improve random

This commit is contained in:
Charles Schlosser 2024-01-31 08:16:29 +00:00
parent a9ddab3e06
commit d626762e3f
9 changed files with 405 additions and 151 deletions

View File

@ -563,34 +563,6 @@ struct pow_impl<ScalarX, ScalarY, true> {
}
};
/****************************************************************************
* Implementation of random *
****************************************************************************/
template <typename Scalar, bool IsComplex, bool IsInteger>
struct random_default_impl {};
template <typename Scalar>
struct random_impl : random_default_impl<Scalar, NumTraits<Scalar>::IsComplex, NumTraits<Scalar>::IsInteger> {};
template <typename Scalar>
struct random_retval {
typedef Scalar type;
};
template <typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random(const Scalar& x, const Scalar& y);
template <typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random();
template <typename Scalar>
struct random_default_impl<Scalar, false, false> {
static inline Scalar run(const Scalar& x, const Scalar& y) {
return x + (y - x) * Scalar(std::rand()) / Scalar(RAND_MAX);
}
static inline Scalar run() { return run(Scalar(NumTraits<Scalar>::IsSigned ? -1 : 0), Scalar(1)); }
};
enum { meta_floor_log2_terminate, meta_floor_log2_move_up, meta_floor_log2_move_down, meta_floor_log2_bogus };
template <unsigned int n, int lower, int upper>
@ -769,56 +741,166 @@ struct count_bits_impl<
#endif // EIGEN_COMP_GNUC || EIGEN_COMP_CLANG
template <typename BitsType>
int log2_ceil(BitsType x) {
int n = CHAR_BIT * sizeof(BitsType) - clz(x);
bool powerOfTwo = (x & (x - 1)) == 0;
return x == 0 ? 0 : powerOfTwo ? n - 1 : n;
}
template <typename BitsType>
int log2_floor(BitsType x) {
int n = CHAR_BIT * sizeof(BitsType) - clz(x);
return x == 0 ? 0 : n - 1;
}
/****************************************************************************
* Implementation of random *
****************************************************************************/
// return a Scalar filled with numRandomBits beginning from the least significant bit
template <typename Scalar>
Scalar getRandomBits(int numRandomBits) {
using BitsType = typename numext::get_integer_by_size<sizeof(Scalar)>::unsigned_type;
enum : int {
StdRandBits = meta_floor_log2<(unsigned int)(RAND_MAX) + 1>::value,
ScalarBits = sizeof(Scalar) * CHAR_BIT
};
eigen_assert((numRandomBits >= 0) && (numRandomBits <= ScalarBits));
const BitsType mask = BitsType(-1) >> (ScalarBits - numRandomBits);
BitsType randomBits = BitsType(0);
for (int shift = 0; shift < numRandomBits; shift += StdRandBits) {
int r = std::rand();
randomBits |= static_cast<BitsType>(r) << shift;
}
// clear the excess bits
randomBits &= mask;
return numext::bit_cast<Scalar, BitsType>(randomBits);
}
template <typename Scalar, bool IsComplex, bool IsInteger>
struct random_default_impl {};
template <typename Scalar>
struct random_impl : random_default_impl<Scalar, NumTraits<Scalar>::IsComplex, NumTraits<Scalar>::IsInteger> {};
template <typename Scalar>
struct random_retval {
typedef Scalar type;
};
template <typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random(const Scalar& x, const Scalar& y);
template <typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random();
template <typename Scalar>
struct random_default_impl<Scalar, false, false> {
using BitsType = typename numext::get_integer_by_size<sizeof(Scalar)>::unsigned_type;
enum : int { MantissaBits = NumTraits<Scalar>::digits() - 1 };
static EIGEN_DEVICE_FUNC inline Scalar run(const Scalar& x, const Scalar& y, int numRandomBits = MantissaBits) {
Scalar half_x = Scalar(0.5) * x;
Scalar half_y = Scalar(0.5) * y;
Scalar result = (half_x + half_y) + (half_y - half_x) * run(numRandomBits);
// result is in the half-open interval [x, y) -- provided that x < y
return result;
}
static EIGEN_DEVICE_FUNC inline Scalar run(int numRandomBits = MantissaBits) {
eigen_assert(numRandomBits >= 0 && numRandomBits <= MantissaBits);
BitsType randomBits = getRandomBits<BitsType>(numRandomBits);
// if fewer than MantissaBits is requested, shift them to the left
randomBits <<= (MantissaBits - numRandomBits);
// randomBits is in the half-open interval [2,4)
randomBits |= numext::bit_cast<BitsType>(Scalar(2));
// result is in the half-open interval [-1,1)
Scalar result = numext::bit_cast<Scalar>(randomBits) - Scalar(3);
return result;
}
};
// TODO: fix this for PPC
template <bool Specialize = sizeof(long double) == 2 * sizeof(uint64_t) && !EIGEN_ARCH_PPC>
struct random_longdouble_impl {
enum : int {
Size = sizeof(long double),
MantissaBits = NumTraits<long double>::digits() - 1,
LowBits = MantissaBits > 64 ? 64 : MantissaBits,
HighBits = MantissaBits > 64 ? MantissaBits - 64 : 0
};
static EIGEN_DEVICE_FUNC inline long double run() {
EIGEN_USING_STD(memcpy)
uint64_t randomBits[2];
long double result = 2.0L;
memcpy(&randomBits, &result, Size);
randomBits[0] |= getRandomBits<uint64_t>(LowBits);
randomBits[1] |= getRandomBits<uint64_t>(HighBits);
memcpy(&result, &randomBits, Size);
result -= 3.0L;
return result;
}
};
template <>
struct random_longdouble_impl<false> {
using Impl = random_impl<double>;
static EIGEN_DEVICE_FUNC inline long double run() { return static_cast<long double>(Impl::run()); }
};
template <>
struct random_impl<long double> {
static EIGEN_DEVICE_FUNC inline long double run(const long double& x, const long double& y) {
long double half_x = 0.5L * x;
long double half_y = 0.5L * y;
long double result = (half_x + half_y) + (half_y - half_x) * run();
return result;
}
static EIGEN_DEVICE_FUNC inline long double run() { return random_longdouble_impl<>::run(); }
};
template <typename Scalar>
struct random_default_impl<Scalar, false, true> {
static inline Scalar run(const Scalar& x, const Scalar& y) {
using BitsType = typename numext::get_integer_by_size<sizeof(Scalar)>::unsigned_type;
enum : int { ScalarBits = sizeof(Scalar) * CHAR_BIT };
static EIGEN_DEVICE_FUNC inline Scalar run(const Scalar& x, const Scalar& y) {
if (y <= x) return x;
// ScalarU is the unsigned counterpart of Scalar, possibly Scalar itself.
typedef typename make_unsigned<Scalar>::type ScalarU;
// ScalarX is the widest of ScalarU and unsigned int.
// We'll deal only with ScalarX and unsigned int below thus avoiding signed
// types and arithmetic and signed overflows (which are undefined behavior).
typedef std::conditional_t<(ScalarU(-1) > unsigned(-1)), ScalarU, unsigned> ScalarX;
// The following difference doesn't overflow, provided our integer types are two's
// complement and have the same number of padding bits in signed and unsigned variants.
// This is the case in most modern implementations of C++.
ScalarX range = ScalarX(y) - ScalarX(x);
ScalarX offset = 0;
ScalarX divisor = 1;
ScalarX multiplier = 1;
const unsigned rand_max = RAND_MAX;
if (range <= rand_max)
divisor = (rand_max + 1) / (range + 1);
else
multiplier = 1 + range / (rand_max + 1);
// Rejection sampling.
const BitsType range = static_cast<BitsType>(y) - static_cast<BitsType>(x) + 1;
// handle edge case where [x,y] spans the entire range of Scalar
if (range == 0) return getRandomBits<Scalar>(ScalarBits);
// calculate the number of random bits needed to fill range
const int numRandomBits = log2_ceil(range);
BitsType randomBits;
do {
offset = (unsigned(std::rand()) * multiplier) / divisor;
} while (offset > range);
return Scalar(ScalarX(x) + offset);
randomBits = getRandomBits<BitsType>(numRandomBits);
// if the random draw is outside [0, range), try again (rejection sampling)
// in the worst-case scenario, the probability of rejection is: 1/2 - 1/2^numRandomBits < 50%
} while (randomBits >= range);
Scalar result = x + static_cast<Scalar>(randomBits);
return result;
}
static inline Scalar run() {
static EIGEN_DEVICE_FUNC inline Scalar run() {
#ifdef EIGEN_MAKING_DOCS
return run(Scalar(NumTraits<Scalar>::IsSigned ? -10 : 0), Scalar(10));
#else
enum {
rand_bits = meta_floor_log2<(unsigned int)(RAND_MAX) + 1>::value,
scalar_bits = sizeof(Scalar) * CHAR_BIT,
shift = plain_enum_max(0, int(rand_bits) - int(scalar_bits)),
offset = NumTraits<Scalar>::IsSigned ? (1 << (plain_enum_min(rand_bits, scalar_bits) - 1)) : 0
};
return Scalar((std::rand() >> shift) - offset);
return getRandomBits<Scalar>(ScalarBits);
#endif
}
};
template <>
struct random_impl<bool> {
static EIGEN_DEVICE_FUNC inline bool run(const bool& x, const bool& y) {
if (y <= x) return x;
return run();
}
static EIGEN_DEVICE_FUNC inline bool run() { return getRandomBits<int>(1) ? true : false; }
};
template <typename Scalar>
struct random_default_impl<Scalar, true, false> {
static inline Scalar run(const Scalar& x, const Scalar& y) {
static EIGEN_DEVICE_FUNC inline Scalar run(const Scalar& x, const Scalar& y) {
return Scalar(random(x.real(), y.real()), random(x.imag(), y.imag()));
}
static inline Scalar run() {
static EIGEN_DEVICE_FUNC inline Scalar run() {
typedef typename NumTraits<Scalar>::Real RealScalar;
return Scalar(random<RealScalar>(), random<RealScalar>());
}
@ -1863,13 +1945,6 @@ EIGEN_DEVICE_FUNC inline bool isApproxOrLessThan(
*** The special case of the bool type ***
******************************************/
template <>
struct random_impl<bool> {
static inline bool run() { return random<int>(0, 1) == 0 ? false : true; }
static inline bool run(const bool& a, const bool& b) { return random<int>(a, b) == 0 ? false : true; }
};
template <>
struct scalar_fuzzy_impl<bool> {
typedef bool RealScalar;

View File

@ -206,9 +206,7 @@ struct GenericNumTraits {
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static inline T highest() { return (numext::numeric_limits<T>::max)(); }
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static inline T lowest() {
return IsInteger ? (numext::numeric_limits<T>::min)() : static_cast<T>(-(numext::numeric_limits<T>::max)());
}
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static inline T lowest() { return (numext::numeric_limits<T>::lowest)(); }
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static inline T infinity() { return numext::numeric_limits<T>::infinity(); }

View File

@ -677,16 +677,22 @@ EIGEN_ALWAYS_INLINE std::ostream& operator<<(std::ostream& os, const bfloat16& v
namespace internal {
template <>
struct random_default_impl<bfloat16, false, false> {
static inline bfloat16 run(const bfloat16& x, const bfloat16& y) {
return x + (y - x) * bfloat16(float(std::rand()) / float(RAND_MAX));
}
static inline bfloat16 run() { return run(bfloat16(-1.f), bfloat16(1.f)); }
struct is_arithmetic<bfloat16> {
enum { value = true };
};
template <>
struct is_arithmetic<bfloat16> {
enum { value = true };
struct random_impl<bfloat16> {
enum : int { MantissaBits = 7 };
using Impl = random_impl<float>;
static EIGEN_DEVICE_FUNC inline bfloat16 run(const bfloat16& x, const bfloat16& y) {
float result = Impl::run(x, y, MantissaBits);
return bfloat16(result);
}
static EIGEN_DEVICE_FUNC inline bfloat16 run() {
float result = Impl::run(MantissaBits);
return bfloat16(result);
}
};
} // namespace internal

View File

@ -762,16 +762,22 @@ EIGEN_ALWAYS_INLINE std::ostream& operator<<(std::ostream& os, const half& v) {
namespace internal {
template <>
struct random_default_impl<half, false, false> {
static inline half run(const half& x, const half& y) {
return x + (y - x) * half(float(std::rand()) / float(RAND_MAX));
}
static inline half run() { return run(half(-1.f), half(1.f)); }
struct is_arithmetic<half> {
enum { value = true };
};
template <>
struct is_arithmetic<half> {
enum { value = true };
struct random_impl<half> {
enum : int { MantissaBits = 10 };
using Impl = random_impl<float>;
static EIGEN_DEVICE_FUNC inline half run(const half& x, const half& y) {
float result = Impl::run(x, y, MantissaBits);
return half(result);
}
static EIGEN_DEVICE_FUNC inline half run() {
float result = Impl::run(MantissaBits);
return half(result);
}
};
} // end namespace internal

View File

@ -183,6 +183,20 @@ template <>
EIGEN_STRONG_INLINE float cast(const AnnoyingScalar& x) {
return *x.v;
}
template <>
struct random_impl<AnnoyingScalar> {
using Impl = random_impl<float>;
static EIGEN_DEVICE_FUNC inline AnnoyingScalar run(const AnnoyingScalar& x, const AnnoyingScalar& y) {
float result = Impl::run(*x.v, *y.v);
return AnnoyingScalar(result);
}
static EIGEN_DEVICE_FUNC inline AnnoyingScalar run() {
float result = Impl::run();
return AnnoyingScalar(result);
}
};
} // namespace internal
} // namespace Eigen

View File

@ -28,6 +28,23 @@ struct MovableScalar : public Base {
template <>
struct NumTraits<MovableScalar<float>> : GenericNumTraits<float> {};
namespace internal {
template <typename T>
struct random_impl<MovableScalar<T>> {
using MoveableT = MovableScalar<T>;
using Impl = random_impl<T>;
static EIGEN_DEVICE_FUNC inline MoveableT run(const MoveableT& x, const MoveableT& y) {
T result = Impl::run(x, y);
return MoveableT(result);
}
static EIGEN_DEVICE_FUNC inline MoveableT run() {
T result = Impl::run();
return MoveableT(result);
}
};
} // namespace internal
} // namespace Eigen
#endif

View File

@ -26,3 +26,21 @@ class SafeScalar {
T val_;
bool initialized_;
};
namespace Eigen {
namespace internal {
template <typename T>
struct random_impl<SafeScalar<T>> {
using SafeT = SafeScalar<T>;
using Impl = random_impl<T>;
static EIGEN_DEVICE_FUNC inline SafeT run(const SafeT& x, const SafeT& y) {
T result = Impl::run(x, y);
return SafeT(result);
}
static EIGEN_DEVICE_FUNC inline SafeT run() {
T result = Impl::run();
return SafeT(result);
}
};
} // namespace internal
} // namespace Eigen

View File

@ -36,10 +36,10 @@ void alignedbox(const BoxType& box) {
const Index dim = box.dim();
VectorType p0 = VectorType::Random(dim);
VectorType p1 = VectorType::Random(dim);
VectorType p0 = VectorType::Random(dim) / Scalar(2);
VectorType p1 = VectorType::Random(dim) / Scalar(2);
while (p1 == p0) {
p1 = VectorType::Random(dim);
p1 = VectorType::Random(dim) / Scalar(2);
}
RealScalar s1 = internal::random<RealScalar>(0, 1);
@ -216,7 +216,7 @@ template <typename Scalar, int Dim>
Matrix<Scalar, Dim, (1 << Dim)> boxGetCorners(const Matrix<Scalar, Dim, 1>& min_, const Matrix<Scalar, Dim, 1>& max_) {
Matrix<Scalar, Dim, (1 << Dim)> result;
for (Index i = 0; i < (1 << Dim); ++i) {
for (Index j = 0; j < Dim; ++j) result(j, i) = (i & (1 << j)) ? min_(j) : max_(j);
for (Index j = 0; j < Dim; ++j) result(j, i) = (i & (Index(1) << j)) ? min_(j) : max_(j);
}
return result;
}

View File

@ -7,10 +7,9 @@
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include <cstdlib>
#include "main.h"
typedef long long int64;
template <typename Scalar>
Scalar check_in_range(Scalar x, Scalar y) {
Scalar r = internal::random<Scalar>(x, y);
@ -25,8 +24,8 @@ template <typename Scalar>
void check_all_in_range(Scalar x, Scalar y) {
Array<int, 1, Dynamic> mask(y - x + 1);
mask.fill(0);
long n = (y - x + 1) * 32;
for (long k = 0; k < n; ++k) {
int64_t n = (y - x + 1) * 32;
for (int64_t k = 0; k < n; ++k) {
mask(check_in_range(x, y) - x)++;
}
for (Index i = 0; i < mask.size(); ++i)
@ -34,82 +33,203 @@ void check_all_in_range(Scalar x, Scalar y) {
VERIFY((mask > 0).all());
}
template <typename Scalar, typename EnableIf = void>
class HistogramHelper {
public:
HistogramHelper(int nbins) : HistogramHelper(Scalar(-1), Scalar(1), nbins) {}
HistogramHelper(Scalar lower, Scalar upper, int nbins) {
lower_ = static_cast<double>(lower);
upper_ = static_cast<double>(upper);
num_bins_ = nbins;
bin_width_ = (upper_ - lower_) / static_cast<double>(nbins);
}
int bin(Scalar v) {
double result = (static_cast<double>(v) - lower_) / bin_width_;
return std::min<int>(static_cast<int>(result), num_bins_ - 1);
}
double uniform_bin_probability(int bin) {
double range = upper_ - lower_;
if (bin < num_bins_ - 1) {
return bin_width_ / range;
}
return (upper_ - (lower_ + double(bin) * bin_width_)) / range;
}
private:
double lower_;
double upper_;
int num_bins_;
double bin_width_;
};
template <typename Scalar>
class HistogramHelper<Scalar, std::enable_if_t<Eigen::NumTraits<Scalar>::IsInteger>> {
public:
using RangeType = typename Eigen::internal::make_unsigned<Scalar>::type;
HistogramHelper(int nbins)
: HistogramHelper(Eigen::NumTraits<Scalar>::lowest(), Eigen::NumTraits<Scalar>::highest(), nbins) {}
HistogramHelper(Scalar lower, Scalar upper, int nbins)
: lower_{lower}, upper_{upper}, num_bins_{nbins}, bin_width_{bin_width(lower, upper, nbins)} {}
int bin(Scalar v) { return static_cast<int>(RangeType(v - lower_) / bin_width_); }
double uniform_bin_probability(int bin) {
// Avoid overflow in computing range.
double range = static_cast<double>(RangeType(upper_ - lower_)) + 1.0;
if (bin < num_bins_ - 1) {
return static_cast<double>(bin_width_) / range;
}
return static_cast<double>(RangeType(upper_) - RangeType((lower_ + bin * bin_width_)) + 1) / range;
}
private:
static constexpr Scalar bin_width(Scalar lower, Scalar upper, int nbins) {
// Avoid overflow in computing the full range.
return RangeType(upper - nbins - lower + 1) / nbins + 1;
}
Scalar lower_;
Scalar upper_;
int num_bins_;
Scalar bin_width_;
};
template <typename Scalar>
void check_histogram(Scalar x, Scalar y, int bins) {
Array<int, 1, Dynamic> hist(bins);
hist.fill(0);
int f = 100000;
int n = bins * f;
int64 range = int64(y) - int64(x);
int divisor = int((range + 1) / bins);
assert(((range + 1) % bins) == 0);
for (int k = 0; k < n; ++k) {
Eigen::VectorXd hist = Eigen::VectorXd::Zero(bins);
HistogramHelper<Scalar> hist_helper(x, y, bins);
int64_t n = static_cast<int64_t>(bins) * 10000; // Approx 10000 per bin.
for (int64_t k = 0; k < n; ++k) {
Scalar r = check_in_range(x, y);
hist(int((int64(r) - int64(x)) / divisor))++;
int bin = hist_helper.bin(r);
hist(bin)++;
}
VERIFY((((hist.cast<double>() / double(f)) - 1.0).abs() < 0.03).all());
// Normalize bins by probability.
for (int i = 0; i < bins; ++i) {
hist(i) = hist(i) / n / hist_helper.uniform_bin_probability(i);
}
VERIFY(((hist.array() - 1.0).abs() < 0.05).all());
}
template <typename Scalar>
void check_histogram(int bins) {
Eigen::VectorXd hist = Eigen::VectorXd::Zero(bins);
HistogramHelper<Scalar> hist_helper(bins);
int64_t n = static_cast<int64_t>(bins) * 10000; // Approx 10000 per bin.
for (int64_t k = 0; k < n; ++k) {
Scalar r = Eigen::internal::random<Scalar>();
int bin = hist_helper.bin(r);
hist(bin)++;
}
// Normalize bins by probability.
for (int i = 0; i < bins; ++i) {
hist(i) = hist(i) / n / hist_helper.uniform_bin_probability(i);
}
VERIFY(((hist.array() - 1.0).abs() < 0.05).all());
}
EIGEN_DECLARE_TEST(rand) {
long long_ref = NumTraits<long>::highest() / 10;
int64_t int64_ref = NumTraits<int64_t>::highest() / 10;
// the minimum guarantees that these conversions are safe
auto char_offset = static_cast<signed char>((std::min)(g_repeat, 64));
auto short_offset = static_cast<signed short>((std::min)(g_repeat, 8000));
int8_t int8t_offset = static_cast<int8_t>((std::min)(g_repeat, 64));
int16_t int16t_offset = static_cast<int16_t>((std::min)(g_repeat, 8000));
EIGEN_UNUSED_VARIABLE(int64_ref);
EIGEN_UNUSED_VARIABLE(int8t_offset);
EIGEN_UNUSED_VARIABLE(int16t_offset);
for (int i = 0; i < g_repeat * 10000; i++) {
CALL_SUBTEST(check_in_range<float>(10, 11));
CALL_SUBTEST(check_in_range<float>(1.24234523f, 1.24234523f));
CALL_SUBTEST(check_in_range<float>(-1, 1));
CALL_SUBTEST(check_in_range<float>(-1432.2352f, -1432.2352f));
CALL_SUBTEST_1(check_in_range<float>(10.0f, 11.0f));
CALL_SUBTEST_1(check_in_range<float>(1.24234523f, 1.24234523f));
CALL_SUBTEST_1(check_in_range<float>(-1.0f, 1.0f));
CALL_SUBTEST_1(check_in_range<float>(-1432.2352f, -1432.2352f));
CALL_SUBTEST(check_in_range<double>(10, 11));
CALL_SUBTEST(check_in_range<double>(1.24234523, 1.24234523));
CALL_SUBTEST(check_in_range<double>(-1, 1));
CALL_SUBTEST(check_in_range<double>(-1432.2352, -1432.2352));
CALL_SUBTEST_2(check_in_range<double>(10.0, 11.0));
CALL_SUBTEST_2(check_in_range<double>(1.24234523, 1.24234523));
CALL_SUBTEST_2(check_in_range<double>(-1.0, 1.0));
CALL_SUBTEST_2(check_in_range<double>(-1432.2352, -1432.2352));
CALL_SUBTEST(check_in_range<int>(0, -1));
CALL_SUBTEST(check_in_range<short>(0, -1));
CALL_SUBTEST(check_in_range<long>(0, -1));
CALL_SUBTEST(check_in_range<int>(-673456, 673456));
CALL_SUBTEST(check_in_range<int>(-RAND_MAX + 10, RAND_MAX - 10));
CALL_SUBTEST(check_in_range<short>(-24345, 24345));
CALL_SUBTEST(check_in_range<long>(-long_ref, long_ref));
CALL_SUBTEST_3(check_in_range<long double>(10.0L, 11.0L));
CALL_SUBTEST_3(check_in_range<long double>(1.24234523L, 1.24234523L));
CALL_SUBTEST_3(check_in_range<long double>(-1.0L, 1.0L));
CALL_SUBTEST_3(check_in_range<long double>(-1432.2352L, -1432.2352L));
CALL_SUBTEST_4(check_in_range<half>(half(10.0f), half(11.0f)));
CALL_SUBTEST_4(check_in_range<half>(half(1.24234523f), half(1.24234523f)));
CALL_SUBTEST_4(check_in_range<half>(half(-1.0f), half(1.0f)));
CALL_SUBTEST_4(check_in_range<half>(half(-1432.2352f), half(-1432.2352f)));
CALL_SUBTEST_5(check_in_range<bfloat16>(bfloat16(10.0f), bfloat16(11.0f)));
CALL_SUBTEST_5(check_in_range<bfloat16>(bfloat16(1.24234523f), bfloat16(1.24234523f)));
CALL_SUBTEST_5(check_in_range<bfloat16>(bfloat16(-1.0f), bfloat16(1.0f)));
CALL_SUBTEST_5(check_in_range<bfloat16>(bfloat16(-1432.2352f), bfloat16(-1432.2352f)));
CALL_SUBTEST_6(check_in_range<int32_t>(0, -1));
CALL_SUBTEST_6(check_in_range<int16_t>(0, -1));
CALL_SUBTEST_6(check_in_range<int64_t>(0, -1));
CALL_SUBTEST_6(check_in_range<int32_t>(-673456, 673456));
CALL_SUBTEST_6(check_in_range<int32_t>(-RAND_MAX + 10, RAND_MAX - 10));
CALL_SUBTEST_6(check_in_range<int16_t>(-24345, 24345));
CALL_SUBTEST_6(check_in_range<int64_t>(-int64_ref, int64_ref));
}
CALL_SUBTEST(check_all_in_range<signed char>(11, 11));
CALL_SUBTEST(check_all_in_range<signed char>(11, 11 + char_offset));
CALL_SUBTEST(check_all_in_range<signed char>(-5, 5));
CALL_SUBTEST(check_all_in_range<signed char>(-11 - char_offset, -11));
CALL_SUBTEST(check_all_in_range<signed char>(-126, -126 + char_offset));
CALL_SUBTEST(check_all_in_range<signed char>(126 - char_offset, 126));
CALL_SUBTEST(check_all_in_range<signed char>(-126, 126));
CALL_SUBTEST_7(check_all_in_range<int8_t>(11, 11));
CALL_SUBTEST_7(check_all_in_range<int8_t>(11, 11 + int8t_offset));
CALL_SUBTEST_7(check_all_in_range<int8_t>(-5, 5));
CALL_SUBTEST_7(check_all_in_range<int8_t>(-11 - int8t_offset, -11));
CALL_SUBTEST_7(check_all_in_range<int8_t>(-126, -126 + int8t_offset));
CALL_SUBTEST_7(check_all_in_range<int8_t>(126 - int8t_offset, 126));
CALL_SUBTEST_7(check_all_in_range<int8_t>(-126, 126));
CALL_SUBTEST(check_all_in_range<short>(11, 11));
CALL_SUBTEST(check_all_in_range<short>(11, 11 + short_offset));
CALL_SUBTEST(check_all_in_range<short>(-5, 5));
CALL_SUBTEST(check_all_in_range<short>(-11 - short_offset, -11));
CALL_SUBTEST(check_all_in_range<short>(-24345, -24345 + short_offset));
CALL_SUBTEST(check_all_in_range<short>(24345, 24345 + short_offset));
CALL_SUBTEST_8(check_all_in_range<int16_t>(11, 11));
CALL_SUBTEST_8(check_all_in_range<int16_t>(11, 11 + int16t_offset));
CALL_SUBTEST_8(check_all_in_range<int16_t>(-5, 5));
CALL_SUBTEST_8(check_all_in_range<int16_t>(-11 - int16t_offset, -11));
CALL_SUBTEST_8(check_all_in_range<int16_t>(-24345, -24345 + int16t_offset));
CALL_SUBTEST_8(check_all_in_range<int16_t>(24345, 24345 + int16t_offset));
CALL_SUBTEST(check_all_in_range<int>(11, 11));
CALL_SUBTEST(check_all_in_range<int>(11, 11 + g_repeat));
CALL_SUBTEST(check_all_in_range<int>(-5, 5));
CALL_SUBTEST(check_all_in_range<int>(-11 - g_repeat, -11));
CALL_SUBTEST(check_all_in_range<int>(-673456, -673456 + g_repeat));
CALL_SUBTEST(check_all_in_range<int>(673456, 673456 + g_repeat));
CALL_SUBTEST_9(check_all_in_range<int32_t>(11, 11));
CALL_SUBTEST_9(check_all_in_range<int32_t>(11, 11 + g_repeat));
CALL_SUBTEST_9(check_all_in_range<int32_t>(-5, 5));
CALL_SUBTEST_9(check_all_in_range<int32_t>(-11 - g_repeat, -11));
CALL_SUBTEST_9(check_all_in_range<int32_t>(-673456, -673456 + g_repeat));
CALL_SUBTEST_9(check_all_in_range<int32_t>(673456, 673456 + g_repeat));
CALL_SUBTEST(check_all_in_range<long>(11, 11));
CALL_SUBTEST(check_all_in_range<long>(11, 11 + g_repeat));
CALL_SUBTEST(check_all_in_range<long>(-5, 5));
CALL_SUBTEST(check_all_in_range<long>(-11 - g_repeat, -11));
CALL_SUBTEST(check_all_in_range<long>(-long_ref, -long_ref + g_repeat));
CALL_SUBTEST(check_all_in_range<long>(long_ref, long_ref + g_repeat));
CALL_SUBTEST_10(check_all_in_range<int64_t>(11, 11));
CALL_SUBTEST_10(check_all_in_range<int64_t>(11, 11 + g_repeat));
CALL_SUBTEST_10(check_all_in_range<int64_t>(-5, 5));
CALL_SUBTEST_10(check_all_in_range<int64_t>(-11 - g_repeat, -11));
CALL_SUBTEST_10(check_all_in_range<int64_t>(-int64_ref, -int64_ref + g_repeat));
CALL_SUBTEST_10(check_all_in_range<int64_t>(int64_ref, int64_ref + g_repeat));
CALL_SUBTEST(check_histogram<int>(-5, 5, 11));
CALL_SUBTEST_11(check_histogram<int32_t>(-5, 5, 11));
int bins = 100;
CALL_SUBTEST(check_histogram<int>(-3333, -3333 + bins * (3333 / bins) - 1, bins));
EIGEN_UNUSED_VARIABLE(bins)
CALL_SUBTEST_11(check_histogram<int32_t>(-3333, -3333 + bins * (3333 / bins) - 1, bins));
bins = 1000;
CALL_SUBTEST(check_histogram<int>(-RAND_MAX + 10, -RAND_MAX + 10 + bins * (RAND_MAX / bins) - 1, bins));
CALL_SUBTEST(
check_histogram<int>(-RAND_MAX + 10, -int64(RAND_MAX) + 10 + bins * (2 * int64(RAND_MAX) / bins) - 1, bins));
CALL_SUBTEST_11(check_histogram<int32_t>(-RAND_MAX + 10, -RAND_MAX + 10 + bins * (RAND_MAX / bins) - 1, bins));
CALL_SUBTEST_11(check_histogram<int32_t>(-RAND_MAX + 10,
-int64_t(RAND_MAX) + 10 + bins * (2 * int64_t(RAND_MAX) / bins) - 1, bins));
CALL_SUBTEST_12(check_histogram<uint8_t>(/*bins=*/16));
CALL_SUBTEST_12(check_histogram<uint16_t>(/*bins=*/1024));
CALL_SUBTEST_12(check_histogram<uint32_t>(/*bins=*/1024));
CALL_SUBTEST_12(check_histogram<uint64_t>(/*bins=*/1024));
CALL_SUBTEST_13(check_histogram<int8_t>(/*bins=*/16));
CALL_SUBTEST_13(check_histogram<int16_t>(/*bins=*/1024));
CALL_SUBTEST_13(check_histogram<int32_t>(/*bins=*/1024));
CALL_SUBTEST_13(check_histogram<int64_t>(/*bins=*/1024));
CALL_SUBTEST_14(check_histogram<float>(-10.0f, 10.0f, /*bins=*/1024));
CALL_SUBTEST_14(check_histogram<double>(-10.0, 10.0, /*bins=*/1024));
CALL_SUBTEST_14(check_histogram<long double>(-10.0L, 10.0L, /*bins=*/1024));
CALL_SUBTEST_14(check_histogram<half>(half(-10.0f), half(10.0f), /*bins=*/512));
CALL_SUBTEST_14(check_histogram<bfloat16>(bfloat16(-10.0f), bfloat16(10.0f), /*bins=*/64));
CALL_SUBTEST_15(check_histogram<float>(/*bins=*/1024));
CALL_SUBTEST_15(check_histogram<double>(/*bins=*/1024));
CALL_SUBTEST_15(check_histogram<long double>(/*bins=*/1024));
CALL_SUBTEST_15(check_histogram<half>(/*bins=*/512));
CALL_SUBTEST_15(check_histogram<bfloat16>(/*bins=*/64));
}