mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-08-12 11:49:02 +08:00
* add LU unit-test. Seems like we have very good numerical stability!
* some cleanup, and grant me a copyright line on the determinant test.
This commit is contained in:
parent
4fa40367e9
commit
d6e88f8155
@ -161,7 +161,7 @@ struct ei_compute_inverse
|
|||||||
static inline void run(const MatrixType& matrix, MatrixType* result)
|
static inline void run(const MatrixType& matrix, MatrixType* result)
|
||||||
{
|
{
|
||||||
LU<MatrixType> lu(matrix);
|
LU<MatrixType> lu(matrix);
|
||||||
lu.solve(MatrixType::Identity(matrix.rows(), matrix.cols()), result);
|
lu.computeInverse(result);
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
|
@ -38,12 +38,9 @@
|
|||||||
* are permutation matrices.
|
* are permutation matrices.
|
||||||
*
|
*
|
||||||
* This decomposition provides the generic approach to solving systems of linear equations, computing
|
* This decomposition provides the generic approach to solving systems of linear equations, computing
|
||||||
* the rank, invertibility, inverse, and determinant. However for the case when invertibility is
|
* the rank, invertibility, inverse, kernel, and determinant.
|
||||||
* assumed, we have a specialized variant (see MatrixBase::inverse()) achieving better performance.
|
|
||||||
*
|
*
|
||||||
* \sa MatrixBase::lu(), MatrixBase::determinant(), MatrixBase::rank(), MatrixBase::kernelDim(),
|
* \sa MatrixBase::lu(), MatrixBase::determinant(), MatrixBase::inverse(), MatrixBase::computeInverse()
|
||||||
* MatrixBase::kernelBasis(), MatrixBase::solve(), MatrixBase::isInvertible(),
|
|
||||||
* MatrixBase::inverse(), MatrixBase::computeInverse()
|
|
||||||
*/
|
*/
|
||||||
template<typename MatrixType> class LU
|
template<typename MatrixType> class LU
|
||||||
{
|
{
|
||||||
@ -141,6 +138,18 @@ template<typename MatrixType> class LU
|
|||||||
return isInjective() && isSurjective();
|
return isInjective() && isSurjective();
|
||||||
}
|
}
|
||||||
|
|
||||||
|
inline void computeInverse(MatrixType *result) const
|
||||||
|
{
|
||||||
|
solve(MatrixType::Identity(m_lu.rows(), m_lu.cols()), result);
|
||||||
|
}
|
||||||
|
|
||||||
|
inline MatrixType inverse() const
|
||||||
|
{
|
||||||
|
MatrixType result;
|
||||||
|
computeInverse(&result);
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
protected:
|
protected:
|
||||||
MatrixType m_lu;
|
MatrixType m_lu;
|
||||||
IntColVectorType m_p;
|
IntColVectorType m_p;
|
||||||
@ -163,7 +172,7 @@ LU<MatrixType>::LU(const MatrixType& matrix)
|
|||||||
IntRowVectorType cols_transpositions(matrix.cols());
|
IntRowVectorType cols_transpositions(matrix.cols());
|
||||||
int number_of_transpositions = 0;
|
int number_of_transpositions = 0;
|
||||||
|
|
||||||
RealScalar biggest;
|
RealScalar biggest = RealScalar(0);
|
||||||
for(int k = 0; k < size; k++)
|
for(int k = 0; k < size; k++)
|
||||||
{
|
{
|
||||||
int row_of_biggest_in_corner, col_of_biggest_in_corner;
|
int row_of_biggest_in_corner, col_of_biggest_in_corner;
|
||||||
@ -224,7 +233,7 @@ void LU<MatrixType>::computeKernel(Matrix<typename MatrixType::Scalar,
|
|||||||
> *result) const
|
> *result) const
|
||||||
{
|
{
|
||||||
ei_assert(!isInvertible());
|
ei_assert(!isInvertible());
|
||||||
const int dimker = dimensionOfKernel(), rows = m_lu.rows(), cols = m_lu.cols();
|
const int dimker = dimensionOfKernel(), cols = m_lu.cols();
|
||||||
result->resize(cols, dimker);
|
result->resize(cols, dimker);
|
||||||
|
|
||||||
/* Let us use the following lemma:
|
/* Let us use the following lemma:
|
||||||
@ -284,21 +293,22 @@ bool LU<MatrixType>::solve(
|
|||||||
* Step 4: result = Qd;
|
* Step 4: result = Qd;
|
||||||
*/
|
*/
|
||||||
|
|
||||||
ei_assert(b.rows() == m_lu.rows());
|
const int rows = m_lu.rows();
|
||||||
const int smalldim = std::min(m_lu.rows(), m_lu.cols());
|
ei_assert(b.rows() == rows);
|
||||||
|
const int smalldim = std::min(rows, m_lu.cols());
|
||||||
|
|
||||||
typename OtherDerived::Eval c(b.rows(), b.cols());
|
typename OtherDerived::Eval c(b.rows(), b.cols());
|
||||||
|
|
||||||
// Step 1
|
// Step 1
|
||||||
for(int i = 0; i < m_lu.rows(); i++) c.row(m_p.coeff(i)) = b.row(i);
|
for(int i = 0; i < rows; i++) c.row(m_p.coeff(i)) = b.row(i);
|
||||||
|
|
||||||
// Step 2
|
// Step 2
|
||||||
Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime,
|
Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime,
|
||||||
MatrixType::MaxRowsAtCompileTime,
|
MatrixType::MaxRowsAtCompileTime,
|
||||||
MatrixType::MaxRowsAtCompileTime> l(m_lu.rows(), m_lu.rows());
|
MatrixType::MaxRowsAtCompileTime> l(rows, rows);
|
||||||
l.setZero();
|
l.setZero();
|
||||||
l.corner(Eigen::TopLeft,m_lu.rows(),smalldim)
|
l.corner(Eigen::TopLeft,rows,smalldim)
|
||||||
= m_lu.corner(Eigen::TopLeft,m_lu.rows(),smalldim);
|
= m_lu.corner(Eigen::TopLeft,rows,smalldim);
|
||||||
l.template marked<UnitLower>().inverseProductInPlace(c);
|
l.template marked<UnitLower>().inverseProductInPlace(c);
|
||||||
|
|
||||||
// Step 3
|
// Step 3
|
||||||
@ -330,7 +340,7 @@ bool LU<MatrixType>::solve(
|
|||||||
* \sa class LU
|
* \sa class LU
|
||||||
*/
|
*/
|
||||||
template<typename Derived>
|
template<typename Derived>
|
||||||
const LU<typename MatrixBase<Derived>::EvalType>
|
inline const LU<typename MatrixBase<Derived>::EvalType>
|
||||||
MatrixBase<Derived>::lu() const
|
MatrixBase<Derived>::lu() const
|
||||||
{
|
{
|
||||||
return eval();
|
return eval();
|
||||||
|
@ -99,6 +99,7 @@ EI_ADD_TEST(map)
|
|||||||
EI_ADD_TEST(array)
|
EI_ADD_TEST(array)
|
||||||
EI_ADD_TEST(triangular)
|
EI_ADD_TEST(triangular)
|
||||||
EI_ADD_TEST(cholesky)
|
EI_ADD_TEST(cholesky)
|
||||||
|
EI_ADD_TEST(lu "-O2")
|
||||||
EI_ADD_TEST(determinant)
|
EI_ADD_TEST(determinant)
|
||||||
EI_ADD_TEST(inverse)
|
EI_ADD_TEST(inverse)
|
||||||
EI_ADD_TEST(qr)
|
EI_ADD_TEST(qr)
|
||||||
|
@ -1,6 +1,7 @@
|
|||||||
// This file is part of Eigen, a lightweight C++ template library
|
// This file is part of Eigen, a lightweight C++ template library
|
||||||
// for linear algebra. Eigen itself is part of the KDE project.
|
// for linear algebra. Eigen itself is part of the KDE project.
|
||||||
//
|
//
|
||||||
|
// Copyright (C) 2008 Benoit Jacob <jacob@math.jussieu.fr>
|
||||||
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
||||||
//
|
//
|
||||||
// Eigen is free software; you can redistribute it and/or
|
// Eigen is free software; you can redistribute it and/or
|
||||||
|
119
test/lu.cpp
Normal file
119
test/lu.cpp
Normal file
@ -0,0 +1,119 @@
|
|||||||
|
// This file is part of Eigen, a lightweight C++ template library
|
||||||
|
// for linear algebra. Eigen itself is part of the KDE project.
|
||||||
|
//
|
||||||
|
// Copyright (C) 2008 Benoit Jacob <jacob@math.jussieu.fr>
|
||||||
|
//
|
||||||
|
// Eigen is free software; you can redistribute it and/or
|
||||||
|
// modify it under the terms of the GNU Lesser General Public
|
||||||
|
// License as published by the Free Software Foundation; either
|
||||||
|
// version 3 of the License, or (at your option) any later version.
|
||||||
|
//
|
||||||
|
// Alternatively, you can redistribute it and/or
|
||||||
|
// modify it under the terms of the GNU General Public License as
|
||||||
|
// published by the Free Software Foundation; either version 2 of
|
||||||
|
// the License, or (at your option) any later version.
|
||||||
|
//
|
||||||
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||||
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||||
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||||
|
// GNU General Public License for more details.
|
||||||
|
//
|
||||||
|
// You should have received a copy of the GNU Lesser General Public
|
||||||
|
// License and a copy of the GNU General Public License along with
|
||||||
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||||
|
|
||||||
|
#include "main.h"
|
||||||
|
#include <Eigen/LU>
|
||||||
|
|
||||||
|
template<typename Derived>
|
||||||
|
void doSomeRankPreservingOperations(Eigen::MatrixBase<Derived>& m)
|
||||||
|
{
|
||||||
|
for(int a = 0; a < 3*(m.rows()+m.cols()); a++)
|
||||||
|
{
|
||||||
|
double d = Eigen::ei_random<double>(-1,1);
|
||||||
|
int i = Eigen::ei_random<int>(0,m.rows()-1); // i is a random row number
|
||||||
|
int j;
|
||||||
|
do {
|
||||||
|
j = Eigen::ei_random<int>(0,m.rows()-1);
|
||||||
|
} while (i==j); // j is another one (must be different)
|
||||||
|
m.row(i) += d * m.row(j);
|
||||||
|
|
||||||
|
i = Eigen::ei_random<int>(0,m.cols()-1); // i is a random column number
|
||||||
|
do {
|
||||||
|
j = Eigen::ei_random<int>(0,m.cols()-1);
|
||||||
|
} while (i==j); // j is another one (must be different)
|
||||||
|
m.col(i) += d * m.col(j);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename MatrixType> void lu_non_invertible()
|
||||||
|
{
|
||||||
|
/* this test covers the following files:
|
||||||
|
LU.h
|
||||||
|
*/
|
||||||
|
int rows = ei_random<int>(10,200), cols = ei_random<int>(10,200), cols2 = ei_random<int>(10,200);
|
||||||
|
int rank = ei_random<int>(1, std::min(rows, cols)-1);
|
||||||
|
|
||||||
|
MatrixType m1(rows, cols), m2(cols, cols2), m3(rows, cols2), k(1,1);
|
||||||
|
m1.setRandom();
|
||||||
|
if(rows <= cols)
|
||||||
|
for(int i = rank; i < rows; i++) m1.row(i).setZero();
|
||||||
|
else
|
||||||
|
for(int i = rank; i < cols; i++) m1.col(i).setZero();
|
||||||
|
doSomeRankPreservingOperations(m1);
|
||||||
|
|
||||||
|
LU<MatrixType> lu(m1);
|
||||||
|
VERIFY(cols - rank == lu.dimensionOfKernel());
|
||||||
|
VERIFY(rank == lu.rank());
|
||||||
|
VERIFY(!lu.isInjective());
|
||||||
|
VERIFY(!lu.isInvertible());
|
||||||
|
VERIFY(lu.isSurjective() == (lu.rank() == rows));
|
||||||
|
VERIFY((m1 * lu.kernel()).isMuchSmallerThan(m1));
|
||||||
|
lu.computeKernel(&k);
|
||||||
|
VERIFY((m1 * k).isMuchSmallerThan(m1));
|
||||||
|
m2.setRandom();
|
||||||
|
m3 = m1*m2;
|
||||||
|
m2.setRandom();
|
||||||
|
lu.solve(m3, &m2);
|
||||||
|
VERIFY_IS_APPROX(m3, m1*m2);
|
||||||
|
m3.setRandom();
|
||||||
|
VERIFY(!lu.solve(m3, &m2));
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename MatrixType> void lu_invertible()
|
||||||
|
{
|
||||||
|
/* this test covers the following files:
|
||||||
|
LU.h
|
||||||
|
*/
|
||||||
|
int size = ei_random<int>(10,200);
|
||||||
|
|
||||||
|
MatrixType m1(size, size), m2(size, size), m3(size, size);
|
||||||
|
m1.setRandom();
|
||||||
|
|
||||||
|
LU<MatrixType> lu(m1);
|
||||||
|
VERIFY(0 == lu.dimensionOfKernel());
|
||||||
|
VERIFY(size == lu.rank());
|
||||||
|
VERIFY(lu.isInjective());
|
||||||
|
VERIFY(lu.isSurjective());
|
||||||
|
VERIFY(lu.isInvertible());
|
||||||
|
m3.setRandom();
|
||||||
|
lu.solve(m3, &m2);
|
||||||
|
VERIFY_IS_APPROX(m3, m1*m2);
|
||||||
|
VERIFY_IS_APPROX(m2, lu.inverse()*m3);
|
||||||
|
m3.setRandom();
|
||||||
|
VERIFY(lu.solve(m3, &m2));
|
||||||
|
}
|
||||||
|
|
||||||
|
void test_lu()
|
||||||
|
{
|
||||||
|
for(int i = 0; i < g_repeat; i++) {
|
||||||
|
CALL_SUBTEST( lu_non_invertible<MatrixXf>() );
|
||||||
|
CALL_SUBTEST( lu_non_invertible<MatrixXd>() );
|
||||||
|
CALL_SUBTEST( lu_non_invertible<MatrixXcf>() );
|
||||||
|
CALL_SUBTEST( lu_non_invertible<MatrixXcd>() );
|
||||||
|
CALL_SUBTEST( lu_invertible<MatrixXf>() );
|
||||||
|
CALL_SUBTEST( lu_invertible<MatrixXd>() );
|
||||||
|
CALL_SUBTEST( lu_invertible<MatrixXcf>() );
|
||||||
|
CALL_SUBTEST( lu_invertible<MatrixXcd>() );
|
||||||
|
}
|
||||||
|
}
|
Loading…
x
Reference in New Issue
Block a user