|
||||
VERIFY(map.coeffByOuterInner(i,j) == m.coeffByOuterInner(i,j));
|
||||
VERIFY_IS_EQUAL(array[map.outerStride()*i+j], m.coeffByOuterInner(i,j));
|
||||
VERIFY_IS_EQUAL(map.coeffByOuterInner(i,j), m.coeffByOuterInner(i,j));
|
||||
}
|
||||
VERIFY_IS_APPROX(s1*map,s1*m);
|
||||
map *= s1;
|
||||
@ -133,8 +133,8 @@ template<int Alignment,typename MatrixType> void map_class_matrix(const MatrixTy
|
||||
for(int i = 0; i < m.outerSize(); ++i)
|
||||
for(int j = 0; j < m.innerSize(); ++j)
|
||||
{
|
||||
VERIFY(array[map.outerStride()*i+map.innerStride()*j] == m.coeffByOuterInner(i,j));
|
||||
VERIFY(map.coeffByOuterInner(i,j) == m.coeffByOuterInner(i,j));
|
||||
VERIFY_IS_EQUAL(array[map.outerStride()*i+map.innerStride()*j], m.coeffByOuterInner(i,j));
|
||||
VERIFY_IS_EQUAL(map.coeffByOuterInner(i,j), m.coeffByOuterInner(i,j));
|
||||
}
|
||||
VERIFY_IS_APPROX(s1*map,s1*m);
|
||||
map *= s1;
|
||||
@ -154,8 +154,8 @@ template<int Alignment,typename MatrixType> void map_class_matrix(const MatrixTy
|
||||
for(int i = 0; i < m.outerSize(); ++i)
|
||||
for(int j = 0; j < m.innerSize(); ++j)
|
||||
{
|
||||
VERIFY(array[map.innerSize()*i*2+j*2] == m.coeffByOuterInner(i,j));
|
||||
VERIFY(map.coeffByOuterInner(i,j) == m.coeffByOuterInner(i,j));
|
||||
VERIFY_IS_EQUAL(array[map.innerSize()*i*2+j*2], m.coeffByOuterInner(i,j));
|
||||
VERIFY_IS_EQUAL(map.coeffByOuterInner(i,j), m.coeffByOuterInner(i,j));
|
||||
}
|
||||
VERIFY_IS_APPROX(s1*map,s1*m);
|
||||
map *= s1;
|
||||
|
@ -13,24 +13,20 @@
|
||||
template<typename MatrixType>
|
||||
bool equalsIdentity(const MatrixType& A)
|
||||
{
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
Scalar zero = static_cast<Scalar>(0);
|
||||
|
||||
bool offDiagOK = true;
|
||||
for (Index i = 0; i < A.rows(); ++i) {
|
||||
for (Index j = i+1; j < A.cols(); ++j) {
|
||||
offDiagOK = offDiagOK && (A(i,j) == zero);
|
||||
offDiagOK = offDiagOK && numext::is_exactly_zero(A(i, j));
|
||||
}
|
||||
}
|
||||
for (Index i = 0; i < A.rows(); ++i) {
|
||||
for (Index j = 0; j < (std::min)(i, A.cols()); ++j) {
|
||||
offDiagOK = offDiagOK && (A(i,j) == zero);
|
||||
offDiagOK = offDiagOK && numext::is_exactly_zero(A(i, j));
|
||||
}
|
||||
}
|
||||
|
||||
bool diagOK = (A.diagonal().array() == 1).all();
|
||||
return offDiagOK && diagOK;
|
||||
|
||||
}
|
||||
|
||||
template<typename VectorType>
|
||||
|
@ -11,7 +11,7 @@
|
||||
|
||||
template<typename T, typename U>
|
||||
bool check_if_equal_or_nans(const T& actual, const U& expected) {
|
||||
return ((actual == expected) || ((numext::isnan)(actual) && (numext::isnan)(expected)));
|
||||
return (numext::equal_strict(actual, expected) || ((numext::isnan)(actual) && (numext::isnan)(expected)));
|
||||
}
|
||||
|
||||
template<typename T, typename U>
|
||||
|
@ -100,7 +100,7 @@ template<typename Scalar> bool areApprox(const Scalar* a, const Scalar* b, int s
|
||||
{
|
||||
for (int i=0; i<size; ++i)
|
||||
{
|
||||
if ( a[i]!=b[i] && !internal::isApprox(a[i],b[i])
|
||||
if ( numext::not_equal_strict(a[i], b[i]) && !internal::isApprox(a[i],b[i])
|
||||
&& !((numext::isnan)(a[i]) && (numext::isnan)(b[i])) )
|
||||
{
|
||||
print_mismatch(a, b, size);
|
||||
@ -114,7 +114,7 @@ template<typename Scalar> bool areEqual(const Scalar* a, const Scalar* b, int si
|
||||
{
|
||||
for (int i=0; i<size; ++i)
|
||||
{
|
||||
if ( (a[i] != b[i]) && !((numext::isnan)(a[i]) && (numext::isnan)(b[i])) )
|
||||
if ( numext::not_equal_strict(a[i], b[i]) && !((numext::isnan)(a[i]) && (numext::isnan)(b[i])) )
|
||||
{
|
||||
print_mismatch(a, b, size);
|
||||
return false;
|
||||
|
@ -18,7 +18,6 @@ template<typename MatrixType> void real_qz(const MatrixType& m)
|
||||
RealQZ.h
|
||||
*/
|
||||
using std::abs;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
|
||||
Index dim = m.cols();
|
||||
|
||||
@ -52,17 +51,18 @@ template<typename MatrixType> void real_qz(const MatrixType& m)
|
||||
bool all_zeros = true;
|
||||
for (Index i=0; i<A.cols(); i++)
|
||||
for (Index j=0; j<i; j++) {
|
||||
if (abs(qz.matrixT()(i,j))!=Scalar(0.0))
|
||||
if (!numext::is_exactly_zero(abs(qz.matrixT()(i, j))))
|
||||
{
|
||||
std::cerr << "Error: T(" << i << "," << j << ") = " << qz.matrixT()(i,j) << std::endl;
|
||||
all_zeros = false;
|
||||
}
|
||||
if (j<i-1 && abs(qz.matrixS()(i,j))!=Scalar(0.0))
|
||||
if (j<i-1 && !numext::is_exactly_zero(abs(qz.matrixS()(i, j))))
|
||||
{
|
||||
std::cerr << "Error: S(" << i << "," << j << ") = " << qz.matrixS()(i,j) << std::endl;
|
||||
all_zeros = false;
|
||||
}
|
||||
if (j==i-1 && j>0 && abs(qz.matrixS()(i,j))!=Scalar(0.0) && abs(qz.matrixS()(i-1,j-1))!=Scalar(0.0))
|
||||
if (j==i-1 && j>0 && !numext::is_exactly_zero(abs(qz.matrixS()(i, j))) &&
|
||||
!numext::is_exactly_zero(abs(qz.matrixS()(i - 1, j - 1))))
|
||||
{
|
||||
std::cerr << "Error: S(" << i << "," << j << ") = " << qz.matrixS()(i,j) << " && S(" << i-1 << "," << j-1 << ") = " << qz.matrixS()(i-1,j-1) << std::endl;
|
||||
all_zeros = false;
|
||||
|
@ -19,15 +19,15 @@ template<typename MatrixType> void verifyIsQuasiTriangular(const MatrixType& T)
|
||||
// Check T is lower Hessenberg
|
||||
for(int row = 2; row < size; ++row) {
|
||||
for(int col = 0; col < row - 1; ++col) {
|
||||
VERIFY(T(row,col) == Scalar(0));
|
||||
VERIFY_IS_EQUAL(T(row,col), Scalar(0));
|
||||
}
|
||||
}
|
||||
|
||||
// Check that any non-zero on the subdiagonal is followed by a zero and is
|
||||
// part of a 2x2 diagonal block with imaginary eigenvalues.
|
||||
for(int row = 1; row < size; ++row) {
|
||||
if (T(row,row-1) != Scalar(0)) {
|
||||
VERIFY(row == size-1 || T(row+1,row) == 0);
|
||||
if (!numext::is_exactly_zero(T(row, row - 1))) {
|
||||
VERIFY(row == size-1 || numext::is_exactly_zero(T(row + 1, row)));
|
||||
Scalar tr = T(row-1,row-1) + T(row,row);
|
||||
Scalar det = T(row-1,row-1) * T(row,row) - T(row-1,row) * T(row,row-1);
|
||||
VERIFY(4 * det > tr * tr);
|
||||
|
@ -54,7 +54,8 @@ initSparse(double density,
|
||||
enum { IsRowMajor = SparseMatrix<Scalar,Opt2,StorageIndex>::IsRowMajor };
|
||||
sparseMat.setZero();
|
||||
//sparseMat.reserve(int(refMat.rows()*refMat.cols()*density));
|
||||
sparseMat.reserve(VectorXi::Constant(IsRowMajor ? refMat.rows() : refMat.cols(), int((1.5*density)*(IsRowMajor?refMat.cols():refMat.rows()))));
|
||||
int nnz = static_cast<int>((1.5 * density) * static_cast<double>(IsRowMajor ? refMat.cols() : refMat.rows()));
|
||||
sparseMat.reserve(VectorXi::Constant(IsRowMajor ? refMat.rows() : refMat.cols(), nnz));
|
||||
|
||||
Index insert_count = 0;
|
||||
for(Index j=0; j<sparseMat.outerSize(); j++)
|
||||
@ -82,7 +83,7 @@ initSparse(double density,
|
||||
if ((flags&ForceRealDiag) && (i==j))
|
||||
v = numext::real(v);
|
||||
|
||||
if (v!=Scalar(0))
|
||||
if (!numext::is_exactly_zero(v))
|
||||
{
|
||||
//sparseMat.insertBackByOuterInner(j,i) = v;
|
||||
sparseMat.insertByOuterInner(j,i) = v;
|
||||
@ -115,7 +116,7 @@ initSparse(double density,
|
||||
for(int i=0; i<refVec.size(); i++)
|
||||
{
|
||||
Scalar v = (internal::random<double>(0,1) < density) ? internal::random<Scalar>() : Scalar(0);
|
||||
if (v!=Scalar(0))
|
||||
if (!numext::is_exactly_zero(v))
|
||||
{
|
||||
sparseVec.insertBack(i) = v;
|
||||
if (nonzeroCoords)
|
||||
|
@ -679,7 +679,7 @@ void big_sparse_triplet(Index rows, Index cols, double density) {
|
||||
typedef typename SparseMatrixType::Scalar Scalar;
|
||||
typedef Triplet<Scalar,Index> TripletType;
|
||||
std::vector<TripletType> triplets;
|
||||
double nelements = density * rows*cols;
|
||||
double nelements = density * static_cast<double>(rows*cols);
|
||||
VERIFY(nelements>=0 && nelements < static_cast<double>(NumTraits<StorageIndex>::highest()));
|
||||
Index ntriplets = Index(nelements);
|
||||
triplets.reserve(ntriplets);
|
||||
|
@ -90,11 +90,11 @@ template<typename SparseMatrixType> void sparse_block(const SparseMatrixType& re
|
||||
|
||||
VERIFY_IS_APPROX(m.middleCols(j,w).coeff(r,c), refMat.middleCols(j,w).coeff(r,c));
|
||||
VERIFY_IS_APPROX(m.middleRows(i,h).coeff(r,c), refMat.middleRows(i,h).coeff(r,c));
|
||||
if(m.middleCols(j,w).coeff(r,c) != Scalar(0))
|
||||
if(!numext::is_exactly_zero(m.middleCols(j, w).coeff(r, c)))
|
||||
{
|
||||
VERIFY_IS_APPROX(m.middleCols(j,w).coeffRef(r,c), refMat.middleCols(j,w).coeff(r,c));
|
||||
}
|
||||
if(m.middleRows(i,h).coeff(r,c) != Scalar(0))
|
||||
if(!numext::is_exactly_zero(m.middleRows(i, h).coeff(r, c)))
|
||||
{
|
||||
VERIFY_IS_APPROX(m.middleRows(i,h).coeff(r,c), refMat.middleRows(i,h).coeff(r,c));
|
||||
}
|
||||
@ -166,14 +166,14 @@ template<typename SparseMatrixType> void sparse_block(const SparseMatrixType& re
|
||||
{
|
||||
VERIFY(j==numext::real(m3.innerVector(j).nonZeros()));
|
||||
if(j>0)
|
||||
VERIFY(RealScalar(j)==numext::real(m3.innerVector(j).lastCoeff()));
|
||||
VERIFY_IS_EQUAL(RealScalar(j), numext::real(m3.innerVector(j).lastCoeff()));
|
||||
}
|
||||
m3.makeCompressed();
|
||||
for(Index j=0; j<(std::min)(outer, inner); ++j)
|
||||
{
|
||||
VERIFY(j==numext::real(m3.innerVector(j).nonZeros()));
|
||||
if(j>0)
|
||||
VERIFY(RealScalar(j)==numext::real(m3.innerVector(j).lastCoeff()));
|
||||
VERIFY_IS_EQUAL(RealScalar(j), numext::real(m3.innerVector(j).lastCoeff()));
|
||||
}
|
||||
|
||||
VERIFY(m3.innerVector(j0).nonZeros() == m3.transpose().innerVector(j0).nonZeros());
|
||||
|
@ -53,7 +53,7 @@ template<int OtherStorage, typename SparseMatrixType> void sparse_permutations(c
|
||||
// bool IsRowMajor1 = SparseMatrixType::IsRowMajor;
|
||||
// bool IsRowMajor2 = OtherSparseMatrixType::IsRowMajor;
|
||||
|
||||
double density = (std::max)(8./(rows*cols), 0.01);
|
||||
double density = (std::max)(8./static_cast<double>(rows*cols), 0.01);
|
||||
|
||||
SparseMatrixType mat(rows, cols), up(rows,cols), lo(rows,cols);
|
||||
OtherSparseMatrixType res;
|
||||
|
@ -390,7 +390,7 @@ void test_mixing_types()
|
||||
typedef Matrix<Cplx,Dynamic,Dynamic> DenseMatCplx;
|
||||
|
||||
Index n = internal::random<Index>(1,100);
|
||||
double density = (std::max)(8./(n*n), 0.2);
|
||||
double density = (std::max)(8./static_cast<double>(n*n), 0.2);
|
||||
|
||||
SpMatReal sR1(n,n);
|
||||
SpMatCplx sC1(n,n), sC2(n,n), sC3(n,n);
|
||||
|
@ -350,7 +350,7 @@ int generate_sparse_spd_problem(Solver& , typename Solver::MatrixType& A, typena
|
||||
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
|
||||
|
||||
int size = internal::random<int>(1,maxSize);
|
||||
double density = (std::max)(8./(size*size), 0.01);
|
||||
double density = (std::max)(8./static_cast<double>(size*size), 0.01);
|
||||
|
||||
Mat M(size, size);
|
||||
DenseMatrix dM(size, size);
|
||||
@ -419,7 +419,7 @@ template<typename Solver> void check_sparse_spd_solving(Solver& solver, int maxS
|
||||
|
||||
// generate the right hand sides
|
||||
int rhsCols = internal::random<int>(1,16);
|
||||
double density = (std::max)(8./(size*rhsCols), 0.1);
|
||||
double density = (std::max)(8./static_cast<double>(size*rhsCols), 0.1);
|
||||
SpMat B(size,rhsCols);
|
||||
DenseVector b = DenseVector::Random(size);
|
||||
DenseMatrix dB(size,rhsCols);
|
||||
@ -510,7 +510,7 @@ Index generate_sparse_square_problem(Solver&, typename Solver::MatrixType& A, De
|
||||
typedef typename Mat::Scalar Scalar;
|
||||
|
||||
Index size = internal::random<int>(1,maxSize);
|
||||
double density = (std::max)(8./(size*size), 0.01);
|
||||
double density = (std::max)(8./static_cast<double>(size*size), 0.01);
|
||||
|
||||
A.resize(size,size);
|
||||
dA.resize(size,size);
|
||||
@ -551,7 +551,7 @@ template<typename Solver> void check_sparse_square_solving(Solver& solver, int m
|
||||
DenseVector b = DenseVector::Random(size);
|
||||
DenseMatrix dB(size,rhsCols);
|
||||
SpMat B(size,rhsCols);
|
||||
double density = (std::max)(8./(size*rhsCols), 0.1);
|
||||
double density = (std::max)(8./double(size*rhsCols), 0.1);
|
||||
initSparse<Scalar>(density, dB, B, ForceNonZeroDiag);
|
||||
B.makeCompressed();
|
||||
SpVec c = B.col(0);
|
||||
|
@ -47,8 +47,8 @@ template<typename Scalar,typename StorageIndex> void sparse_vector(int rows, int
|
||||
for (typename SparseVectorType::InnerIterator it(v1); it; ++it,++j)
|
||||
{
|
||||
VERIFY(nonzerocoords[j]==it.index());
|
||||
VERIFY(it.value()==v1.coeff(it.index()));
|
||||
VERIFY(it.value()==refV1.coeff(it.index()));
|
||||
VERIFY_IS_EQUAL(it.value(), v1.coeff(it.index()));
|
||||
VERIFY_IS_EQUAL(it.value(), refV1.coeff(it.index()));
|
||||
}
|
||||
}
|
||||
VERIFY_IS_APPROX(v1, refV1);
|
||||
|
@ -438,14 +438,14 @@ void test_stl_iterators(int rows=Rows, int cols=Cols)
|
||||
i = internal::random<Index>(0,A.rows()-1);
|
||||
A.setRandom();
|
||||
A.row(i).setZero();
|
||||
VERIFY_IS_EQUAL( std::find_if(A.rowwise().begin(), A.rowwise().end(), [](typename ColMatrixType::RowXpr x) { return x.squaredNorm() == Scalar(0); })-A.rowwise().begin(), i );
|
||||
VERIFY_IS_EQUAL( std::find_if(A.rowwise().rbegin(), A.rowwise().rend(), [](typename ColMatrixType::RowXpr x) { return x.squaredNorm() == Scalar(0); })-A.rowwise().rbegin(), (A.rows()-1) - i );
|
||||
VERIFY_IS_EQUAL(std::find_if(A.rowwise().begin(), A.rowwise().end(), [](typename ColMatrixType::RowXpr x) { return numext::is_exactly_zero(x.squaredNorm()); }) - A.rowwise().begin(), i );
|
||||
VERIFY_IS_EQUAL(std::find_if(A.rowwise().rbegin(), A.rowwise().rend(), [](typename ColMatrixType::RowXpr x) { return numext::is_exactly_zero(x.squaredNorm()); }) - A.rowwise().rbegin(), (A.rows() - 1) - i );
|
||||
|
||||
j = internal::random<Index>(0,A.cols()-1);
|
||||
A.setRandom();
|
||||
A.col(j).setZero();
|
||||
VERIFY_IS_EQUAL( std::find_if(A.colwise().begin(), A.colwise().end(), [](typename ColMatrixType::ColXpr x) { return x.squaredNorm() == Scalar(0); })-A.colwise().begin(), j );
|
||||
VERIFY_IS_EQUAL( std::find_if(A.colwise().rbegin(), A.colwise().rend(), [](typename ColMatrixType::ColXpr x) { return x.squaredNorm() == Scalar(0); })-A.colwise().rbegin(), (A.cols()-1) - j );
|
||||
VERIFY_IS_EQUAL(std::find_if(A.colwise().begin(), A.colwise().end(), [](typename ColMatrixType::ColXpr x) { return numext::is_exactly_zero(x.squaredNorm()); }) - A.colwise().begin(), j );
|
||||
VERIFY_IS_EQUAL(std::find_if(A.colwise().rbegin(), A.colwise().rend(), [](typename ColMatrixType::ColXpr x) { return numext::is_exactly_zero(x.squaredNorm()); }) - A.colwise().rbegin(), (A.cols() - 1) - j );
|
||||
}
|
||||
|
||||
{
|
||||
|
@ -21,7 +21,7 @@ template<typename MatrixType> void matrixVisitor(const MatrixType& p)
|
||||
m = MatrixType::Random(rows, cols);
|
||||
for(Index i = 0; i < m.size(); i++)
|
||||
for(Index i2 = 0; i2 < i; i2++)
|
||||
while(m(i) == m(i2)) // yes, ==
|
||||
while(numext::equal_strict(m(i), m(i2))) // yes, strict equality
|
||||
m(i) = internal::random<Scalar>();
|
||||
|
||||
Scalar minc = Scalar(1000), maxc = Scalar(-1000);
|
||||
|
Loading…
x
Reference in New Issue
Block a user