mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-05-07 03:39:04 +08:00
remove spaces
This commit is contained in:
parent
113995355b
commit
d791b51112
@ -429,7 +429,6 @@ HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiffInit(
|
||||
|
||||
|
||||
/* Function Body */
|
||||
|
||||
nfev = 0;
|
||||
njev = 0;
|
||||
|
||||
|
@ -207,7 +207,6 @@ LevenbergMarquardt<FunctorType,Scalar>::minimizeInit(
|
||||
njev = 0;
|
||||
|
||||
/* check the input parameters for errors. */
|
||||
|
||||
if (n <= 0 || m < n || parameters.ftol < 0. || parameters.xtol < 0. || parameters.gtol < 0. || parameters.maxfev <= 0 || parameters.factor <= 0.)
|
||||
return ImproperInputParameters;
|
||||
|
||||
@ -218,14 +217,12 @@ LevenbergMarquardt<FunctorType,Scalar>::minimizeInit(
|
||||
|
||||
/* evaluate the function at the starting point */
|
||||
/* and calculate its norm. */
|
||||
|
||||
nfev = 1;
|
||||
if ( functor(x, fvec) < 0)
|
||||
return UserAsked;
|
||||
fnorm = fvec.stableNorm();
|
||||
|
||||
/* initialize levenberg-marquardt parameter and iteration counter. */
|
||||
|
||||
par = 0.;
|
||||
iter = 1;
|
||||
|
||||
@ -242,7 +239,6 @@ LevenbergMarquardt<FunctorType,Scalar>::minimizeOneStep(
|
||||
int i, j, l;
|
||||
|
||||
/* calculate the jacobian matrix. */
|
||||
|
||||
int df_ret = functor.df(x, fjac);
|
||||
if (df_ret<0)
|
||||
return UserAsked;
|
||||
@ -252,7 +248,6 @@ LevenbergMarquardt<FunctorType,Scalar>::minimizeOneStep(
|
||||
else njev++;
|
||||
|
||||
/* compute the qr factorization of the jacobian. */
|
||||
|
||||
wa2 = fjac.colwise().blueNorm();
|
||||
ColPivHouseholderQR<JacobianType> qrfac(fjac);
|
||||
fjac = qrfac.matrixQR();
|
||||
@ -264,7 +259,6 @@ LevenbergMarquardt<FunctorType,Scalar>::minimizeOneStep(
|
||||
|
||||
/* on the first iteration and if mode is 1, scale according */
|
||||
/* to the norms of the columns of the initial jacobian. */
|
||||
|
||||
if (iter == 1) {
|
||||
if (mode != 2)
|
||||
for (j = 0; j < n; ++j) {
|
||||
@ -275,7 +269,6 @@ LevenbergMarquardt<FunctorType,Scalar>::minimizeOneStep(
|
||||
|
||||
/* on the first iteration, calculate the norm of the scaled x */
|
||||
/* and initialize the step bound delta. */
|
||||
|
||||
wa3 = diag.cwiseProduct(x);
|
||||
xnorm = wa3.stableNorm();
|
||||
delta = parameters.factor * xnorm;
|
||||
@ -285,7 +278,6 @@ LevenbergMarquardt<FunctorType,Scalar>::minimizeOneStep(
|
||||
|
||||
/* form (q transpose)*fvec and store the first n components in */
|
||||
/* qtf. */
|
||||
|
||||
#if 0
|
||||
// find a way to only compute the first n items, we have m>>n here.
|
||||
wa4 = fvec;
|
||||
@ -309,7 +301,6 @@ LevenbergMarquardt<FunctorType,Scalar>::minimizeOneStep(
|
||||
#endif
|
||||
|
||||
/* compute the norm of the scaled gradient. */
|
||||
|
||||
gnorm = 0.;
|
||||
if (fnorm != 0.)
|
||||
for (j = 0; j < n; ++j) {
|
||||
@ -324,12 +315,10 @@ LevenbergMarquardt<FunctorType,Scalar>::minimizeOneStep(
|
||||
}
|
||||
|
||||
/* test for convergence of the gradient norm. */
|
||||
|
||||
if (gnorm <= parameters.gtol)
|
||||
return CosinusTooSmall;
|
||||
|
||||
/* rescale if necessary. */
|
||||
|
||||
if (mode != 2) /* Computing MAX */
|
||||
diag = diag.cwiseMax(wa2);
|
||||
|
||||
@ -337,37 +326,31 @@ LevenbergMarquardt<FunctorType,Scalar>::minimizeOneStep(
|
||||
do {
|
||||
|
||||
/* determine the levenberg-marquardt parameter. */
|
||||
|
||||
ei_lmpar2<Scalar>(qrfac, diag, qtf, delta, par, wa1);
|
||||
|
||||
/* store the direction p and x + p. calculate the norm of p. */
|
||||
|
||||
wa1 = -wa1;
|
||||
wa2 = x + wa1;
|
||||
wa3 = diag.cwiseProduct(wa1);
|
||||
pnorm = wa3.stableNorm();
|
||||
|
||||
/* on the first iteration, adjust the initial step bound. */
|
||||
|
||||
if (iter == 1)
|
||||
delta = std::min(delta,pnorm);
|
||||
|
||||
/* evaluate the function at x + p and calculate its norm. */
|
||||
|
||||
if ( functor(wa2, wa4) < 0)
|
||||
return UserAsked;
|
||||
++nfev;
|
||||
fnorm1 = wa4.stableNorm();
|
||||
|
||||
/* compute the scaled actual reduction. */
|
||||
|
||||
actred = -1.;
|
||||
if (Scalar(.1) * fnorm1 < fnorm) /* Computing 2nd power */
|
||||
actred = 1. - ei_abs2(fnorm1 / fnorm);
|
||||
|
||||
/* compute the scaled predicted reduction and */
|
||||
/* the scaled directional derivative. */
|
||||
|
||||
wa3.fill(0.);
|
||||
for (j = 0; j < n; ++j) {
|
||||
l = ipvt[j];
|
||||
@ -383,13 +366,11 @@ LevenbergMarquardt<FunctorType,Scalar>::minimizeOneStep(
|
||||
|
||||
/* compute the ratio of the actual to the predicted */
|
||||
/* reduction. */
|
||||
|
||||
ratio = 0.;
|
||||
if (prered != 0.)
|
||||
ratio = actred / prered;
|
||||
|
||||
/* update the step bound. */
|
||||
|
||||
if (ratio <= Scalar(.25)) {
|
||||
if (actred >= 0.)
|
||||
temp = Scalar(.5);
|
||||
@ -406,7 +387,6 @@ LevenbergMarquardt<FunctorType,Scalar>::minimizeOneStep(
|
||||
}
|
||||
|
||||
/* test for successful iteration. */
|
||||
|
||||
if (ratio >= Scalar(1e-4)) {
|
||||
/* successful iteration. update x, fvec, and their norms. */
|
||||
x = wa2;
|
||||
@ -418,7 +398,6 @@ LevenbergMarquardt<FunctorType,Scalar>::minimizeOneStep(
|
||||
}
|
||||
|
||||
/* tests for convergence. */
|
||||
|
||||
if (ei_abs(actred) <= parameters.ftol && prered <= parameters.ftol && Scalar(.5) * ratio <= 1. && delta <= parameters.xtol * xnorm)
|
||||
return RelativeErrorAndReductionTooSmall;
|
||||
if (ei_abs(actred) <= parameters.ftol && prered <= parameters.ftol && Scalar(.5) * ratio <= 1.)
|
||||
@ -427,7 +406,6 @@ LevenbergMarquardt<FunctorType,Scalar>::minimizeOneStep(
|
||||
return RelativeErrorTooSmall;
|
||||
|
||||
/* tests for termination and stringent tolerances. */
|
||||
|
||||
if (nfev >= parameters.maxfev)
|
||||
return TooManyFunctionEvaluation;
|
||||
if (ei_abs(actred) <= epsilon<Scalar>() && prered <= epsilon<Scalar>() && Scalar(.5) * ratio <= 1.)
|
||||
@ -489,7 +467,6 @@ LevenbergMarquardt<FunctorType,Scalar>::minimizeOptimumStorageInit(
|
||||
njev = 0;
|
||||
|
||||
/* check the input parameters for errors. */
|
||||
|
||||
if (n <= 0 || m < n || parameters.ftol < 0. || parameters.xtol < 0. || parameters.gtol < 0. || parameters.maxfev <= 0 || parameters.factor <= 0.)
|
||||
return ImproperInputParameters;
|
||||
|
||||
@ -500,14 +477,12 @@ LevenbergMarquardt<FunctorType,Scalar>::minimizeOptimumStorageInit(
|
||||
|
||||
/* evaluate the function at the starting point */
|
||||
/* and calculate its norm. */
|
||||
|
||||
nfev = 1;
|
||||
if ( functor(x, fvec) < 0)
|
||||
return UserAsked;
|
||||
fnorm = fvec.stableNorm();
|
||||
|
||||
/* initialize levenberg-marquardt parameter and iteration counter. */
|
||||
|
||||
par = 0.;
|
||||
iter = 1;
|
||||
|
||||
@ -529,7 +504,6 @@ LevenbergMarquardt<FunctorType,Scalar>::minimizeOptimumStorageOneStep(
|
||||
/* calculated one row at a time, while simultaneously */
|
||||
/* forming (q transpose)*fvec and storing the first */
|
||||
/* n components in qtf. */
|
||||
|
||||
qtf.fill(0.);
|
||||
fjac.fill(0.);
|
||||
int rownb = 2;
|
||||
@ -543,7 +517,6 @@ LevenbergMarquardt<FunctorType,Scalar>::minimizeOptimumStorageOneStep(
|
||||
|
||||
/* if the jacobian is rank deficient, call qrfac to */
|
||||
/* reorder its columns and update the components of qtf. */
|
||||
|
||||
sing = false;
|
||||
for (j = 0; j < n; ++j) {
|
||||
if (fjac(j,j) == 0.) {
|
||||
@ -578,7 +551,6 @@ LevenbergMarquardt<FunctorType,Scalar>::minimizeOptimumStorageOneStep(
|
||||
|
||||
/* on the first iteration and if mode is 1, scale according */
|
||||
/* to the norms of the columns of the initial jacobian. */
|
||||
|
||||
if (iter == 1) {
|
||||
if (mode != 2)
|
||||
for (j = 0; j < n; ++j) {
|
||||
@ -589,7 +561,6 @@ LevenbergMarquardt<FunctorType,Scalar>::minimizeOptimumStorageOneStep(
|
||||
|
||||
/* on the first iteration, calculate the norm of the scaled x */
|
||||
/* and initialize the step bound delta. */
|
||||
|
||||
wa3 = diag.cwiseProduct(x);
|
||||
xnorm = wa3.stableNorm();
|
||||
delta = parameters.factor * xnorm;
|
||||
@ -598,7 +569,6 @@ LevenbergMarquardt<FunctorType,Scalar>::minimizeOptimumStorageOneStep(
|
||||
}
|
||||
|
||||
/* compute the norm of the scaled gradient. */
|
||||
|
||||
gnorm = 0.;
|
||||
if (fnorm != 0.)
|
||||
for (j = 0; j < n; ++j) {
|
||||
@ -613,12 +583,10 @@ LevenbergMarquardt<FunctorType,Scalar>::minimizeOptimumStorageOneStep(
|
||||
}
|
||||
|
||||
/* test for convergence of the gradient norm. */
|
||||
|
||||
if (gnorm <= parameters.gtol)
|
||||
return CosinusTooSmall;
|
||||
|
||||
/* rescale if necessary. */
|
||||
|
||||
if (mode != 2) /* Computing MAX */
|
||||
diag = diag.cwiseMax(wa2);
|
||||
|
||||
@ -626,37 +594,31 @@ LevenbergMarquardt<FunctorType,Scalar>::minimizeOptimumStorageOneStep(
|
||||
do {
|
||||
|
||||
/* determine the levenberg-marquardt parameter. */
|
||||
|
||||
ei_lmpar<Scalar>(fjac, ipvt, diag, qtf, delta, par, wa1);
|
||||
|
||||
/* store the direction p and x + p. calculate the norm of p. */
|
||||
|
||||
wa1 = -wa1;
|
||||
wa2 = x + wa1;
|
||||
wa3 = diag.cwiseProduct(wa1);
|
||||
pnorm = wa3.stableNorm();
|
||||
|
||||
/* on the first iteration, adjust the initial step bound. */
|
||||
|
||||
if (iter == 1)
|
||||
delta = std::min(delta,pnorm);
|
||||
|
||||
/* evaluate the function at x + p and calculate its norm. */
|
||||
|
||||
if ( functor(wa2, wa4) < 0)
|
||||
return UserAsked;
|
||||
++nfev;
|
||||
fnorm1 = wa4.stableNorm();
|
||||
|
||||
/* compute the scaled actual reduction. */
|
||||
|
||||
actred = -1.;
|
||||
if (Scalar(.1) * fnorm1 < fnorm) /* Computing 2nd power */
|
||||
actred = 1. - ei_abs2(fnorm1 / fnorm);
|
||||
|
||||
/* compute the scaled predicted reduction and */
|
||||
/* the scaled directional derivative. */
|
||||
|
||||
wa3.fill(0.);
|
||||
for (j = 0; j < n; ++j) {
|
||||
l = ipvt[j];
|
||||
@ -672,13 +634,11 @@ LevenbergMarquardt<FunctorType,Scalar>::minimizeOptimumStorageOneStep(
|
||||
|
||||
/* compute the ratio of the actual to the predicted */
|
||||
/* reduction. */
|
||||
|
||||
ratio = 0.;
|
||||
if (prered != 0.)
|
||||
ratio = actred / prered;
|
||||
|
||||
/* update the step bound. */
|
||||
|
||||
if (ratio <= Scalar(.25)) {
|
||||
if (actred >= 0.)
|
||||
temp = Scalar(.5);
|
||||
@ -695,7 +655,6 @@ LevenbergMarquardt<FunctorType,Scalar>::minimizeOptimumStorageOneStep(
|
||||
}
|
||||
|
||||
/* test for successful iteration. */
|
||||
|
||||
if (ratio >= Scalar(1e-4)) {
|
||||
/* successful iteration. update x, fvec, and their norms. */
|
||||
x = wa2;
|
||||
@ -707,7 +666,6 @@ LevenbergMarquardt<FunctorType,Scalar>::minimizeOptimumStorageOneStep(
|
||||
}
|
||||
|
||||
/* tests for convergence. */
|
||||
|
||||
if (ei_abs(actred) <= parameters.ftol && prered <= parameters.ftol && Scalar(.5) * ratio <= 1. && delta <= parameters.xtol * xnorm)
|
||||
return RelativeErrorAndReductionTooSmall;
|
||||
if (ei_abs(actred) <= parameters.ftol && prered <= parameters.ftol && Scalar(.5) * ratio <= 1.)
|
||||
@ -716,7 +674,6 @@ LevenbergMarquardt<FunctorType,Scalar>::minimizeOptimumStorageOneStep(
|
||||
return RelativeErrorTooSmall;
|
||||
|
||||
/* tests for termination and stringent tolerances. */
|
||||
|
||||
if (nfev >= parameters.maxfev)
|
||||
return TooManyFunctionEvaluation;
|
||||
if (ei_abs(actred) <= epsilon<Scalar>() && prered <= epsilon<Scalar>() && Scalar(.5) * ratio <= 1.)
|
||||
|
@ -30,7 +30,6 @@ void ei_lmpar(
|
||||
|
||||
/* compute and store in x the gauss-newton direction. if the */
|
||||
/* jacobian is rank-deficient, obtain a least squares solution. */
|
||||
|
||||
int nsing = n-1;
|
||||
wa1 = qtb;
|
||||
for (j = 0; j < n; ++j) {
|
||||
@ -52,7 +51,6 @@ void ei_lmpar(
|
||||
/* initialize the iteration counter. */
|
||||
/* evaluate the function at the origin, and test */
|
||||
/* for acceptance of the gauss-newton direction. */
|
||||
|
||||
iter = 0;
|
||||
wa2 = diag.cwiseProduct(x);
|
||||
dxnorm = wa2.blueNorm();
|
||||
@ -65,7 +63,6 @@ void ei_lmpar(
|
||||
/* if the jacobian is not rank deficient, the newton */
|
||||
/* step provides a lower bound, parl, for the zero of */
|
||||
/* the function. otherwise set this bound to zero. */
|
||||
|
||||
parl = 0.;
|
||||
if (nsing >= n-1) {
|
||||
for (j = 0; j < n; ++j) {
|
||||
@ -85,7 +82,6 @@ void ei_lmpar(
|
||||
}
|
||||
|
||||
/* calculate an upper bound, paru, for the zero of the function. */
|
||||
|
||||
for (j = 0; j < n; ++j)
|
||||
wa1[j] = r.col(j).head(j+1).dot(qtb.head(j+1)) / diag[ipvt[j]];
|
||||
|
||||
@ -96,22 +92,18 @@ void ei_lmpar(
|
||||
|
||||
/* if the input par lies outside of the interval (parl,paru), */
|
||||
/* set par to the closer endpoint. */
|
||||
|
||||
par = std::max(par,parl);
|
||||
par = std::min(par,paru);
|
||||
if (par == 0.)
|
||||
par = gnorm / dxnorm;
|
||||
|
||||
/* beginning of an iteration. */
|
||||
|
||||
while (true) {
|
||||
++iter;
|
||||
|
||||
/* evaluate the function at the current value of par. */
|
||||
|
||||
if (par == 0.)
|
||||
par = std::max(dwarf,Scalar(.001) * paru); /* Computing MAX */
|
||||
|
||||
wa1 = ei_sqrt(par)* diag;
|
||||
|
||||
Matrix< Scalar, Dynamic, 1 > sdiag(n);
|
||||
@ -125,12 +117,10 @@ void ei_lmpar(
|
||||
/* if the function is small enough, accept the current value */
|
||||
/* of par. also test for the exceptional cases where parl */
|
||||
/* is zero or the number of iterations has reached 10. */
|
||||
|
||||
if (ei_abs(fp) <= Scalar(0.1) * delta || (parl == 0. && fp <= temp && temp < 0.) || iter == 10)
|
||||
break;
|
||||
|
||||
/* compute the newton correction. */
|
||||
|
||||
for (j = 0; j < n; ++j) {
|
||||
l = ipvt[j];
|
||||
wa1[j] = diag[l] * (wa2[l] / dxnorm);
|
||||
@ -145,23 +135,19 @@ void ei_lmpar(
|
||||
parc = fp / delta / temp / temp;
|
||||
|
||||
/* depending on the sign of the function, update parl or paru. */
|
||||
|
||||
if (fp > 0.)
|
||||
parl = std::max(parl,par);
|
||||
if (fp < 0.)
|
||||
paru = std::min(paru,par);
|
||||
|
||||
/* compute an improved estimate for par. */
|
||||
|
||||
/* Computing MAX */
|
||||
par = std::max(parl,par+parc);
|
||||
|
||||
/* end of an iteration. */
|
||||
|
||||
}
|
||||
|
||||
/* termination. */
|
||||
|
||||
if (iter == 0)
|
||||
par = 0.;
|
||||
return;
|
||||
@ -198,7 +184,6 @@ void ei_lmpar2(
|
||||
|
||||
/* compute and store in x the gauss-newton direction. if the */
|
||||
/* jacobian is rank-deficient, obtain a least squares solution. */
|
||||
|
||||
// const int rank = qr.nonzeroPivots(); // exactly double(0.)
|
||||
const int rank = qr.rank(); // use a threshold
|
||||
wa1 = qtb; wa1.segment(rank,n-rank).setZero();
|
||||
@ -209,7 +194,6 @@ void ei_lmpar2(
|
||||
/* initialize the iteration counter. */
|
||||
/* evaluate the function at the origin, and test */
|
||||
/* for acceptance of the gauss-newton direction. */
|
||||
|
||||
iter = 0;
|
||||
wa2 = diag.cwiseProduct(x);
|
||||
dxnorm = wa2.blueNorm();
|
||||
@ -222,7 +206,6 @@ void ei_lmpar2(
|
||||
/* if the jacobian is not rank deficient, the newton */
|
||||
/* step provides a lower bound, parl, for the zero of */
|
||||
/* the function. otherwise set this bound to zero. */
|
||||
|
||||
parl = 0.;
|
||||
if (rank==n) {
|
||||
wa1 = qr.colsPermutation().inverse() * diag.cwiseProduct(wa2)/dxnorm;
|
||||
@ -232,7 +215,6 @@ void ei_lmpar2(
|
||||
}
|
||||
|
||||
/* calculate an upper bound, paru, for the zero of the function. */
|
||||
|
||||
for (j = 0; j < n; ++j)
|
||||
wa1[j] = qr.matrixQR().col(j).head(j+1).dot(qtb.head(j+1)) / diag[qr.colsPermutation().indices()(j)];
|
||||
|
||||
@ -243,23 +225,19 @@ void ei_lmpar2(
|
||||
|
||||
/* if the input par lies outside of the interval (parl,paru), */
|
||||
/* set par to the closer endpoint. */
|
||||
|
||||
par = std::max(par,parl);
|
||||
par = std::min(par,paru);
|
||||
if (par == 0.)
|
||||
par = gnorm / dxnorm;
|
||||
|
||||
/* beginning of an iteration. */
|
||||
|
||||
Matrix< Scalar, Dynamic, Dynamic > s = qr.matrixQR();
|
||||
while (true) {
|
||||
++iter;
|
||||
|
||||
/* evaluate the function at the current value of par. */
|
||||
|
||||
if (par == 0.)
|
||||
par = std::max(dwarf,Scalar(.001) * paru); /* Computing MAX */
|
||||
|
||||
wa1 = ei_sqrt(par)* diag;
|
||||
|
||||
Matrix< Scalar, Dynamic, 1 > sdiag(n);
|
||||
@ -273,12 +251,10 @@ void ei_lmpar2(
|
||||
/* if the function is small enough, accept the current value */
|
||||
/* of par. also test for the exceptional cases where parl */
|
||||
/* is zero or the number of iterations has reached 10. */
|
||||
|
||||
if (ei_abs(fp) <= Scalar(0.1) * delta || (parl == 0. && fp <= temp && temp < 0.) || iter == 10)
|
||||
break;
|
||||
|
||||
/* compute the newton correction. */
|
||||
|
||||
wa1 = qr.colsPermutation().inverse() * diag.cwiseProduct(wa2/dxnorm);
|
||||
for (j = 0; j < n; ++j) {
|
||||
wa1[j] /= sdiag[j];
|
||||
@ -290,7 +266,6 @@ void ei_lmpar2(
|
||||
parc = fp / delta / temp / temp;
|
||||
|
||||
/* depending on the sign of the function, update parl or paru. */
|
||||
|
||||
if (fp > 0.)
|
||||
parl = std::max(parl,par);
|
||||
if (fp < 0.)
|
||||
|
Loading…
x
Reference in New Issue
Block a user