* add LU unit-test. Seems like we have very good numerical stability!

* some cleanup, and grant me a copyright line on the determinant test.
This commit is contained in:
Benoit Jacob 2008-08-09 19:26:14 +00:00
parent 4fa40367e9
commit d6e88f8155
5 changed files with 146 additions and 15 deletions

View File

@ -161,7 +161,7 @@ struct ei_compute_inverse
static inline void run(const MatrixType& matrix, MatrixType* result)
{
LU<MatrixType> lu(matrix);
lu.solve(MatrixType::Identity(matrix.rows(), matrix.cols()), result);
lu.computeInverse(result);
}
};

View File

@ -38,12 +38,9 @@
* are permutation matrices.
*
* This decomposition provides the generic approach to solving systems of linear equations, computing
* the rank, invertibility, inverse, and determinant. However for the case when invertibility is
* assumed, we have a specialized variant (see MatrixBase::inverse()) achieving better performance.
* the rank, invertibility, inverse, kernel, and determinant.
*
* \sa MatrixBase::lu(), MatrixBase::determinant(), MatrixBase::rank(), MatrixBase::kernelDim(),
* MatrixBase::kernelBasis(), MatrixBase::solve(), MatrixBase::isInvertible(),
* MatrixBase::inverse(), MatrixBase::computeInverse()
* \sa MatrixBase::lu(), MatrixBase::determinant(), MatrixBase::inverse(), MatrixBase::computeInverse()
*/
template<typename MatrixType> class LU
{
@ -141,6 +138,18 @@ template<typename MatrixType> class LU
return isInjective() && isSurjective();
}
inline void computeInverse(MatrixType *result) const
{
solve(MatrixType::Identity(m_lu.rows(), m_lu.cols()), result);
}
inline MatrixType inverse() const
{
MatrixType result;
computeInverse(&result);
return result;
}
protected:
MatrixType m_lu;
IntColVectorType m_p;
@ -163,7 +172,7 @@ LU<MatrixType>::LU(const MatrixType& matrix)
IntRowVectorType cols_transpositions(matrix.cols());
int number_of_transpositions = 0;
RealScalar biggest;
RealScalar biggest = RealScalar(0);
for(int k = 0; k < size; k++)
{
int row_of_biggest_in_corner, col_of_biggest_in_corner;
@ -224,7 +233,7 @@ void LU<MatrixType>::computeKernel(Matrix<typename MatrixType::Scalar,
> *result) const
{
ei_assert(!isInvertible());
const int dimker = dimensionOfKernel(), rows = m_lu.rows(), cols = m_lu.cols();
const int dimker = dimensionOfKernel(), cols = m_lu.cols();
result->resize(cols, dimker);
/* Let us use the following lemma:
@ -284,21 +293,22 @@ bool LU<MatrixType>::solve(
* Step 4: result = Qd;
*/
ei_assert(b.rows() == m_lu.rows());
const int smalldim = std::min(m_lu.rows(), m_lu.cols());
const int rows = m_lu.rows();
ei_assert(b.rows() == rows);
const int smalldim = std::min(rows, m_lu.cols());
typename OtherDerived::Eval c(b.rows(), b.cols());
// Step 1
for(int i = 0; i < m_lu.rows(); i++) c.row(m_p.coeff(i)) = b.row(i);
for(int i = 0; i < rows; i++) c.row(m_p.coeff(i)) = b.row(i);
// Step 2
Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime,
MatrixType::MaxRowsAtCompileTime,
MatrixType::MaxRowsAtCompileTime> l(m_lu.rows(), m_lu.rows());
MatrixType::MaxRowsAtCompileTime> l(rows, rows);
l.setZero();
l.corner(Eigen::TopLeft,m_lu.rows(),smalldim)
= m_lu.corner(Eigen::TopLeft,m_lu.rows(),smalldim);
l.corner(Eigen::TopLeft,rows,smalldim)
= m_lu.corner(Eigen::TopLeft,rows,smalldim);
l.template marked<UnitLower>().inverseProductInPlace(c);
// Step 3
@ -330,7 +340,7 @@ bool LU<MatrixType>::solve(
* \sa class LU
*/
template<typename Derived>
const LU<typename MatrixBase<Derived>::EvalType>
inline const LU<typename MatrixBase<Derived>::EvalType>
MatrixBase<Derived>::lu() const
{
return eval();

View File

@ -99,6 +99,7 @@ EI_ADD_TEST(map)
EI_ADD_TEST(array)
EI_ADD_TEST(triangular)
EI_ADD_TEST(cholesky)
EI_ADD_TEST(lu "-O2")
EI_ADD_TEST(determinant)
EI_ADD_TEST(inverse)
EI_ADD_TEST(qr)

View File

@ -1,6 +1,7 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Benoit Jacob <jacob@math.jussieu.fr>
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or

119
test/lu.cpp Normal file
View File

@ -0,0 +1,119 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Benoit Jacob <jacob@math.jussieu.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#include "main.h"
#include <Eigen/LU>
template<typename Derived>
void doSomeRankPreservingOperations(Eigen::MatrixBase<Derived>& m)
{
for(int a = 0; a < 3*(m.rows()+m.cols()); a++)
{
double d = Eigen::ei_random<double>(-1,1);
int i = Eigen::ei_random<int>(0,m.rows()-1); // i is a random row number
int j;
do {
j = Eigen::ei_random<int>(0,m.rows()-1);
} while (i==j); // j is another one (must be different)
m.row(i) += d * m.row(j);
i = Eigen::ei_random<int>(0,m.cols()-1); // i is a random column number
do {
j = Eigen::ei_random<int>(0,m.cols()-1);
} while (i==j); // j is another one (must be different)
m.col(i) += d * m.col(j);
}
}
template<typename MatrixType> void lu_non_invertible()
{
/* this test covers the following files:
LU.h
*/
int rows = ei_random<int>(10,200), cols = ei_random<int>(10,200), cols2 = ei_random<int>(10,200);
int rank = ei_random<int>(1, std::min(rows, cols)-1);
MatrixType m1(rows, cols), m2(cols, cols2), m3(rows, cols2), k(1,1);
m1.setRandom();
if(rows <= cols)
for(int i = rank; i < rows; i++) m1.row(i).setZero();
else
for(int i = rank; i < cols; i++) m1.col(i).setZero();
doSomeRankPreservingOperations(m1);
LU<MatrixType> lu(m1);
VERIFY(cols - rank == lu.dimensionOfKernel());
VERIFY(rank == lu.rank());
VERIFY(!lu.isInjective());
VERIFY(!lu.isInvertible());
VERIFY(lu.isSurjective() == (lu.rank() == rows));
VERIFY((m1 * lu.kernel()).isMuchSmallerThan(m1));
lu.computeKernel(&k);
VERIFY((m1 * k).isMuchSmallerThan(m1));
m2.setRandom();
m3 = m1*m2;
m2.setRandom();
lu.solve(m3, &m2);
VERIFY_IS_APPROX(m3, m1*m2);
m3.setRandom();
VERIFY(!lu.solve(m3, &m2));
}
template<typename MatrixType> void lu_invertible()
{
/* this test covers the following files:
LU.h
*/
int size = ei_random<int>(10,200);
MatrixType m1(size, size), m2(size, size), m3(size, size);
m1.setRandom();
LU<MatrixType> lu(m1);
VERIFY(0 == lu.dimensionOfKernel());
VERIFY(size == lu.rank());
VERIFY(lu.isInjective());
VERIFY(lu.isSurjective());
VERIFY(lu.isInvertible());
m3.setRandom();
lu.solve(m3, &m2);
VERIFY_IS_APPROX(m3, m1*m2);
VERIFY_IS_APPROX(m2, lu.inverse()*m3);
m3.setRandom();
VERIFY(lu.solve(m3, &m2));
}
void test_lu()
{
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST( lu_non_invertible<MatrixXf>() );
CALL_SUBTEST( lu_non_invertible<MatrixXd>() );
CALL_SUBTEST( lu_non_invertible<MatrixXcf>() );
CALL_SUBTEST( lu_non_invertible<MatrixXcd>() );
CALL_SUBTEST( lu_invertible<MatrixXf>() );
CALL_SUBTEST( lu_invertible<MatrixXd>() );
CALL_SUBTEST( lu_invertible<MatrixXcf>() );
CALL_SUBTEST( lu_invertible<MatrixXcd>() );
}
}