TensorBlockIO

This commit is contained in:
Eugene Zhulenev 2018-07-23 15:50:55 -07:00
parent 34a75c3c5c
commit d55efa6f0f
2 changed files with 1304 additions and 35 deletions

View File

@ -14,6 +14,32 @@
namespace Eigen { namespace Eigen {
namespace internal { namespace internal {
namespace {
// Helper template to choose between ColMajor and RowMajor values.
template <int Layout>
struct cond;
template <>
struct cond<ColMajor> {
template <typename T>
EIGEN_STRONG_INLINE const T& operator()(const T& col,
const T& /*row*/) const {
return col;
}
};
template <>
struct cond<RowMajor> {
template <typename T>
EIGEN_STRONG_INLINE const T& operator()(const T& /*col*/,
const T& row) const {
return row;
}
};
} // namespace
/** /**
* \class TensorBlockShapeType * \class TensorBlockShapeType
* \ingroup CXX11_Tensor_Module * \ingroup CXX11_Tensor_Module
@ -82,6 +108,512 @@ class TensorBlock {
Scalar* m_data; // Not owned. Scalar* m_data; // Not owned.
}; };
template <typename Scalar, typename Index, bool Vectorizable>
struct TensorBlockCopyOp {
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Run(
const Index num_coeff_to_copy, const Index dst_index,
const Index dst_stride, Scalar* EIGEN_RESTRICT dst_data,
const Index src_index, const Index src_stride,
const Scalar* EIGEN_RESTRICT src_data) {
for (Index i = 0; i < num_coeff_to_copy; ++i) {
dst_data[dst_index + i * dst_stride] =
src_data[src_index + i * src_stride];
}
}
};
// NOTE: Benchmarks run on an implementation of this that broke each of the
// loops in these conditionals into it's own template specialization (to
// avoid conditionals in the caller's loop) did not show an improvement.
template <typename Scalar, typename Index>
struct TensorBlockCopyOp<Scalar, Index, true> {
typedef typename packet_traits<Scalar>::type Packet;
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Run(
const Index num_coeff_to_copy, const Index dst_index,
const Index dst_stride, Scalar* EIGEN_RESTRICT dst_data,
const Index src_index, const Index src_stride,
const Scalar* EIGEN_RESTRICT src_data) {
if (src_stride == 1) {
const Index packet_size = internal::unpacket_traits<Packet>::size;
const Index vectorized_size =
(num_coeff_to_copy / packet_size) * packet_size;
if (dst_stride == 1) {
// LINEAR
for (Index i = 0; i < vectorized_size; i += packet_size) {
Packet p = internal::ploadu<Packet>(src_data + src_index + i);
internal::pstoreu<Scalar, Packet>(dst_data + dst_index + i, p);
}
for (Index i = vectorized_size; i < num_coeff_to_copy; ++i) {
dst_data[dst_index + i] = src_data[src_index + i];
}
} else {
// SCATTER
for (Index i = 0; i < vectorized_size; i += packet_size) {
Packet p = internal::ploadu<Packet>(src_data + src_index + i);
internal::pscatter<Scalar, Packet>(
dst_data + dst_index + i * dst_stride, p, dst_stride);
}
for (Index i = vectorized_size; i < num_coeff_to_copy; ++i) {
dst_data[dst_index + i * dst_stride] = src_data[src_index + i];
}
}
} else if (src_stride == 0) {
const Index packet_size = internal::unpacket_traits<Packet>::size;
const Index vectorized_size =
(num_coeff_to_copy / packet_size) * packet_size;
if (dst_stride == 1) {
// LINEAR
for (Index i = 0; i < vectorized_size; i += packet_size) {
Packet p = internal::pload1<Packet>(src_data + src_index);
internal::pstoreu<Scalar, Packet>(dst_data + dst_index + i, p);
}
for (Index i = vectorized_size; i < num_coeff_to_copy; ++i) {
dst_data[dst_index + i] = src_data[src_index];
}
} else {
// SCATTER
for (Index i = 0; i < vectorized_size; i += packet_size) {
Packet p = internal::pload1<Packet>(src_data + src_index);
internal::pscatter<Scalar, Packet>(
dst_data + dst_index + i * dst_stride, p, dst_stride);
}
for (Index i = vectorized_size; i < num_coeff_to_copy; ++i) {
dst_data[dst_index + i * dst_stride] = src_data[src_index];
}
}
} else {
if (dst_stride == 1) {
// GATHER
const Index packet_size = internal::unpacket_traits<Packet>::size;
const Index vectorized_size =
(num_coeff_to_copy / packet_size) * packet_size;
for (Index i = 0; i < vectorized_size; i += packet_size) {
Packet p = internal::pgather<Scalar, Packet>(
src_data + src_index + i * src_stride, src_stride);
internal::pstoreu<Scalar, Packet>(dst_data + dst_index + i, p);
}
for (Index i = vectorized_size; i < num_coeff_to_copy; ++i) {
dst_data[dst_index + i] = src_data[src_index + i * src_stride];
}
} else {
// RANDOM
for (Index i = 0; i < num_coeff_to_copy; ++i) {
dst_data[dst_index + i * dst_stride] =
src_data[src_index + i * src_stride];
}
}
}
}
};
/**
* \class TensorBlockIO
* \ingroup CXX11_Tensor_Module
*
* \brief Tensor block IO class.
*
* This class is responsible for copying data between a tensor and a tensor
* block.
*/
template <typename Scalar, typename Index, int NumDims, int Layout,
bool Vectorizable, bool BlockRead>
class TensorBlockIO {
public:
typedef typename internal::TensorBlock<Scalar, Index, NumDims, Layout>
TensorBlock;
typedef typename internal::TensorBlockCopyOp<Scalar, Index, Vectorizable>
TensorBlockCopyOp;
protected:
struct BlockIteratorState {
Index input_stride;
Index output_stride;
Index input_span;
Index output_span;
Index size;
Index count;
};
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Copy(
const TensorBlock& block, Index first_coeff_index,
const array<Index, NumDims>& tensor_to_block_dim_map,
const array<Index, NumDims>& tensor_strides, const Scalar* src_data,
Scalar* dst_data) {
// Find the innermost tensor dimension whose size is not 1. This is the
// effective inner dim. If all dimensions are of size 1, then fallback to
// using the actual innermost dim to avoid out-of-bound access.
Index num_size_one_inner_dims = 0;
for (int i = 0; i < NumDims; ++i) {
const int dim = cond<Layout>()(i, NumDims - i - 1);
if (block.block_sizes()[tensor_to_block_dim_map[dim]] != 1) {
num_size_one_inner_dims = i;
break;
}
}
// Calculate strides and dimensions.
const Index tensor_stride1_dim = cond<Layout>()(
num_size_one_inner_dims, NumDims - num_size_one_inner_dims - 1);
const Index block_dim_for_tensor_stride1_dim =
NumDims == 0 ? 1 : tensor_to_block_dim_map[tensor_stride1_dim];
size_t block_inner_dim_size =
NumDims == 0 ? 1
: block.block_sizes()[block_dim_for_tensor_stride1_dim];
for (int i = num_size_one_inner_dims + 1; i < NumDims; ++i) {
const int dim = cond<Layout>()(i, NumDims - i - 1);
const Index block_stride =
block.block_strides()[tensor_to_block_dim_map[dim]];
if (block_inner_dim_size == block_stride &&
block_stride == tensor_strides[dim]) {
block_inner_dim_size *=
block.block_sizes()[tensor_to_block_dim_map[dim]];
++num_size_one_inner_dims;
} else {
break;
}
}
Index inputIndex;
Index outputIndex;
Index input_stride;
Index output_stride;
// Setup strides to read/write along the tensor's stride1 dimension.
if (BlockRead) {
inputIndex = first_coeff_index;
outputIndex = 0;
input_stride = NumDims == 0 ? 1 : tensor_strides[tensor_stride1_dim];
output_stride =
NumDims == 0
? 1
: block.block_strides()[block_dim_for_tensor_stride1_dim];
} else {
inputIndex = 0;
outputIndex = first_coeff_index;
input_stride =
NumDims == 0
? 1
: block.block_strides()[block_dim_for_tensor_stride1_dim];
output_stride = NumDims == 0 ? 1 : tensor_strides[tensor_stride1_dim];
}
const int at_least_1_dim = NumDims <= 1 ? 1 : NumDims - 1;
array<BlockIteratorState, at_least_1_dim> block_iter_state;
// Initialize block iterator state. Squeeze away any dimension of size 1.
int num_squeezed_dims = 0;
for (int i = num_size_one_inner_dims; i < NumDims - 1; ++i) {
const int dim = cond<Layout>()(i + 1, NumDims - i - 2);
const Index size = block.block_sizes()[tensor_to_block_dim_map[dim]];
if (size == 1) {
continue;
}
block_iter_state[num_squeezed_dims].size = size;
if (BlockRead) {
block_iter_state[num_squeezed_dims].input_stride = tensor_strides[dim];
block_iter_state[num_squeezed_dims].output_stride =
block.block_strides()[tensor_to_block_dim_map[dim]];
} else {
block_iter_state[num_squeezed_dims].input_stride =
block.block_strides()[tensor_to_block_dim_map[dim]];
block_iter_state[num_squeezed_dims].output_stride = tensor_strides[dim];
}
block_iter_state[num_squeezed_dims].input_span =
block_iter_state[num_squeezed_dims].input_stride *
(block_iter_state[num_squeezed_dims].size - 1);
block_iter_state[num_squeezed_dims].output_span =
block_iter_state[num_squeezed_dims].output_stride *
(block_iter_state[num_squeezed_dims].size - 1);
block_iter_state[num_squeezed_dims].count = 0;
++num_squeezed_dims;
}
// Iterate copying data from src to dst.
const Index block_total_size =
NumDims == 0 ? 1 : block.block_sizes().TotalSize();
for (Index i = 0; i < block_total_size; i += block_inner_dim_size) {
TensorBlockCopyOp::Run(block_inner_dim_size, outputIndex, output_stride,
dst_data, inputIndex, input_stride, src_data);
// Update index.
for (int j = 0; j < num_squeezed_dims; ++j) {
if (++block_iter_state[j].count < block_iter_state[j].size) {
inputIndex += block_iter_state[j].input_stride;
outputIndex += block_iter_state[j].output_stride;
break;
}
block_iter_state[j].count = 0;
inputIndex -= block_iter_state[j].input_span;
outputIndex -= block_iter_state[j].output_span;
}
}
}
};
/**
* \class TensorBlockReader
* \ingroup CXX11_Tensor_Module
*
* \brief Tensor block reader class.
*
* This class is responsible for reading a tensor block.
*
*/
template <typename Scalar, typename Index, int NumDims, int Layout,
bool Vectorizable>
class TensorBlockReader
: public TensorBlockIO<Scalar, Index, NumDims, Layout, Vectorizable, true> {
public:
typedef typename internal::TensorBlock<Scalar, Index, NumDims, Layout>
TensorBlock;
typedef TensorBlockIO<Scalar, Index, NumDims, Layout, Vectorizable, true>
Base;
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Run(
TensorBlock* block, const Scalar* src_data) {
array<Index, NumDims> tensor_to_block_dim_map;
for (int i = 0; i < NumDims; ++i) {
tensor_to_block_dim_map[i] = i;
}
Base::Copy(*block, block->first_coeff_index(), tensor_to_block_dim_map,
block->tensor_strides(), src_data, block->data());
}
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Run(
TensorBlock* block, Index first_coeff_index,
const array<Index, NumDims>& tensor_to_block_dim_map,
const array<Index, NumDims>& tensor_strides, const Scalar* src_data) {
Base::Copy(*block, first_coeff_index, tensor_to_block_dim_map,
tensor_strides, src_data, block->data());
}
};
/**
* \class TensorBlockWriter
* \ingroup CXX11_Tensor_Module
*
* \brief Tensor block writer class.
*
* This class is responsible for writing a tensor block.
*
*/
template <typename Scalar, typename Index, int NumDims, int Layout,
bool Vectorizable>
class TensorBlockWriter : public TensorBlockIO<Scalar, Index, NumDims, Layout,
Vectorizable, false> {
public:
typedef typename internal::TensorBlock<Scalar, Index, NumDims, Layout>
TensorBlock;
typedef TensorBlockIO<Scalar, Index, NumDims, Layout, Vectorizable, false>
Base;
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Run(
const TensorBlock& block, Scalar* dst_data) {
array<Index, NumDims> tensor_to_block_dim_map;
for (int i = 0; i < NumDims; ++i) {
tensor_to_block_dim_map[i] = i;
}
Base::Copy(block, block.first_coeff_index(), tensor_to_block_dim_map,
block.tensor_strides(), block.data(), dst_data);
}
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Run(
const TensorBlock& block, Index first_coeff_index,
const array<Index, NumDims>& tensor_to_block_dim_map,
const array<Index, NumDims>& tensor_strides, Scalar* dst_data) {
Base::Copy(block, first_coeff_index, tensor_to_block_dim_map,
tensor_strides, block.data(), dst_data);
}
};
/**
* \class TensorBlockCwiseBinaryOp
* \ingroup CXX11_Tensor_Module
*
* \brief Carries out a cwise binary op on a number of coefficients.
*
* This class reads strided inputs from left and right operands, and writes the
* result of the cwise binary op to the strided output array.
*
*/
template <bool Vectorizable>
struct TensorBlockCwiseBinaryOp {
template <typename Index, typename BinaryFunctor, typename OutputScalar,
typename LeftScalar, typename RightScalar>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Run(
const BinaryFunctor& functor, const Index num_coeff,
const Index output_index, const Index output_stride,
OutputScalar* output_data, const Index left_index,
const Index left_stride, const LeftScalar* left_data,
const Index right_index, const Index right_stride,
const RightScalar* right_data) {
for (Index i = 0; i < num_coeff; ++i) {
output_data[output_index + i * output_stride] =
functor(left_data[left_index + i * left_stride],
right_data[right_index + i * right_stride]);
}
}
};
template <>
struct TensorBlockCwiseBinaryOp<true> {
template <typename Index, typename BinaryFunctor, typename OutputScalar,
typename LeftScalar, typename RightScalar>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Run(
const BinaryFunctor& functor, const Index num_coeff,
const Index output_index, const Index output_stride,
OutputScalar* output_data, const Index left_index,
const Index left_stride, const LeftScalar* left_data,
const Index right_index, const Index right_stride,
const RightScalar* right_data) {
EIGEN_STATIC_ASSERT(functor_traits<BinaryFunctor>::PacketAccess,
YOU_MADE_A_PROGRAMMING_MISTAKE);
typedef typename packet_traits<OutputScalar>::type OutputPacket;
typedef typename packet_traits<LeftScalar>::type LeftPacket;
typedef typename packet_traits<RightScalar>::type RightPacket;
const Index packet_size = unpacket_traits<OutputPacket>::size;
EIGEN_STATIC_ASSERT(unpacket_traits<LeftPacket>::size == packet_size,
YOU_MADE_A_PROGRAMMING_MISTAKE);
EIGEN_STATIC_ASSERT(unpacket_traits<RightPacket>::size == packet_size,
YOU_MADE_A_PROGRAMMING_MISTAKE);
const Index vectorized_size = (num_coeff / packet_size) * packet_size;
if (output_stride != 1 || left_stride != 1 || right_stride != 1) {
TensorBlockCwiseBinaryOp<false>::Run(
functor, num_coeff, output_index, output_stride, output_data,
left_index, left_stride, left_data, right_index, right_stride,
right_data);
return;
}
// Vectorization for the most common case.
for (Index i = 0; i < vectorized_size; i += packet_size) {
LeftPacket l = internal::ploadu<LeftPacket>(left_data + left_index + i);
RightPacket r =
internal::ploadu<RightPacket>(right_data + right_index + i);
OutputPacket p = functor.packetOp(l, r);
internal::pstoreu<OutputScalar, OutputPacket>(
output_data + output_index + i, p);
}
for (Index i = vectorized_size; i < num_coeff; ++i) {
output_data[output_index + i] =
functor(left_data[left_index + i], right_data[right_index + i]);
}
}
};
/**
* \class TensorBlockCwiseBinaryIO
* \ingroup CXX11_Tensor_Module
*
* \brief Tensor block IO class for carrying out cwise binary ops.
*
* This class carries out the binary op on given blocks.
*
*/
template <typename BinaryFunctor, typename Index, typename OutputScalar,
int NumDims, int Layout>
struct TensorBlockCwiseBinaryIO {
typedef typename internal::TensorBlock<OutputScalar, Index, NumDims,
Layout>::Dimensions Dimensions;
typedef internal::TensorBlockCwiseBinaryOp<
functor_traits<BinaryFunctor>::PacketAccess>
TensorBlockCwiseBinaryOp;
struct BlockIteratorState {
Index output_stride, output_span;
Index left_stride, left_span;
Index right_stride, right_span;
Index size, count;
};
template <typename LeftScalar, typename RightScalar>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Run(
const BinaryFunctor& functor, const Dimensions& block_sizes,
const Dimensions& block_strides, OutputScalar* output_data,
const array<Index, NumDims>& left_strides, const LeftScalar* left_data,
const array<Index, NumDims>& right_strides,
const RightScalar* right_data) {
// Find the innermost dimension whose size is not 1. This is the effective
// inner dim. If all dimensions are of size 1, fallback to using the actual
// innermost dim to avoid out-of-bound access.
int num_size_one_inner_dims = 0;
for (int i = 0; i < NumDims; ++i) {
const int dim = cond<Layout>()(i, NumDims - i - 1);
if (block_sizes[dim] != 1) {
num_size_one_inner_dims = i;
break;
}
}
// Calculate strides and dimensions.
const int inner_dim =
NumDims == 0 ? 1
: cond<Layout>()(num_size_one_inner_dims,
NumDims - num_size_one_inner_dims - 1);
Index inner_dim_size = NumDims == 0 ? 1 : block_sizes[inner_dim];
for (int i = num_size_one_inner_dims + 1; i < NumDims; ++i) {
const int dim = cond<Layout>()(i, NumDims - i - 1);
// Merge multiple inner dims into one for larger inner dim size (i.e.
// fewer calls to TensorBlockCwiseBinaryOp::Run()).
if (inner_dim_size == block_strides[dim] &&
block_strides[dim] == left_strides[dim] &&
block_strides[dim] == right_strides[dim]) {
inner_dim_size *= block_sizes[dim];
++num_size_one_inner_dims;
} else {
break;
}
}
Index output_index = 0, left_index = 0, right_index = 0;
const Index output_stride = NumDims == 0 ? 1 : block_strides[inner_dim];
const Index left_stride = NumDims == 0 ? 1 : left_strides[inner_dim];
const Index right_stride = NumDims == 0 ? 1 : right_strides[inner_dim];
const int at_least_1_dim = NumDims <= 1 ? 1 : NumDims - 1;
array<BlockIteratorState, at_least_1_dim> block_iter_state;
// Initialize block iterator state. Squeeze away any dimension of size 1.
int num_squeezed_dims = 0;
for (int i = num_size_one_inner_dims; i < NumDims - 1; ++i) {
const int dim = cond<Layout>()(i + 1, NumDims - i - 2);
const Index size = block_sizes[dim];
if (size == 1) {
continue;
}
auto& state = block_iter_state[num_squeezed_dims];
state.output_stride = block_strides[dim];
state.left_stride = left_strides[dim];
state.right_stride = right_strides[dim];
state.size = size;
state.output_span = state.output_stride * (size - 1);
state.left_span = state.left_stride * (size - 1);
state.right_span = state.right_stride * (size - 1);
state.count = 0;
++num_squeezed_dims;
}
// Compute cwise binary op.
const Index block_total_size = NumDims == 0 ? 1 : block_sizes.TotalSize();
for (Index i = 0; i < block_total_size; i += inner_dim_size) {
TensorBlockCwiseBinaryOp::Run(functor, inner_dim_size, output_index,
output_stride, output_data, left_index,
left_stride, left_data, right_index,
right_stride, right_data);
// Update index.
for (int j = 0; j < num_squeezed_dims; ++j) {
auto& state = block_iter_state[j];
if (++state.count < state.size) {
output_index += state.output_stride;
left_index += state.left_stride;
right_index += state.right_stride;
break;
}
state.count = 0;
output_index -= state.output_span;
left_index -= state.left_span;
right_index -= state.right_span;
}
}
}
};
/** /**
* \class TensorBlockMapper * \class TensorBlockMapper
* \ingroup CXX11_Tensor_Module * \ingroup CXX11_Tensor_Module
@ -90,7 +622,7 @@ class TensorBlock {
* *
* This class is responsible for iterating over the blocks of a tensor. * This class is responsible for iterating over the blocks of a tensor.
*/ */
template <typename Scalar, typename Index, std::size_t NumDims, int Layout> template <typename Scalar, typename Index, int NumDims, int Layout>
class TensorBlockMapper { class TensorBlockMapper {
public: public:
typedef typename internal::TensorBlock<Scalar, Index, NumDims, Layout> typedef typename internal::TensorBlock<Scalar, Index, NumDims, Layout>
@ -190,10 +722,6 @@ class TensorBlockMapper {
} }
private: private:
static int InnerDimIndex(Index i) {
return Layout == static_cast<int>(ColMajor) ? i : NumDims - i - 1;
}
static Dimensions BlockDimensions(const Dimensions& tensor_dims, static Dimensions BlockDimensions(const Dimensions& tensor_dims,
const TensorBlockShapeType block_shape, const TensorBlockShapeType block_shape,
size_t min_target_size) { size_t min_target_size) {
@ -228,7 +756,7 @@ class TensorBlockMapper {
// Add any un-allocated coefficients to inner dimension(s). // Add any un-allocated coefficients to inner dimension(s).
Index total_size = block_dim_sizes.TotalSize(); Index total_size = block_dim_sizes.TotalSize();
for (int i = 0; i < NumDims; ++i) { for (int i = 0; i < NumDims; ++i) {
const int dim = InnerDimIndex(i); const int dim = cond<Layout>()(i, NumDims - i - 1);
if (block_dim_sizes[dim] < tensor_dims[dim]) { if (block_dim_sizes[dim] < tensor_dims[dim]) {
const Index total_size_other_dims = const Index total_size_other_dims =
total_size / block_dim_sizes[dim]; total_size / block_dim_sizes[dim];
@ -245,7 +773,7 @@ class TensorBlockMapper {
} else if (block_shape == TensorBlockShapeType::kSkewedInnerDims) { } else if (block_shape == TensorBlockShapeType::kSkewedInnerDims) {
Index coeff_to_allocate = min_target_size; Index coeff_to_allocate = min_target_size;
for (int i = 0; i < NumDims; ++i) { for (int i = 0; i < NumDims; ++i) {
const int dim = InnerDimIndex(i); const int dim = cond<Layout>()(i, NumDims - i - 1);
block_dim_sizes[dim] = block_dim_sizes[dim] =
numext::mini(coeff_to_allocate, tensor_dims[dim]); numext::mini(coeff_to_allocate, tensor_dims[dim]);
coeff_to_allocate = coeff_to_allocate =
@ -284,7 +812,7 @@ class TensorBlockMapper {
* processed together. * processed together.
* *
*/ */
template <typename Scalar, typename Index, std::size_t NumDims, int Layout> template <typename Scalar, typename Index, int NumDims, int Layout>
class TensorSliceBlockMapper { class TensorSliceBlockMapper {
public: public:
typedef typename internal::TensorBlock<Scalar, Index, NumDims, Layout> typedef typename internal::TensorBlock<Scalar, Index, NumDims, Layout>
@ -360,7 +888,7 @@ class TensorSliceBlockMapper {
prev_dim = curr_dim; prev_dim = curr_dim;
} }
} else { } else {
for (int i = 0; i < static_cast<int>(NumDims) - 1; ++i) { for (int i = 0; i < NumDims - 1; ++i) {
const Index idx = block_index / m_block_strides[i]; const Index idx = block_index / m_block_strides[i];
coords[i] = m_tensor_slice_offsets[i] + idx * m_block_dim_sizes[i]; coords[i] = m_tensor_slice_offsets[i] + idx * m_block_dim_sizes[i];
sizes[i] = numext::mini( sizes[i] = numext::mini(

View File

@ -19,11 +19,33 @@ using Eigen::Index;
using Eigen::RowMajor; using Eigen::RowMajor;
using Eigen::ColMajor; using Eigen::ColMajor;
using internal::TensorBlockShapeType;
template<typename T> template<typename T>
static const T& choose(int layout, const T& col, const T& row) { static const T& choose(int layout, const T& col, const T& row) {
return layout == ColMajor ? col : row; return layout == ColMajor ? col : row;
} }
static const TensorBlockShapeType RandomShape() {
return internal::random<bool>()
? internal::TensorBlockShapeType::kUniformAllDims
: internal::TensorBlockShapeType::kSkewedInnerDims;
}
template <int NumDims>
static std::size_t RandomTargetSize(const DSizes<Index, NumDims>& dims) {
return internal::random<int>(1, dims.TotalSize());
}
template <typename T>
static T* GenerateRandomData(const Index& size) {
T* data = new T[size];
for (int i = 0; i < size; ++i) {
data[i] = internal::random<T>();
}
return data;
}
template <int Layout> template <int Layout>
static void test_block_mapper_sanity() static void test_block_mapper_sanity()
{ {
@ -75,9 +97,7 @@ static void test_block_mapper_sanity()
template <typename T, int Layout, int NumDims> template <typename T, int Layout, int NumDims>
static void UpdateCoeffSet( static void UpdateCoeffSet(
const internal::TensorBlock<T, Index, 4, Layout>& block, const internal::TensorBlock<T, Index, 4, Layout>& block,
Index first_coeff_index, Index first_coeff_index, int dim_index, std::set<Index>* visited_coeffs) {
int dim_index,
std::set<Index>* visited_coeffs) {
const DSizes<Index, NumDims> block_sizes = block.block_sizes(); const DSizes<Index, NumDims> block_sizes = block.block_sizes();
const DSizes<Index, NumDims> tensor_strides = block.tensor_strides(); const DSizes<Index, NumDims> tensor_strides = block.tensor_strides();
@ -103,18 +123,11 @@ static void test_block_mapper_maps_every_element()
DSizes<Index, 4> dims(5, 7, 11, 17); DSizes<Index, 4> dims(5, 7, 11, 17);
auto total_coeffs = static_cast<int>(dims.TotalSize());
// Keep track of elements indices available via block access. // Keep track of elements indices available via block access.
std::set<Index> coeff_set; std::set<Index> coeff_set;
// Try different combinations of block types and sizes. // Try different combinations of block types and sizes.
auto block_shape_type = TensorBlockMapper block_mapper(dims, RandomShape(), RandomTargetSize(dims));
internal::random<bool>()
? internal::TensorBlockShapeType::kUniformAllDims
: internal::TensorBlockShapeType::kSkewedInnerDims;
auto block_target_size = internal::random<int>(1, total_coeffs);
TensorBlockMapper block_mapper(dims, block_shape_type, block_target_size);
for (int i = 0; i < block_mapper.total_block_count(); ++i) { for (int i = 0; i < block_mapper.total_block_count(); ++i) {
TensorBlock block = block_mapper.GetBlockForIndex(i, nullptr); TensorBlock block = block_mapper.GetBlockForIndex(i, nullptr);
@ -124,6 +137,7 @@ static void test_block_mapper_maps_every_element()
// Verify that every coefficient in the original Tensor is accessible through // Verify that every coefficient in the original Tensor is accessible through
// TensorBlock only once. // TensorBlock only once.
auto total_coeffs = static_cast<int>(dims.TotalSize());
VERIFY_IS_EQUAL(coeff_set.size(), total_coeffs); VERIFY_IS_EQUAL(coeff_set.size(), total_coeffs);
VERIFY_IS_EQUAL(*coeff_set.begin(), static_cast<Index>(0)); VERIFY_IS_EQUAL(*coeff_set.begin(), static_cast<Index>(0));
VERIFY_IS_EQUAL(*coeff_set.rbegin(), static_cast<Index>(total_coeffs - 1)); VERIFY_IS_EQUAL(*coeff_set.rbegin(), static_cast<Index>(total_coeffs - 1));
@ -146,13 +160,6 @@ static void test_slice_block_mapper_maps_every_element()
auto total_coeffs = static_cast<int>(tensor_slice_extents.TotalSize()); auto total_coeffs = static_cast<int>(tensor_slice_extents.TotalSize());
// Try different combinations of block types and sizes.
auto block_shape_type =
internal::random<bool>()
? internal::TensorBlockShapeType::kUniformAllDims
: internal::TensorBlockShapeType::kSkewedInnerDims;
auto block_target_size = internal::random<int>(1, total_coeffs);
// Pick a random dimension sizes for the tensor blocks. // Pick a random dimension sizes for the tensor blocks.
DSizes<Index, 4> block_sizes; DSizes<Index, 4> block_sizes;
for (int i = 0; i < 4; ++i) { for (int i = 0; i < 4; ++i) {
@ -164,7 +171,7 @@ static void test_slice_block_mapper_maps_every_element()
DimensionList<Index, 4>()); DimensionList<Index, 4>());
for (int i = 0; i < block_mapper.total_block_count(); ++i) { for (int i = 0; i < block_mapper.total_block_count(); ++i) {
TensorBlock block = block_mapper.GetBlockForIndex(i, NULL); TensorBlock block = block_mapper.GetBlockForIndex(i, nullptr);
UpdateCoeffSet<T, Layout, 4>(block, block.first_coeff_index(), UpdateCoeffSet<T, Layout, 4>(block, block.first_coeff_index(),
choose(Layout, 3, 0), &coeff_set); choose(Layout, 3, 0), &coeff_set);
} }
@ -172,11 +179,745 @@ static void test_slice_block_mapper_maps_every_element()
VERIFY_IS_EQUAL(coeff_set.size(), total_coeffs); VERIFY_IS_EQUAL(coeff_set.size(), total_coeffs);
} }
EIGEN_DECLARE_TEST(cxx11_tensor_assign) { template <int Layout>
CALL_SUBTEST(test_block_mapper_sanity<ColMajor>()); static void test_block_io_copy_data_from_source_to_target()
CALL_SUBTEST(test_block_mapper_sanity<RowMajor>()); {
CALL_SUBTEST(test_block_mapper_maps_every_element<ColMajor>()); using T = float;
CALL_SUBTEST(test_block_mapper_maps_every_element<RowMajor>());
CALL_SUBTEST(test_slice_block_mapper_maps_every_element<ColMajor>()); typedef internal::TensorBlock<T, Index, 5, Layout> TensorBlock;
CALL_SUBTEST(test_slice_block_mapper_maps_every_element<RowMajor>()); typedef internal::TensorBlockMapper<T, Index, 5, Layout> TensorBlockMapper;
typedef internal::TensorBlockReader<T, Index, 5, Layout, true>
TensorBlockReader;
typedef internal::TensorBlockWriter<T, Index, 5, Layout, true>
TensorBlockWriter;
typedef std::vector<T, aligned_allocator<T>> DataVector;
DSizes<Index, 5> input_tensor_dims(5, 7, 11, 17, 3);
const auto input_tensor_size = input_tensor_dims.TotalSize();
DataVector input_data(input_tensor_size, 0);
for (int i = 0; i < input_tensor_size; ++i) {
input_data[i] = internal::random<T>();
} }
DataVector output_data(input_tensor_size, 0);
TensorBlockMapper block_mapper(input_tensor_dims, RandomShape(),
RandomTargetSize(input_tensor_dims));
DataVector block_data(block_mapper.block_dims_total_size(), 0);
for (int i = 0; i < block_mapper.total_block_count(); ++i) {
TensorBlock block = block_mapper.GetBlockForIndex(i, block_data.data());
TensorBlockReader::Run(&block, input_data.data());
TensorBlockWriter::Run(block, output_data.data());
}
for (int i = 0; i < input_tensor_size; ++i) {
VERIFY_IS_EQUAL(input_data[i], output_data[i]);
}
}
template <int Layout, int NumDims>
static int GetInputIndex(Index output_index,
const array<Index, NumDims>& output_to_input_dim_map,
const array<Index, NumDims>& input_strides,
const array<Index, NumDims>& output_strides) {
int input_index = 0;
if (Layout == ColMajor) {
for (int i = NumDims - 1; i > 0; --i) {
const int idx = output_index / output_strides[i];
input_index += idx * input_strides[output_to_input_dim_map[i]];
output_index -= idx * output_strides[i];
}
return input_index +
output_index * input_strides[output_to_input_dim_map[0]];
} else {
for (int i = 0; i < NumDims - 1; ++i) {
const int idx = output_index / output_strides[i];
input_index += idx * input_strides[output_to_input_dim_map[i]];
output_index -= idx * output_strides[i];
}
return input_index +
output_index * input_strides[output_to_input_dim_map[NumDims - 1]];
}
}
template <int Layout, int NumDims>
static array<Index, NumDims> ComputeStrides(
const array<Index, NumDims>& sizes) {
array<Index, NumDims> strides;
if (Layout == ColMajor) {
strides[0] = 1;
for (int i = 1; i < NumDims; ++i) {
strides[i] = strides[i - 1] * sizes[i - 1];
}
} else {
strides[NumDims - 1] = 1;
for (int i = NumDims - 2; i >= 0; --i) {
strides[i] = strides[i + 1] * sizes[i + 1];
}
}
return strides;
}
template <int Layout>
static void test_block_io_copy_using_reordered_dimensions() {
typedef internal::TensorBlock<float, Index, 5, Layout> TensorBlock;
typedef internal::TensorBlockMapper<float, Index, 5, Layout>
TensorBlockMapper;
typedef internal::TensorBlockReader<float, Index, 5, Layout, false>
TensorBlockReader;
typedef internal::TensorBlockWriter<float, Index, 5, Layout, false>
TensorBlockWriter;
DSizes<Index, 5> input_tensor_dims(5, 7, 11, 17, 3);
const auto input_tensor_size = input_tensor_dims.TotalSize();
// Create a random input tensor.
auto* input_data = GenerateRandomData<float>(input_tensor_size);
// Create a random dimension re-ordering/shuffle.
std::vector<Index> shuffle = {0, 1, 2, 3, 4};
std::shuffle(shuffle.begin(), shuffle.end(), std::mt19937());
DSizes<Index, 5> output_tensor_dims;
array<Index, 5> input_to_output_dim_map;
array<Index, 5> output_to_input_dim_map;
for (Index i = 0; i < 5; ++i) {
output_tensor_dims[shuffle[i]] = input_tensor_dims[i];
input_to_output_dim_map[i] = shuffle[i];
output_to_input_dim_map[shuffle[i]] = i;
}
// Random block shape and size.
TensorBlockMapper block_mapper(output_tensor_dims, RandomShape(),
RandomTargetSize(input_tensor_dims));
auto* block_data = new float[block_mapper.block_dims_total_size()];
auto* output_data = new float[input_tensor_size];
array<Index, 5> input_tensor_strides =
ComputeStrides<Layout, 5>(input_tensor_dims);
array<Index, 5> output_tensor_strides =
ComputeStrides<Layout, 5>(output_tensor_dims);
for (Index i = 0; i < block_mapper.total_block_count(); ++i) {
TensorBlock block = block_mapper.GetBlockForIndex(i, block_data);
const Index first_coeff_index = GetInputIndex<Layout, 5>(
block.first_coeff_index(), output_to_input_dim_map,
input_tensor_strides, output_tensor_strides);
TensorBlockReader::Run(&block, first_coeff_index, input_to_output_dim_map,
input_tensor_strides, input_data);
TensorBlockWriter::Run(block, first_coeff_index, input_to_output_dim_map,
input_tensor_strides, output_data);
}
for (int i = 0; i < input_tensor_size; ++i) {
VERIFY_IS_EQUAL(input_data[i], output_data[i]);
}
delete[] input_data;
delete[] block_data;
delete[] output_data;
}
template <int Layout>
static void test_block_io_zero_stride()
{
typedef internal::TensorBlock<float, Index, 5, Layout> TensorBlock;
typedef internal::TensorBlockReader<float, Index, 5, Layout, true>
TensorBlockReader;
typedef internal::TensorBlockWriter<float, Index, 5, Layout, true>
TensorBlockWriter;
DSizes<Index, 5> input_tensor_dims(1, 2, 1, 3, 1);
const auto input_tensor_size = input_tensor_dims.TotalSize();
// Create a random input tensor.
auto* input_data = GenerateRandomData<float>(input_tensor_size);
DSizes<Index, 5> output_tensor_dims(3, 2, 3, 3, 2);
DSizes<Index, 5> input_tensor_strides(
ComputeStrides<Layout, 5>(input_tensor_dims));
DSizes<Index, 5> output_tensor_strides(
ComputeStrides<Layout, 5>(output_tensor_dims));
DSizes<Index, 5> input_tensor_strides_with_zeros(input_tensor_strides);
input_tensor_strides_with_zeros[0] = 0;
input_tensor_strides_with_zeros[2] = 0;
input_tensor_strides_with_zeros[4] = 0;
// Verify that data was correctly read/written from/into the block.
const auto verify_is_equal = [&](const float* output_data) {
for (int i = 0; i < output_tensor_dims[0]; ++i) {
for (int j = 0; j < output_tensor_dims[1]; ++j) {
for (int k = 0; k < output_tensor_dims[2]; ++k) {
for (int l = 0; l < output_tensor_dims[3]; ++l) {
for (int m = 0; m < output_tensor_dims[4]; ++m) {
const Index output_offset =
i * output_tensor_strides[0] + j * output_tensor_strides[1] +
k * output_tensor_strides[2] + l * output_tensor_strides[3] +
m * output_tensor_strides[4];
const Index input_offset =
i % input_tensor_dims[0] * input_tensor_strides[0] +
j % input_tensor_dims[1] * input_tensor_strides[1] +
k % input_tensor_dims[2] * input_tensor_strides[2] +
l % input_tensor_dims[3] * input_tensor_strides[3] +
m % input_tensor_dims[4] * input_tensor_strides[4];
VERIFY_IS_EQUAL(output_data[output_offset],
input_data[input_offset]);
}
}
}
}
}
};
{
auto* output_data = new float[output_tensor_dims.TotalSize()];
TensorBlock read_block(0, output_tensor_dims, output_tensor_strides,
input_tensor_strides_with_zeros, output_data);
TensorBlockReader::Run(&read_block, input_data);
verify_is_equal(output_data);
delete[] output_data;
}
{
auto* output_data = new float[output_tensor_dims.TotalSize()];
TensorBlock write_block(0, output_tensor_dims,
input_tensor_strides_with_zeros,
output_tensor_strides, input_data);
TensorBlockWriter::Run(write_block, output_data);
verify_is_equal(output_data);
delete[] output_data;
}
delete[] input_data;
}
template <int Layout>
static void test_block_io_squeeze_ones() {
typedef internal::TensorBlock<float, Index, 5, Layout> TensorBlock;
typedef internal::TensorBlockReader<float, Index, 5, Layout, true>
TensorBlockReader;
typedef internal::TensorBlockWriter<float, Index, 5, Layout, true>
TensorBlockWriter;
// Total size > 1.
{
DSizes<Index, 5> block_sizes(1, 2, 1, 2, 1);
const auto total_size = block_sizes.TotalSize();
// Create a random input tensor.
auto* input_data = GenerateRandomData<float>(total_size);
DSizes<Index, 5> strides(ComputeStrides<Layout, 5>(block_sizes));
{
auto* output_data = new float[block_sizes.TotalSize()];
TensorBlock read_block(0, block_sizes, strides, strides, output_data);
TensorBlockReader::Run(&read_block, input_data);
for (int i = 0; i < total_size; ++i) {
VERIFY_IS_EQUAL(output_data[i], input_data[i]);
}
delete[] output_data;
}
{
auto* output_data = new float[block_sizes.TotalSize()];
TensorBlock write_block(0, block_sizes, strides, strides, input_data);
TensorBlockWriter::Run(write_block, output_data);
for (int i = 0; i < total_size; ++i) {
VERIFY_IS_EQUAL(output_data[i], input_data[i]);
}
delete[] output_data;
}
}
// Total size == 1.
{
DSizes<Index, 5> block_sizes(1, 1, 1, 1, 1);
const auto total_size = block_sizes.TotalSize();
// Create a random input tensor.
auto* input_data = GenerateRandomData<float>(total_size);
DSizes<Index, 5> strides(ComputeStrides<Layout, 5>(block_sizes));
{
auto* output_data = new float[block_sizes.TotalSize()];
TensorBlock read_block(0, block_sizes, strides, strides, output_data);
TensorBlockReader::Run(&read_block, input_data);
for (int i = 0; i < total_size; ++i) {
VERIFY_IS_EQUAL(output_data[i], input_data[i]);
}
delete[] output_data;
}
{
auto* output_data = new float[block_sizes.TotalSize()];
TensorBlock write_block(0, block_sizes, strides, strides, input_data);
TensorBlockWriter::Run(write_block, output_data);
for (int i = 0; i < total_size; ++i) {
VERIFY_IS_EQUAL(output_data[i], input_data[i]);
}
delete[] output_data;
}
}
}
template <int Layout>
static void test_block_cwise_binary_io_basic() {
typedef internal::scalar_sum_op<float> BinaryFunctor;
typedef internal::TensorBlockCwiseBinaryIO<BinaryFunctor, Index, float, 5,
Layout>
TensorBlockCwiseBinaryIO;
DSizes<Index, 5> block_sizes(2, 3, 5, 7, 11);
DSizes<Index, 5> strides(ComputeStrides<Layout, 5>(block_sizes));
const auto total_size = block_sizes.TotalSize();
// Create a random input tensors.
auto* left_data = GenerateRandomData<float>(total_size);
auto* right_data = GenerateRandomData<float>(total_size);
auto* output_data = new float[total_size];
BinaryFunctor functor;
TensorBlockCwiseBinaryIO::Run(functor, block_sizes, strides, output_data,
strides, left_data, strides, right_data);
for (int i = 0; i < total_size; ++i) {
VERIFY_IS_EQUAL(output_data[i], functor(left_data[i], right_data[i]));
}
delete[] left_data;
delete[] right_data;
delete[] output_data;
}
template <int Layout>
static void test_block_cwise_binary_io_squeeze_ones() {
typedef internal::scalar_sum_op<float> BinaryFunctor;
typedef internal::TensorBlockCwiseBinaryIO<BinaryFunctor, Index, float, 5,
Layout>
TensorBlockCwiseBinaryIO;
DSizes<Index, 5> block_sizes(1, 2, 1, 3, 1);
DSizes<Index, 5> strides(ComputeStrides<Layout, 5>(block_sizes));
const auto total_size = block_sizes.TotalSize();
// Create a random input tensors.
auto* left_data = GenerateRandomData<float>(total_size);
auto* right_data = GenerateRandomData<float>(total_size);
auto* output_data = new float[total_size];
BinaryFunctor functor;
TensorBlockCwiseBinaryIO::Run(functor, block_sizes, strides, output_data,
strides, left_data, strides, right_data);
for (int i = 0; i < total_size; ++i) {
VERIFY_IS_EQUAL(output_data[i], functor(left_data[i], right_data[i]));
}
delete[] left_data;
delete[] right_data;
delete[] output_data;
}
template <int Layout>
static void test_block_cwise_binary_io_zero_strides() {
typedef internal::scalar_sum_op<float> BinaryFunctor;
typedef internal::TensorBlockCwiseBinaryIO<BinaryFunctor, Index, float, 5,
Layout>
TensorBlockCwiseBinaryIO;
DSizes<Index, 5> left_sizes(1, 3, 1, 7, 1);
DSizes<Index, 5> left_strides(ComputeStrides<Layout, 5>(left_sizes));
left_strides[0] = 0;
left_strides[2] = 0;
left_strides[4] = 0;
DSizes<Index, 5> right_sizes(2, 1, 5, 1, 11);
DSizes<Index, 5> right_strides(ComputeStrides<Layout, 5>(right_sizes));
right_strides[1] = 0;
right_strides[3] = 0;
// Generate random data.
auto* left_data = GenerateRandomData<float>(left_sizes.TotalSize());
auto* right_data = GenerateRandomData<float>(right_sizes.TotalSize());
DSizes<Index, 5> output_sizes(2, 3, 5, 7, 11);
DSizes<Index, 5> output_strides(ComputeStrides<Layout, 5>(output_sizes));
const auto output_total_size = output_sizes.TotalSize();
auto* output_data = new float[output_total_size];
BinaryFunctor functor;
TensorBlockCwiseBinaryIO::Run(functor, output_sizes, output_strides,
output_data, left_strides, left_data,
right_strides, right_data);
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 5; ++k) {
for (int l = 0; l < 7; ++l) {
for (int m = 0; m < 11; ++m) {
Index output_index = i * output_strides[0] + j * output_strides[1] +
k * output_strides[2] + l * output_strides[3] +
m * output_strides[4];
Index left_index = i * left_strides[0] + j * left_strides[1] +
k * left_strides[2] + l * left_strides[3] +
m * left_strides[4];
Index right_index = i * right_strides[0] + j * right_strides[1] +
k * right_strides[2] + l * right_strides[3] +
m * right_strides[4];
VERIFY_IS_EQUAL(
output_data[output_index],
functor(left_data[left_index], right_data[right_index]));
}
}
}
}
}
delete[] left_data;
delete[] right_data;
delete[] output_data;
}
template <int Layout>
static void test_uniform_block_shape()
{
using T = int;
typedef internal::TensorBlock<T, Index, 5, Layout> TensorBlock;
typedef internal::TensorBlockMapper<T, Index, 5, Layout> TensorBlockMapper;
{
// Test shape 'UniformAllDims' with uniform 'max_coeff count'.
DSizes<Index, 5> dims(11, 5, 6, 17, 7);
const size_t max_coeff_count = 5 * 5 * 5 * 5 * 5;
TensorBlockMapper block_mapper(dims, TensorBlockShapeType::kUniformAllDims,
max_coeff_count);
TensorBlock block = block_mapper.GetBlockForIndex(0, nullptr);
for (int i = 0; i < 5; ++i) {
VERIFY_IS_EQUAL(5, block.block_sizes()[i]);
}
VERIFY(block.block_sizes().TotalSize() <= max_coeff_count);
}
// Test shape 'UniformAllDims' with larger 'max_coeff count' which spills
// partially into first inner-most dimension.
if (Layout == ColMajor) {
DSizes<Index, 5> dims(11, 5, 6, 17, 7);
const size_t max_coeff_count = 7 * 5 * 5 * 5 * 5;
TensorBlockMapper block_mapper(dims, TensorBlockShapeType::kUniformAllDims,
max_coeff_count);
TensorBlock block = block_mapper.GetBlockForIndex(0, nullptr);
VERIFY_IS_EQUAL(7, block.block_sizes()[0]);
for (int i = 1; i < 5; ++i) {
VERIFY_IS_EQUAL(5, block.block_sizes()[i]);
}
VERIFY(block.block_sizes().TotalSize() <= max_coeff_count);
} else {
DSizes<Index, 5> dims(11, 5, 6, 17, 7);
const size_t max_coeff_count = 5 * 5 * 5 * 5 * 6;
TensorBlockMapper block_mapper(dims, TensorBlockShapeType::kUniformAllDims,
max_coeff_count);
TensorBlock block = block_mapper.GetBlockForIndex(0, nullptr);
VERIFY_IS_EQUAL(6, block.block_sizes()[4]);
for (int i = 3; i >= 0; --i) {
VERIFY_IS_EQUAL(5, block.block_sizes()[i]);
}
VERIFY(block.block_sizes().TotalSize() <= max_coeff_count);
}
// Test shape 'UniformAllDims' with larger 'max_coeff count' which spills
// fully into first inner-most dimension.
if (Layout == ColMajor) {
DSizes<Index, 5> dims(11, 5, 6, 17, 7);
const size_t max_coeff_count = 11 * 5 * 5 * 5 * 5;
TensorBlockMapper block_mapper(dims, TensorBlockShapeType::kUniformAllDims,
max_coeff_count);
TensorBlock block = block_mapper.GetBlockForIndex(0, nullptr);
VERIFY_IS_EQUAL(11, block.block_sizes()[0]);
for (int i = 1; i < 5; ++i) {
VERIFY_IS_EQUAL(5, block.block_sizes()[i]);
}
VERIFY(block.block_sizes().TotalSize() <= max_coeff_count);
} else {
DSizes<Index, 5> dims(11, 5, 6, 17, 7);
const size_t max_coeff_count = 5 * 5 * 5 * 5 * 7;
TensorBlockMapper block_mapper(dims, TensorBlockShapeType::kUniformAllDims,
max_coeff_count);
TensorBlock block = block_mapper.GetBlockForIndex(0, nullptr);
VERIFY_IS_EQUAL(7, block.block_sizes()[4]);
for (int i = 3; i >= 0; --i) {
VERIFY_IS_EQUAL(5, block.block_sizes()[i]);
}
VERIFY(block.block_sizes().TotalSize() <= max_coeff_count);
}
// Test shape 'UniformAllDims' with larger 'max_coeff count' which spills
// fully into first few inner-most dimensions.
if (Layout == ColMajor) {
DSizes<Index, 5> dims(7, 5, 6, 17, 7);
const size_t max_coeff_count = 7 * 5 * 6 * 7 * 5;
TensorBlockMapper block_mapper(dims, TensorBlockShapeType::kUniformAllDims,
max_coeff_count);
TensorBlock block = block_mapper.GetBlockForIndex(0, nullptr);
VERIFY_IS_EQUAL(7, block.block_sizes()[0]);
VERIFY_IS_EQUAL(5, block.block_sizes()[1]);
VERIFY_IS_EQUAL(6, block.block_sizes()[2]);
VERIFY_IS_EQUAL(7, block.block_sizes()[3]);
VERIFY_IS_EQUAL(5, block.block_sizes()[4]);
VERIFY(block.block_sizes().TotalSize() <= max_coeff_count);
} else {
DSizes<Index, 5> dims(7, 5, 6, 9, 7);
const size_t max_coeff_count = 5 * 5 * 5 * 6 * 7;
TensorBlockMapper block_mapper(dims, TensorBlockShapeType::kUniformAllDims,
max_coeff_count);
TensorBlock block = block_mapper.GetBlockForIndex(0, nullptr);
VERIFY_IS_EQUAL(7, block.block_sizes()[4]);
VERIFY_IS_EQUAL(6, block.block_sizes()[3]);
VERIFY_IS_EQUAL(5, block.block_sizes()[2]);
VERIFY_IS_EQUAL(5, block.block_sizes()[1]);
VERIFY_IS_EQUAL(5, block.block_sizes()[0]);
VERIFY(block.block_sizes().TotalSize() <= max_coeff_count);
}
// Test shape 'UniformAllDims' with full allocation to all dims.
if (Layout == ColMajor) {
DSizes<Index, 5> dims(7, 5, 6, 17, 7);
const size_t max_coeff_count = 7 * 5 * 6 * 17 * 7;
TensorBlockMapper block_mapper(dims, TensorBlockShapeType::kUniformAllDims,
max_coeff_count);
TensorBlock block = block_mapper.GetBlockForIndex(0, nullptr);
VERIFY_IS_EQUAL(7, block.block_sizes()[0]);
VERIFY_IS_EQUAL(5, block.block_sizes()[1]);
VERIFY_IS_EQUAL(6, block.block_sizes()[2]);
VERIFY_IS_EQUAL(17, block.block_sizes()[3]);
VERIFY_IS_EQUAL(7, block.block_sizes()[4]);
VERIFY(block.block_sizes().TotalSize() <= max_coeff_count);
} else {
DSizes<Index, 5> dims(7, 5, 6, 9, 7);
const size_t max_coeff_count = 7 * 5 * 6 * 9 * 7;
TensorBlockMapper block_mapper(dims, TensorBlockShapeType::kUniformAllDims,
max_coeff_count);
TensorBlock block = block_mapper.GetBlockForIndex(0, nullptr);
VERIFY_IS_EQUAL(7, block.block_sizes()[4]);
VERIFY_IS_EQUAL(9, block.block_sizes()[3]);
VERIFY_IS_EQUAL(6, block.block_sizes()[2]);
VERIFY_IS_EQUAL(5, block.block_sizes()[1]);
VERIFY_IS_EQUAL(7, block.block_sizes()[0]);
VERIFY(block.block_sizes().TotalSize() <= max_coeff_count);
}
}
template <int Layout>
static void test_skewed_inner_dim_block_shape()
{
using T = int;
typedef internal::TensorBlock<T, Index, 5, Layout> TensorBlock;
typedef internal::TensorBlockMapper<T, Index, 5, Layout> TensorBlockMapper;
// Test shape 'SkewedInnerDims' with partial allocation to inner-most dim.
if (Layout == ColMajor) {
DSizes<Index, 5> dims(11, 5, 6, 17, 7);
const size_t max_coeff_count = 10 * 1 * 1 * 1 * 1;
TensorBlockMapper block_mapper(dims, TensorBlockShapeType::kSkewedInnerDims,
max_coeff_count);
TensorBlock block = block_mapper.GetBlockForIndex(0, nullptr);
VERIFY_IS_EQUAL(10, block.block_sizes()[0]);
for (int i = 1; i < 5; ++i) {
VERIFY_IS_EQUAL(1, block.block_sizes()[i]);
}
VERIFY(block.block_sizes().TotalSize() <= max_coeff_count);
} else {
DSizes<Index, 5> dims(11, 5, 6, 17, 7);
const size_t max_coeff_count = 1 * 1 * 1 * 1 * 6;
TensorBlockMapper block_mapper(dims, TensorBlockShapeType::kSkewedInnerDims,
max_coeff_count);
TensorBlock block = block_mapper.GetBlockForIndex(0, nullptr);
VERIFY_IS_EQUAL(6, block.block_sizes()[4]);
for (int i = 3; i >= 0; --i) {
VERIFY_IS_EQUAL(1, block.block_sizes()[i]);
}
VERIFY(block.block_sizes().TotalSize() <= max_coeff_count);
}
// Test shape 'SkewedInnerDims' with full allocation to inner-most dim.
if (Layout == ColMajor) {
DSizes<Index, 5> dims(11, 5, 6, 17, 7);
const size_t max_coeff_count = 11 * 1 * 1 * 1 * 1;
TensorBlockMapper block_mapper(dims, TensorBlockShapeType::kSkewedInnerDims,
max_coeff_count);
TensorBlock block = block_mapper.GetBlockForIndex(0, nullptr);
VERIFY_IS_EQUAL(11, block.block_sizes()[0]);
for (int i = 1; i < 5; ++i) {
VERIFY_IS_EQUAL(1, block.block_sizes()[i]);
}
VERIFY(block.block_sizes().TotalSize() <= max_coeff_count);
} else {
DSizes<Index, 5> dims(11, 5, 6, 17, 7);
const size_t max_coeff_count = 1 * 1 * 1 * 1 * 7;
TensorBlockMapper block_mapper(dims, TensorBlockShapeType::kSkewedInnerDims,
max_coeff_count);
TensorBlock block = block_mapper.GetBlockForIndex(0, nullptr);
VERIFY_IS_EQUAL(7, block.block_sizes()[4]);
for (int i = 3; i >= 0; --i) {
VERIFY_IS_EQUAL(1, block.block_sizes()[i]);
}
VERIFY(block.block_sizes().TotalSize() <= max_coeff_count);
}
// Test shape 'SkewedInnerDims' with full allocation to inner-most dim,
// and partial allocation to second inner-dim.
if (Layout == ColMajor) {
DSizes<Index, 5> dims(11, 5, 6, 17, 7);
const size_t max_coeff_count = 11 * 3 * 1 * 1 * 1;
TensorBlockMapper block_mapper(dims, TensorBlockShapeType::kSkewedInnerDims,
max_coeff_count);
TensorBlock block = block_mapper.GetBlockForIndex(0, nullptr);
VERIFY_IS_EQUAL(11, block.block_sizes()[0]);
VERIFY_IS_EQUAL(3, block.block_sizes()[1]);
for (int i = 2; i < 5; ++i) {
VERIFY_IS_EQUAL(1, block.block_sizes()[i]);
}
VERIFY(block.block_sizes().TotalSize() <= max_coeff_count);
} else {
DSizes<Index, 5> dims(11, 5, 6, 17, 7);
const size_t max_coeff_count = 1 * 1 * 1 * 15 * 7;
TensorBlockMapper block_mapper(dims, TensorBlockShapeType::kSkewedInnerDims,
max_coeff_count);
TensorBlock block = block_mapper.GetBlockForIndex(0, nullptr);
VERIFY_IS_EQUAL(7, block.block_sizes()[4]);
VERIFY_IS_EQUAL(15, block.block_sizes()[3]);
for (int i = 2; i >= 0; --i) {
VERIFY_IS_EQUAL(1, block.block_sizes()[i]);
}
VERIFY(block.block_sizes().TotalSize() <= max_coeff_count);
}
// Test shape 'SkewedInnerDims' with full allocation to inner-most dim,
// and partial allocation to third inner-dim.
if (Layout == ColMajor) {
DSizes<Index, 5> dims(11, 5, 6, 17, 7);
const size_t max_coeff_count = 11 * 5 * 5 * 1 * 1;
TensorBlockMapper block_mapper(dims, TensorBlockShapeType::kSkewedInnerDims,
max_coeff_count);
TensorBlock block = block_mapper.GetBlockForIndex(0, nullptr);
VERIFY_IS_EQUAL(11, block.block_sizes()[0]);
VERIFY_IS_EQUAL(5, block.block_sizes()[1]);
VERIFY_IS_EQUAL(5, block.block_sizes()[2]);
for (int i = 3; i < 5; ++i) {
VERIFY_IS_EQUAL(1, block.block_sizes()[i]);
}
VERIFY(block.block_sizes().TotalSize() <= max_coeff_count);
} else {
DSizes<Index, 5> dims(11, 5, 6, 17, 7);
const size_t max_coeff_count = 1 * 1 * 5 * 17 * 7;
TensorBlockMapper block_mapper(dims, TensorBlockShapeType::kSkewedInnerDims,
max_coeff_count);
TensorBlock block = block_mapper.GetBlockForIndex(0, nullptr);
VERIFY_IS_EQUAL(7, block.block_sizes()[4]);
VERIFY_IS_EQUAL(17, block.block_sizes()[3]);
VERIFY_IS_EQUAL(5, block.block_sizes()[2]);
for (int i = 1; i >= 0; --i) {
VERIFY_IS_EQUAL(1, block.block_sizes()[i]);
}
VERIFY(block.block_sizes().TotalSize() <= max_coeff_count);
}
// Test shape 'SkewedInnerDims' with full allocation to all dims.
if (Layout == ColMajor) {
DSizes<Index, 5> dims(11, 5, 6, 17, 7);
const size_t max_coeff_count = 11 * 5 * 6 * 17 * 7;
TensorBlockMapper block_mapper(dims, TensorBlockShapeType::kSkewedInnerDims,
max_coeff_count);
TensorBlock block = block_mapper.GetBlockForIndex(0, nullptr);
VERIFY_IS_EQUAL(11, block.block_sizes()[0]);
VERIFY_IS_EQUAL(5, block.block_sizes()[1]);
VERIFY_IS_EQUAL(6, block.block_sizes()[2]);
VERIFY_IS_EQUAL(17, block.block_sizes()[3]);
VERIFY_IS_EQUAL(7, block.block_sizes()[4]);
VERIFY(block.block_sizes().TotalSize() <= max_coeff_count);
} else {
DSizes<Index, 5> dims(11, 5, 6, 17, 7);
const size_t max_coeff_count = 11 * 5 * 6 * 17 * 7;
TensorBlockMapper block_mapper(dims, TensorBlockShapeType::kSkewedInnerDims,
max_coeff_count);
TensorBlock block = block_mapper.GetBlockForIndex(0, nullptr);
VERIFY_IS_EQUAL(7, block.block_sizes()[4]);
VERIFY_IS_EQUAL(17, block.block_sizes()[3]);
VERIFY_IS_EQUAL(6, block.block_sizes()[2]);
VERIFY_IS_EQUAL(5, block.block_sizes()[1]);
VERIFY_IS_EQUAL(11, block.block_sizes()[0]);
VERIFY(block.block_sizes().TotalSize() <= max_coeff_count);
}
}
template <int Layout>
static void test_empty_dims(const internal::TensorBlockShapeType block_shape)
{
using T = int;
// Test blocking of tensors with zero dimensions:
// - we must not crash on asserts and divisions by zero
// - we must not return block with zero dimensions
// (recipe for overflows/underflows, divisions by zero and NaNs later)
// - total block count must be zero
{
typedef internal::TensorBlockMapper<T, Index, 1, Layout> TensorBlockMapper;
DSizes<Index, 1> dims(0);
for (int max_coeff_count = 0; max_coeff_count < 2; ++max_coeff_count) {
TensorBlockMapper block_mapper(dims, block_shape, max_coeff_count);
VERIFY_IS_EQUAL(block_mapper.total_block_count(), 0);
VERIFY(block_mapper.block_dims_total_size() >= 1);
}
}
{
typedef internal::TensorBlockMapper<T, Index, 2, Layout> TensorBlockMapper;
for (int dim1 = 0; dim1 < 3; ++dim1) {
for (int dim2 = 0; dim2 < 3; ++dim2) {
DSizes<Index, 2> dims(dim1, dim2);
for (int max_coeff_count = 0; max_coeff_count < 2; ++max_coeff_count) {
TensorBlockMapper block_mapper(dims, block_shape, max_coeff_count);
if (dim1 * dim2 == 0) {
VERIFY_IS_EQUAL(block_mapper.total_block_count(), 0);
}
VERIFY(block_mapper.block_dims_total_size() >= 1);
}
}
}
}
}
#define CALL_SUBTEST_LAYOUTS(NAME) \
CALL_SUBTEST(NAME<ColMajor>()); \
CALL_SUBTEST(NAME<RowMajor>())
#define CALL_SUBTEST_LAYOUTS_WITH_ARG(NAME, ARG) \
CALL_SUBTEST(NAME<ColMajor>(ARG)); \
CALL_SUBTEST(NAME<RowMajor>(ARG))
EIGEN_DECLARE_TEST(cxx11_tensor_assign) {
CALL_SUBTEST_LAYOUTS(test_block_mapper_sanity);
CALL_SUBTEST_LAYOUTS(test_block_mapper_maps_every_element);
CALL_SUBTEST_LAYOUTS(test_slice_block_mapper_maps_every_element);
CALL_SUBTEST_LAYOUTS(test_block_io_copy_data_from_source_to_target);
CALL_SUBTEST_LAYOUTS(test_block_io_copy_using_reordered_dimensions);
CALL_SUBTEST_LAYOUTS(test_block_io_zero_stride);
CALL_SUBTEST_LAYOUTS(test_block_io_squeeze_ones);
CALL_SUBTEST_LAYOUTS(test_block_cwise_binary_io_basic);
CALL_SUBTEST_LAYOUTS(test_block_cwise_binary_io_squeeze_ones);
CALL_SUBTEST_LAYOUTS(test_block_cwise_binary_io_zero_strides);
CALL_SUBTEST_LAYOUTS(test_uniform_block_shape);
CALL_SUBTEST_LAYOUTS(test_skewed_inner_dim_block_shape);
CALL_SUBTEST_LAYOUTS_WITH_ARG(test_empty_dims, TensorBlockShapeType::kUniformAllDims);
CALL_SUBTEST_LAYOUTS_WITH_ARG(test_empty_dims, TensorBlockShapeType::kSkewedInnerDims);
}
#undef CALL_SUBTEST_LAYOUTS
#undef CALL_SUBTEST_LAYOUTS_WITH_ARG