Add brackets to block matrix and fixed some typos

This commit is contained in:
Christoph Hertzberg 2016-07-27 09:55:39 +02:00
parent 0eece608b4
commit d3d7c6245d

View File

@ -29,11 +29,12 @@ struct traits<CompleteOrthogonalDecomposition<_MatrixType> >
*
* \param MatrixType the type of the matrix of which we are computing the COD.
*
* This class performs a rank-revealing complete ortogonal decomposition of a
* This class performs a rank-revealing complete orthogonal decomposition of a
* matrix \b A into matrices \b P, \b Q, \b T, and \b Z such that
* \f[
* \mathbf{A} \, \mathbf{P} = \mathbf{Q} \, \begin{matrix} \mathbf{T} &
* \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{matrix} \, \mathbf{Z}
* \mathbf{A} \, \mathbf{P} = \mathbf{Q} \,
* \begin{bmatrix} \mathbf{T} & \mathbf{0} \\
* \mathbf{0} & \mathbf{0} \end{bmatrix} \, \mathbf{Z}
* \f]
* by using Householder transformations. Here, \b P is a permutation matrix,
* \b Q and \b Z are unitary matrices and \b T an upper triangular matrix of
@ -134,7 +135,7 @@ class CompleteOrthogonalDecomposition {
/** This method computes the minimum-norm solution X to a least squares
* problem \f[\mathrm{minimize} ||A X - B|| \f], where \b A is the matrix of
* problem \f[\mathrm{minimize} \|A X - B\|, \f] where \b A is the matrix of
* which \c *this is the complete orthogonal decomposition.
*
* \param B the right-hand sides of the problem to solve.