mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-05-02 08:44:12 +08:00
Code cleanup
This commit is contained in:
parent
9fa283339f
commit
d573efe303
@ -74,6 +74,7 @@
|
|||||||
#include "src/Tensor/TensorEvaluator.h"
|
#include "src/Tensor/TensorEvaluator.h"
|
||||||
#include "src/Tensor/TensorExpr.h"
|
#include "src/Tensor/TensorExpr.h"
|
||||||
#include "src/Tensor/TensorReduction.h"
|
#include "src/Tensor/TensorReduction.h"
|
||||||
|
#include "src/Tensor/TensorReductionCuda.h"
|
||||||
#include "src/Tensor/TensorArgMax.h"
|
#include "src/Tensor/TensorArgMax.h"
|
||||||
#include "src/Tensor/TensorConcatenation.h"
|
#include "src/Tensor/TensorConcatenation.h"
|
||||||
#include "src/Tensor/TensorContraction.h"
|
#include "src/Tensor/TensorContraction.h"
|
||||||
|
@ -336,187 +336,6 @@ struct FullReducer<Self, Op, ThreadPoolDevice, true> {
|
|||||||
};
|
};
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
|
||||||
#if defined(EIGEN_USE_GPU) && defined(__CUDACC__)
|
|
||||||
// Full reducers for GPU, don't vectorize for now
|
|
||||||
|
|
||||||
// Reducer function that enables multiple cuda thread to safely accumulate at the same
|
|
||||||
// output address. It basically reads the current value of the output variable, and
|
|
||||||
// attempts to update it with the new value. If in the meantime another cuda thread
|
|
||||||
// updated the content of the output address it will try again.
|
|
||||||
template <typename T, typename R>
|
|
||||||
__device__ EIGEN_ALWAYS_INLINE void atomicReduce(T* output, T accum, R& reducer) {
|
|
||||||
#if __CUDA_ARCH__ >= 300
|
|
||||||
if (sizeof(T) == 4)
|
|
||||||
{
|
|
||||||
unsigned int oldval = *reinterpret_cast<unsigned int*>(output);
|
|
||||||
unsigned int newval = oldval;
|
|
||||||
reducer.reduce(accum, reinterpret_cast<T*>(&newval));
|
|
||||||
if (newval == oldval) {
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
unsigned int readback;
|
|
||||||
while ((readback = atomicCAS((unsigned int*)output, oldval, newval)) != oldval) {
|
|
||||||
oldval = readback;
|
|
||||||
newval = oldval;
|
|
||||||
reducer.reduce(accum, reinterpret_cast<T*>(&newval));
|
|
||||||
if (newval == oldval) {
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
else if (sizeof(T) == 8) {
|
|
||||||
unsigned long long oldval = *reinterpret_cast<unsigned long long*>(output);
|
|
||||||
unsigned long long newval = oldval;
|
|
||||||
reducer.reduce(accum, reinterpret_cast<T*>(&newval));
|
|
||||||
if (newval == oldval) {
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
unsigned long long readback;
|
|
||||||
while ((readback = atomicCAS((unsigned long long*)output, oldval, newval)) != oldval) {
|
|
||||||
oldval = readback;
|
|
||||||
newval = oldval;
|
|
||||||
reducer.reduce(accum, reinterpret_cast<T*>(&newval));
|
|
||||||
if (newval == oldval) {
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
assert(0 && "Wordsize not supported");
|
|
||||||
}
|
|
||||||
#else
|
|
||||||
assert(0 && "Shouldn't be called on unsupported device");
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
|
|
||||||
template <typename T>
|
|
||||||
__device__ inline void atomicReduce(T* output, T accum, SumReducer<T>&) {
|
|
||||||
#if __CUDA_ARCH__ >= 300
|
|
||||||
atomicAdd(output, accum);
|
|
||||||
#else
|
|
||||||
assert(0 && "Shouldn't be called on unsupported device");
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
|
|
||||||
template <int BlockSize, int NumPerThread, typename Self,
|
|
||||||
typename Reducer, typename Index>
|
|
||||||
__global__ void FullReductionKernel(Reducer reducer, const Self input, Index num_coeffs,
|
|
||||||
typename Self::CoeffReturnType* output) {
|
|
||||||
const Index first_index = blockIdx.x * BlockSize * NumPerThread + threadIdx.x;
|
|
||||||
|
|
||||||
if (first_index == 0) {
|
|
||||||
*output = reducer.initialize();
|
|
||||||
}
|
|
||||||
|
|
||||||
typename Self::CoeffReturnType accum = reducer.initialize();
|
|
||||||
for (Index i = 0; i < NumPerThread; ++i) {
|
|
||||||
const Index index = first_index + i * BlockSize;
|
|
||||||
if (index >= num_coeffs) {
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
typename Self::CoeffReturnType val = input.m_impl.coeff(index);
|
|
||||||
reducer.reduce(val, &accum);
|
|
||||||
}
|
|
||||||
|
|
||||||
for (int offset = warpSize/2; offset > 0; offset /= 2) {
|
|
||||||
reducer.reduce(__shfl_down(accum, offset), &accum);
|
|
||||||
}
|
|
||||||
|
|
||||||
if ((threadIdx.x & (warpSize - 1)) == 0) {
|
|
||||||
atomicReduce(output, accum, reducer);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
template <typename Self, typename Op, bool Vectorizable>
|
|
||||||
struct FullReducer<Self, Op, GpuDevice, Vectorizable> {
|
|
||||||
// Unfortunately nvidia doesn't support well exotic types such as complex,
|
|
||||||
// so reduce the scope of the optimized version of the code to the simple case
|
|
||||||
// of floats.
|
|
||||||
static const bool HasOptimizedImplementation = !Op::IsStateful &&
|
|
||||||
internal::is_same<typename Self::CoeffReturnType, float>::value;
|
|
||||||
|
|
||||||
template <typename OutputType>
|
|
||||||
static void run(const Self& self, Op& reducer, const GpuDevice& device, OutputType* output) {
|
|
||||||
assert(false && "Should only be called on floats");
|
|
||||||
}
|
|
||||||
|
|
||||||
static void run(const Self& self, Op& reducer, const GpuDevice& device, float* output) {
|
|
||||||
typedef typename Self::Index Index;
|
|
||||||
|
|
||||||
const Index num_coeffs = array_prod(self.m_impl.dimensions());
|
|
||||||
const int block_size = 256;
|
|
||||||
const int num_per_thread = 128;
|
|
||||||
const int num_blocks = std::ceil(static_cast<float>(num_coeffs) / (block_size * num_per_thread));
|
|
||||||
LAUNCH_CUDA_KERNEL((FullReductionKernel<block_size, num_per_thread>),
|
|
||||||
num_blocks, block_size, 0, device, reducer, self, num_coeffs, output);
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
#endif
|
|
||||||
|
|
||||||
|
|
||||||
template <typename Self, typename Op,
|
|
||||||
bool Vectorizable = (Self::InputPacketAccess & Op::PacketAccess)>
|
|
||||||
class BlockReducer {
|
|
||||||
public:
|
|
||||||
typedef typename Self::Index Index;
|
|
||||||
typedef typename Self::Scalar Scalar;
|
|
||||||
typedef typename Self::CoeffReturnType CoeffReturnType;
|
|
||||||
explicit BlockReducer(const Op& reducer) : op_(reducer) {
|
|
||||||
accum_ = op_.initialize();
|
|
||||||
}
|
|
||||||
void Reduce(Index index, Index num_values_to_reduce, Scalar* data) {
|
|
||||||
for (Index i = 0; i < num_values_to_reduce; ++i) {
|
|
||||||
op_.reduce(data[index + i], &accum_);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
CoeffReturnType Finalize() {
|
|
||||||
return op_.finalize(accum_);
|
|
||||||
}
|
|
||||||
|
|
||||||
private:
|
|
||||||
CoeffReturnType accum_;
|
|
||||||
Op op_;
|
|
||||||
};
|
|
||||||
|
|
||||||
|
|
||||||
template <typename Self, typename Op>
|
|
||||||
class BlockReducer<Self, Op, true> {
|
|
||||||
public:
|
|
||||||
typedef typename Self::Index Index;
|
|
||||||
typedef typename Self::Scalar Scalar;
|
|
||||||
typedef typename Self::CoeffReturnType CoeffReturnType;
|
|
||||||
typedef typename Self::PacketReturnType PacketReturnType;
|
|
||||||
explicit BlockReducer(const Op& reducer) : op_(reducer) {
|
|
||||||
vaccum_ = op_.template initializePacket<PacketReturnType>();
|
|
||||||
accum_ = op_.initialize();
|
|
||||||
}
|
|
||||||
void Reduce(Index index, Index num_values_to_reduce, Scalar* data) {
|
|
||||||
const int packet_size = internal::unpacket_traits<PacketReturnType>::size;
|
|
||||||
const typename Self::Index vectorized_size = (num_values_to_reduce /
|
|
||||||
packet_size) * packet_size;
|
|
||||||
for (typename Self::Index i = 0; i < vectorized_size; i += packet_size) {
|
|
||||||
op_.reducePacket(internal::ploadt<PacketReturnType, Unaligned>(
|
|
||||||
&data[index + i]), &vaccum_);
|
|
||||||
}
|
|
||||||
|
|
||||||
for (typename Self::Index i = vectorized_size;
|
|
||||||
i < num_values_to_reduce; ++i) {
|
|
||||||
op_.reduce(data[index + i], &accum_);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
typename Self::CoeffReturnType Finalize() {
|
|
||||||
return op_.finalizeBoth(accum_, vaccum_);
|
|
||||||
}
|
|
||||||
|
|
||||||
private:
|
|
||||||
typename Self::PacketReturnType vaccum_;
|
|
||||||
typename Self::CoeffReturnType accum_;
|
|
||||||
Op op_;
|
|
||||||
};
|
|
||||||
|
|
||||||
} // end namespace internal
|
} // end namespace internal
|
||||||
|
|
||||||
|
|
||||||
|
140
unsupported/Eigen/CXX11/src/Tensor/TensorReductionCuda.h
Normal file
140
unsupported/Eigen/CXX11/src/Tensor/TensorReductionCuda.h
Normal file
@ -0,0 +1,140 @@
|
|||||||
|
// This file is part of Eigen, a lightweight C++ template library
|
||||||
|
// for linear algebra.
|
||||||
|
//
|
||||||
|
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
|
||||||
|
//
|
||||||
|
// This Source Code Form is subject to the terms of the Mozilla
|
||||||
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||||
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||||
|
|
||||||
|
#ifndef EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_H
|
||||||
|
#define EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_H
|
||||||
|
|
||||||
|
namespace Eigen {
|
||||||
|
namespace internal {
|
||||||
|
|
||||||
|
|
||||||
|
#if defined(EIGEN_USE_GPU) && defined(__CUDACC__)
|
||||||
|
// Full reducers for GPU, don't vectorize for now
|
||||||
|
|
||||||
|
// Reducer function that enables multiple cuda thread to safely accumulate at the same
|
||||||
|
// output address. It basically reads the current value of the output variable, and
|
||||||
|
// attempts to update it with the new value. If in the meantime another cuda thread
|
||||||
|
// updated the content of the output address it will try again.
|
||||||
|
template <typename T, typename R>
|
||||||
|
__device__ EIGEN_ALWAYS_INLINE void atomicReduce(T* output, T accum, R& reducer) {
|
||||||
|
#if __CUDA_ARCH__ >= 300
|
||||||
|
if (sizeof(T) == 4)
|
||||||
|
{
|
||||||
|
unsigned int oldval = *reinterpret_cast<unsigned int*>(output);
|
||||||
|
unsigned int newval = oldval;
|
||||||
|
reducer.reduce(accum, reinterpret_cast<T*>(&newval));
|
||||||
|
if (newval == oldval) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
unsigned int readback;
|
||||||
|
while ((readback = atomicCAS((unsigned int*)output, oldval, newval)) != oldval) {
|
||||||
|
oldval = readback;
|
||||||
|
newval = oldval;
|
||||||
|
reducer.reduce(accum, reinterpret_cast<T*>(&newval));
|
||||||
|
if (newval == oldval) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
else if (sizeof(T) == 8) {
|
||||||
|
unsigned long long oldval = *reinterpret_cast<unsigned long long*>(output);
|
||||||
|
unsigned long long newval = oldval;
|
||||||
|
reducer.reduce(accum, reinterpret_cast<T*>(&newval));
|
||||||
|
if (newval == oldval) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
unsigned long long readback;
|
||||||
|
while ((readback = atomicCAS((unsigned long long*)output, oldval, newval)) != oldval) {
|
||||||
|
oldval = readback;
|
||||||
|
newval = oldval;
|
||||||
|
reducer.reduce(accum, reinterpret_cast<T*>(&newval));
|
||||||
|
if (newval == oldval) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
assert(0 && "Wordsize not supported");
|
||||||
|
}
|
||||||
|
#else
|
||||||
|
assert(0 && "Shouldn't be called on unsupported device");
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
__device__ inline void atomicReduce(T* output, T accum, SumReducer<T>&) {
|
||||||
|
#if __CUDA_ARCH__ >= 300
|
||||||
|
atomicAdd(output, accum);
|
||||||
|
#else
|
||||||
|
assert(0 && "Shouldn't be called on unsupported device");
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
template <int BlockSize, int NumPerThread, typename Self,
|
||||||
|
typename Reducer, typename Index>
|
||||||
|
__global__ void FullReductionKernel(Reducer reducer, const Self input, Index num_coeffs,
|
||||||
|
typename Self::CoeffReturnType* output) {
|
||||||
|
const Index first_index = blockIdx.x * BlockSize * NumPerThread + threadIdx.x;
|
||||||
|
|
||||||
|
if (first_index == 0) {
|
||||||
|
*output = reducer.initialize();
|
||||||
|
}
|
||||||
|
|
||||||
|
typename Self::CoeffReturnType accum = reducer.initialize();
|
||||||
|
for (Index i = 0; i < NumPerThread; ++i) {
|
||||||
|
const Index index = first_index + i * BlockSize;
|
||||||
|
if (index >= num_coeffs) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
typename Self::CoeffReturnType val = input.m_impl.coeff(index);
|
||||||
|
reducer.reduce(val, &accum);
|
||||||
|
}
|
||||||
|
|
||||||
|
for (int offset = warpSize/2; offset > 0; offset /= 2) {
|
||||||
|
reducer.reduce(__shfl_down(accum, offset), &accum);
|
||||||
|
}
|
||||||
|
|
||||||
|
if ((threadIdx.x & (warpSize - 1)) == 0) {
|
||||||
|
atomicReduce(output, accum, reducer);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
template <typename Self, typename Op, bool Vectorizable>
|
||||||
|
struct FullReducer<Self, Op, GpuDevice, Vectorizable> {
|
||||||
|
// Unfortunately nvidia doesn't support well exotic types such as complex,
|
||||||
|
// so reduce the scope of the optimized version of the code to the simple case
|
||||||
|
// of floats.
|
||||||
|
static const bool HasOptimizedImplementation = !Op::IsStateful &&
|
||||||
|
internal::is_same<typename Self::CoeffReturnType, float>::value;
|
||||||
|
|
||||||
|
template <typename OutputType>
|
||||||
|
EIGEN_DEVICE_FUNC static void run(const Self& self, Op& reducer, const GpuDevice& device, OutputType* output) {
|
||||||
|
assert(false && "Should only be called on floats");
|
||||||
|
}
|
||||||
|
|
||||||
|
EIGEN_DEVICE_FUNC static void run(const Self& self, Op& reducer, const GpuDevice& device, float* output) {
|
||||||
|
typedef typename Self::Index Index;
|
||||||
|
|
||||||
|
const Index num_coeffs = array_prod(self.m_impl.dimensions());
|
||||||
|
const int block_size = 256;
|
||||||
|
const int num_per_thread = 128;
|
||||||
|
const int num_blocks = std::ceil(static_cast<float>(num_coeffs) / (block_size * num_per_thread));
|
||||||
|
LAUNCH_CUDA_KERNEL((FullReductionKernel<block_size, num_per_thread>),
|
||||||
|
num_blocks, block_size, 0, device, reducer, self, num_coeffs, output);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
#endif
|
||||||
|
|
||||||
|
|
||||||
|
} // end namespace internal
|
||||||
|
} // end namespace Eigen
|
||||||
|
|
||||||
|
#endif // EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_H
|
Loading…
x
Reference in New Issue
Block a user