Transformation methods added to ParametrizedLine class.

This commit is contained in:
ermak 2016-12-17 00:45:13 +07:00
parent 0e0d92d34b
commit d60cca32e5
2 changed files with 65 additions and 1 deletions

View File

@ -104,7 +104,44 @@ public:
template <int OtherOptions>
EIGEN_DEVICE_FUNC VectorType intersectionPoint(const Hyperplane<_Scalar, _AmbientDim, OtherOptions>& hyperplane) const;
/** \returns \c *this with scalar type casted to \a NewScalarType
/** Applies the transformation matrix \a mat to \c *this and returns a reference to \c *this.
*
* \param mat the Dim x Dim transformation matrix
* \param traits specifies whether the matrix \a mat represents an #Isometry
* or a more generic #Affine transformation. The default is #Affine.
*/
template<typename XprType>
EIGEN_DEVICE_FUNC inline ParametrizedLine& transform(const MatrixBase<XprType>& mat, TransformTraits traits = Affine)
{
if (traits==Affine)
direction() = (mat * direction()).normalized();
else if (traits==Isometry)
direction() = mat * direction();
else
{
eigen_assert(0 && "invalid traits value in ParametrizedLine::transform()");
}
origin() = mat * origin();
return *this;
}
/** Applies the transformation \a t to \c *this and returns a reference to \c *this.
*
* \param t the transformation of dimension Dim
* \param traits specifies whether the transformation \a t represents an #Isometry
* or a more generic #Affine transformation. The default is #Affine.
* Other kind of transformations are not supported.
*/
template<int TrOptions>
EIGEN_DEVICE_FUNC inline ParametrizedLine& transform(const Transform<Scalar,AmbientDimAtCompileTime,Affine,TrOptions>& t,
TransformTraits traits = Affine)
{
transform(t.linear(), traits);
origin() += t.translation();
return *this;
}
/** \returns \c *this with scalar type casted to \a NewScalarType
*
* Note that if \a NewScalarType is equal to the current scalar type of \c *this
* then this function smartly returns a const reference to \c *this.

View File

@ -25,6 +25,8 @@ template<typename LineType> void parametrizedline(const LineType& _line)
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef Matrix<Scalar, LineType::AmbientDimAtCompileTime, 1> VectorType;
typedef Hyperplane<Scalar,LineType::AmbientDimAtCompileTime> HyperplaneType;
typedef Matrix<Scalar, HyperplaneType::AmbientDimAtCompileTime,
HyperplaneType::AmbientDimAtCompileTime> MatrixType;
VectorType p0 = VectorType::Random(dim);
VectorType p1 = VectorType::Random(dim);
@ -59,6 +61,31 @@ template<typename LineType> void parametrizedline(const LineType& _line)
VERIFY_IS_MUCH_SMALLER_THAN(hp.signedDistance(pi), RealScalar(1));
VERIFY_IS_MUCH_SMALLER_THAN(l0.distance(pi), RealScalar(1));
VERIFY_IS_APPROX(l0.intersectionPoint(hp), pi);
// transform
if (!NumTraits<Scalar>::IsComplex)
{
MatrixType rot = MatrixType::Random(dim,dim).householderQr().householderQ();
DiagonalMatrix<Scalar,LineType::AmbientDimAtCompileTime> scaling(VectorType::Random());
Translation<Scalar,LineType::AmbientDimAtCompileTime> translation(VectorType::Random());
while(scaling.diagonal().cwiseAbs().minCoeff()<RealScalar(1e-4)) scaling.diagonal() = VectorType::Random();
LineType l1 = l0;
VectorType p3 = l0.pointAt(Scalar(1));
VERIFY_IS_MUCH_SMALLER_THAN( l1.transform(rot).distance(rot * p3), Scalar(1) );
l1 = l0;
VERIFY_IS_MUCH_SMALLER_THAN( l1.transform(rot,Isometry).distance(rot * p3), Scalar(1) );
l1 = l0;
VERIFY_IS_MUCH_SMALLER_THAN( l1.transform(rot*scaling).distance((rot*scaling) * p3), Scalar(1) );
l1 = l0;
VERIFY_IS_MUCH_SMALLER_THAN( l1.transform(rot*scaling*translation)
.distance((rot*scaling*translation) * p3), Scalar(1) );
l1 = l0;
VERIFY_IS_MUCH_SMALLER_THAN( l1.transform(rot*translation,Isometry)
.distance((rot*translation) * p3), Scalar(1) );
}
}
template<typename Scalar> void parametrizedline_alignment()