Documentation for the ordering methods

This commit is contained in:
Desire NUENTSA 2013-01-21 15:37:47 +01:00
parent 5b9bb00265
commit d2dd5063b6
2 changed files with 45 additions and 3 deletions

View File

@ -16,6 +16,8 @@ extern "C" {
* \code
* #include <Eigen/MetisSupport>
* \endcode
* This module defines an interface to the METIS reordering package (http://glaros.dtc.umn.edu/gkhome/views/metis).
* It can be used just as any other built-in method as explained in \link OrderingMethods_Module here. \endlink
*/

View File

@ -8,12 +8,52 @@
/**
* \defgroup OrderingMethods_Module OrderingMethods module
*
* This module is currently for internal use only.
*
*
* This module is currently for internal use only
*
* It defines various built-in and external ordering methods for sparse matrices.
* They are typically used to reduce the number of elements during
* the sparse matrix decomposition (LLT, LU, QR).
* Precisely, in a preprocessing step, a permutation matrix P is computed using
* those ordering methods and applied to the columns of the matrix.
* Using for instance the sparse Cholesky decomposition, it is expected that
* the nonzeros elements in LLT(A*P) will be much smaller than that in LLT(A).
*
*
* Usage :
* \code
* #include <Eigen/OrderingMethods>
* \endcode
*
* A simple usage is as a template parameter in the sparse decomposition classes :
*
* \code
* SparseLU<MatrixType, COLAMDOrdering<int> > solver;
* \endcode
*
* \code
* SparseQR<MatrixType, COLAMDOrdering<int> > solver;
* \endcode
*
* It is possible as well to call directly a particular ordering method for your own purpose,
* \code
* AMDOrdering<int> ordering;
* PermutationMatrix<Dynamic, Dynamic, int> perm;
* SparseMatrix<double> A;
* //Fill the matrix ...
*
* ordering(A, perm); // Call AMD
* \endcode
*
* \note Some of these methods (like AMD or METIS), need the sparsity pattern
* of the input matrix to be symmetric. When the matrix is structurally unsymmetric,
* Eigen computes internally the pattern of \f$A^T*A\f$ before calling the method.
* If your matrix is already symmetric (at leat in structure), you can avoid that
* by calling the method with a SelfAdjointView type.
*
* \code
* // Call the ordering on the pattern of the lower triangular matrix A
* ordering(A.selfadjointView<Lower>(), perm);
* \endcode
*/
#include "src/OrderingMethods/Amd.h"